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1. Introduction. A “golden thread” running through these lectures will be dynamical
zeta functions, intended to help bind together a number of seemingly disparate topics. In
fact, the zeta function can best be viewed as a versatile tool with applications to a wide
range of problems.

Having already mentioned dynamical zeta functions, this brings us to a basic question:.
Question. What are zeta functions (in dynamical systems)?

These usually come in two flavours:
1. zeta functions for discrete maps T : X → X; and
2. zeta functions for continuous flows φt : X → X (t ∈ R).
As a rough rule of thumb, the zeta function for maps has attracted more attention and
has a far greater literature; and the latter is often the more challenging. Let us start from
the discrete case and return to the continuous case later.

1.1. Discrete maps and zeta functions. Let T : X → X be a hyperbolic diffeomor-
phism for a compact manifold. For definiteness, and hopefully clarity, let us consider the
specific case of X = Rd/Zd, the standard d-dimensional torus. Let T : X → X be a
(linear) hyperbolic toral automorphism, i.e.,
1. let A ∈ GL(d,Z) with T (x+ Zd) = Ax+ Zd (for x ∈ Rd), and
2. the matrix A has no eigenvalues on the unit circle.
Let us recall a very simple and well-known example.
Example 1.1 (Arnol’d CAT map [3]). We can let A =

(
2 1
1 1
)

and then define T : T2 → T2

by T (x, y) = (2x+ y, x+ y) (mod 1).
Let us return to the definition of the zeta function for T . We denote by

Fix(Tn) = {x ∈ T2 : Tnx = x}
the set of points on the torus fixed by Tn. For any hyperbolic diffeomorphism it is a
standard fact that the set of fixed points of a given period will be finite. Moreover, the
hyperbolicity ensures that this number grows at an exponential rate.

The definition of the zeta function in this case is illustrative of the definition in
the general case. Following Artin and Mazur we have the following definition of a zeta
function [4].
Definition 1.2. The zeta function ζ(z) associated to a map T : X → X is a complex
function given by

ζ(z) := exp
( ∞∑
n=1

zn

n
#(Fix(Tn))

)
for z ∈ C.
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For the case of hyperbolic toral automorphisms the right hand side converges for |z|
sufficiently small. The definition for general Anosov maps f : M → M is completely
analogous. We recall that a diffeomorphism f : M →M of a compact manifold is Anosov
if:

1. there is a continuous splitting TM = Es ⊕ Eu and constants C > 0 and 0 < λ < 1
such that ‖Dfn|Es‖ ≤ Cλn and ‖Df−n|Eu‖ ≤ Cλn, for n ≥ 0;

2. f : M →M is transitive, i.e., there exists a dense orbit.

All of this leads to the following natural questions.

Question. Can we extend ζ(z) to a larger domain in z? Where are the zeros and poles
(or singularities) for this extension?

For this particular case of orientation preserving hyperbolic total automorphisms, the
answers to these two questions are relatively easy [65].

Theorem 1.3. For an orientation preserving hyperbolic toral automorphism the zeta
function ζ(z) extends to C (as a rational function p(z)/q(z) with p, q ∈ R[z]).

Fortunately, in this case the proof of the result is very simple. In particular, this is a
special case of the famous Lefschetz fixed point theorem., i.e., since detA = 1 we have

#(Fix(Tn)) =
d∑
k=0

(−1)k+1tr(Tn∗ : Hk → Hk)

where T∗ : Hk → Hk is the induced linear map on the kth real homology group, as
observed by Smale [65]. The key point here is that the toral automorphism is assumed
to be orientation preserving and thus the Lefschetz index for each fixed point is 1. Let us
consider the specific example of the Arnol’d CAT map again.

Example 1.4. We can let A =
(

2 1
1 1
)

and then tr(An) − 2 = #(Fix(Tn)). A simple
computation gives

ζ(z) = exp
( ∞∑
n=1

zn

n
(tr(An)− 2)

)
= (1− z)2

det(I − zA) .

More generally, the zeta function has a rational extension to C for any Anosov dif-
feomorphism, or more generally Axiom A diffeomorphisms as was originally proved by
A. Manning [37]. The smallest pole (in terms of its absolute value) comes from the radius
of convergence of the series:

1/R = lim
n→+∞

#(Fix(Tn))1/n =: λ

where λ is the maximal eigenvalue of the matrix A. In particular, log λ is the topological
entropy h(T ) of T : Td → Td. The other zeros and poles of ζ(z) reflect the speed of
convergence in this limit.

1.2. Continuous flows and zeta functions. Let us next turn to the case of flows.
But first let us recall a (more) famous zeta function from number theory defined in terms
of the prime numbers p = 2, 3, 5, 7, 11, . . . .
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Definition 1.5 (Riemann zeta function [20]). We define the Riemann zeta function by

ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(1− p−s)−1, s ∈ C,

where the product is over all prime numbers.

The equivalence of the two definitions comes from the simple expansion
1

1− p−s = 1 + p−s + p−2s + p−3s + · · ·

for Re(s) > 1. This converges for Re(s) > 1 to a nonzero analytic function. The following
results are classical in number theory:

1. ζ(s) has a meromorphic extension to C; and
2. the zeros for ζ(s) are mysterious (e.g., the Riemann Hypothesis remains open, stating

that the zeros in the critical strip 0 < Re(s) < 1 lie on the line Re(s) = 1
2 ).

Returning to the definition of zeta functions for flows, we can consider a simple ex-
ample which illustrates how things work, before giving the definition in the general case.

Example 1.6 (Suspension flow). Consider the simple setting of a Cantor set X and
the classical Smale horseshoe map T : X → X [65]. This is a diffeomorphism of the
sphere S2 which maps a rectangle on S2 across itself in a horseshoe shape. Then the
Cantor set X corresponds to points whose entire orbit is contained in the rectangle and
it is homeomorphic to the sequence space Σ = {0, 1}Z = {x = (xn) : xn ∈ {0, 1}} and T

is conjugate to the shift map σ : Σ→ Σ. We may introduce a function r : X → R+ that
depends only on the zeroth coordinate x0 and is defined by

r(x) =
{
α if x0 = 0,
β if x0 = 1,

where 0 < α < β [47].
We can then define by

Λr = {(x, u) : 0 ≤ u ≤ r(x)}/(x, r(x)) ∼ (Tx, 0)

the area under the graph of r, where the points (x, r(x))) and (Tx, 0) are identified. We
then define φt : Λr → Λr by φt(x, u) = (x, u + t) subject to the identifications. There is
then a natural bijection between closed orbits for T : Λ→ Λ and φt : Λr → Λr such that
{x, Tx, . . . , Tn−1x} corresponds to a closed orbit τ of period

λ(τ) = r(x) + r(Tx) + · · ·+ r(Tn−1x).

We can now define a zeta function for the flow (in the example above).

Definition 1.7 ([59]). We can formally define a zeta function for φ by

ζφ(s) =
∏
τ

(1− e−sλ(τ))−1

where τ is a prime periodic orbit for φ (i.e., not a multiple of a periodic orbit of shorter
period). This converges for Re(s) sufficiently large.
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More generally, we can similarly define the zeta function for Axiom A flows.
As we can see, the zeta function for flows is defined by analogy with the Euler product

form of the Riemann zeta function ζ(s), where the primes are replaced by the exponentials
of the least periods of orbits.

In the present context, the following is a simple exercise.

Lemma 1.8. For the example above we can write

ζφ(s) = exp
( ∞∑
n=1

1
n

∑
Tnx=x

e−sr
n(x)

)
where Tnx = x is a fixed point for x.

Proof. Providing Re(s) is sufficiently large, we can write∏
τ

(1− e−sλ(τ))−1 = exp
(
−
∑
τ

log(1− e−sλ(τ))
)

= exp
( ∞∑
m=1

∑
τ

e−smλ(τ)

m

)

= exp
( ∞∑
n=1

∑
{x,...,Tn−1x}(prime)

∞∑
m=1

1
m
e−smr

n(x)
)

= exp
( ∞∑
n=1

∑
Tnx=x(prime)

1
n

∞∑
m=1

e−smr
n(x)

m

)
= exp

( ∞∑
l=1

1
l

∑
T lx=x

e−sr
l(x)
)

which completes the proof.

In the particular case that the roof function is constant (i.e., α = β) the dynamical
zeta function for the flow in this example can be written in terms of the zeta function for
the discrete map.

Remark 1.9. If α = β then ζφ(s) = 1/(1− 2e−sα) (i.e., the continuous zeta function is
related to the discrete zeta function with z = e−sα). If α 6= β then can write

λ(τ) = αCard{0 ≤ j ≤ n− 1 : xj = 0}+ βCard{0 ≤ j ≤ n− 1 : xj = 1}

and then we have

ζφ(s) = exp
( ∞∑
n=1

1
n

(e−sα + e−sβ)n
)

= 1
1− e−sα − e−sβ

[60], [49]. Thus if h > 0 is a unique solution to e−hα + e−hβ = 1 then:

1. for Re(s) > h we have that ζφ(s) converges to a nonzero analytic function;
2. h is a simple pole for ζφ(s);
3. ζφ(s) has a meromorphic extension to C; and
4. if α/β is irrational then there are poles sn = σn + itn satisfying 1 = e−snα + e−snα for

which σn ↗ h. This follows from properties of almost periodic functions.

The value h can be shown to be the topological entropy for the associated flow (i.e., the
topological entropy of the time one flow φt=1).

In the next section we will begin to show that these dynamical zeta functions have
practical applications to apparently unrelated problems.
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2. Dynamically defined Cantor set and averaging transfer operators. We be-
gin with an application to the Hausdorff dimension of limit sets for iterated function
schemes [25].

Let X ⊂ [0, 1] be a dynamically defined Cantor set. More precisely, let T0, T1 : [0, 1]→
[0, 1] be Cω (or more generally C1) contractions with disjoint images (i.e., T0[0, 1] ∩
T1[0, 1] = ∅). The associated Cantor set X is the unique nonempty closed set X ⊂ [0, 1]
such that

T0X ∪ T1X = X.

We can define a locally distance expanding map T : X → X by

T (x) =
{
T−1

0 (x) if x ∈ TX0,

T−1
1 (x) if x ∈ TX1.

We recall some classical examples.

Example 2.1 (Middle 1/3-Cantor set). Let T0(x) = x/3 and T1(x) = x/3 + 2/3. Then

X =
{
x =

∞∑
n=1

xn
3n+1 : xn ∈ {0, 2}

}
(i.e., a triadic expansion with coefficients either 0 or 2). We can define T : X → X by
T (x) = 3x (mod 1).

The next example is similar, but defined using nonlinear contractions.

Example 2.2 (E2). Let T0(x) = 1
1+x and T1(x) = 1

2+x . Then
X = {x = [a1, a2, a3, . . . ] : an ∈ {1, 2}}

i.e., the points whose continued fraction expansion contains only the digits 1 and 2. We
can define the expanding map T : X → X by Tx = 1/x− [1/x].

We would like to quantify the size of these Cantor sets. The natural notion is the
Hausdorff dimension (although for these examples the Hausdorff dimension coincides
with the more easily defined box dimension).

Question. What is the Hausdorff dimension of the Cantor sets X in these examples?

In particular, we need to find some useful way to characterize the dimension. Let
C(X) be the space of continuous functions w : X → C.

Definition 2.3. We define a transfer operator L : C(X)→ C(X) by
Lw(x) = |T ′0(x)|w(T0x) + |T ′1(x)|w(T1x).

Unfortunately, the spectrum of L : C(X)→ C(X) is rather lacking in fine structure,
as the next lemma reveals.

Lemma 2.4. The spectrum of L : C(X) → C(X) is a closed ball whose radius is the
norm ‖L‖ = sup{‖Lf‖∞ : ‖f‖∞ ≤ 1} of the operator (or equivalently the spectral radius
of the operator).

Recall that the spectrum of L is defined to be the subset of the complex plane:
Spec(L) = {z ∈ C : (zI − L) : C(X)→ C(X) is not invertible}.
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We can illustrate the proof of the above lemma with the first example (Example 2.1), the
general case being similar. We first observe that ‖L‖ ≤ 2

3 from which we deduce that the
spectral radius is at most 2

3 . Fix w0 ∈ C(X) such that Lw0(x) = 0 for all x ∈ X (e.g.,
w0(x) = 1− w0(1− x)). For any |λ| < 1 we can define

wλ(x) :=
∞∑
n=0

λnw0(Tnx) ∈ C(X)

since C(X) is a Banach space. But 2
3λ is an eigenvalue, since

Lwλ(x) = Lw0(x)︸ ︷︷ ︸
=0

+
∞∑
n=1

λnL(w0 ◦ Tn)(x) =
∞∑
n=1

λn(w0 ◦ Tn−1)(x) = 2
3λwλ(x)

and L(w0 ◦Tn)(x) = 2
3 (w0 ◦Tn−1)(x), unless wλ = 0, which we can assume, without loss

of generality, is not the case. This completes the proof of the lemma.
To further our understanding of the zeta function, we want to consider transfer oper-

ators with smaller spectra. In particular, we need Banach spaces with “fewer” functions
for the transfer operators to act upon, an issue which we will address in the next section.
Moreover, to add more utility to these operators we would like to change the weights to
include a parameter s ∈ R (or even s ∈ C).

Definition 2.5. Given s ∈ R (s ∈ C) we can define a family of operators Ls : C(X)→
C(X) by

Lsw(x) = |T ′0(x)|sw(T0x) + |T ′1(x)|sw(T1x).

More generally, we could consider a finite family of contractions T1, . . . , Tn and define
the operators Ls : C(X)→ C(X) by

Lsw(x) =
n∑
j=1
|T ′j(x)|sw(Tjx).

We can illustrate the transfer operator using our two previous examples.

Example 2.6. 1. For the middle 1
3 -Cantor set we have a transfer operator

Lsw(x) =
(

1
3

)s
w

(
x

3

)
+
(

1
3

)s
w

(
x+ 3

3

)
.

2. For E2 we have a transfer operator

Lsw(x) =
(

1
x+ 1

)2s
w

(
1

x+ 1

)
+
(

1
x+ 2

)2s
w

(
1

x+ 2

)
.

The next step is to find a suitable Banach space B ⊂ C(X) for which the operator
L : B → B has better spectral properties and then use these to deduce interesting results
about X and T : X → X.

3. Banach spaces of analytic functions. There are many candidates for spaces of
functions upon which we can act with the transfer operator. Perhaps the simplest principle
is to consider the smallest space preserved by the transfer operator associated to the
transformation T . For the present, we will consider those T which are analytic (as in the
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two examples above) and Banach spaces of analytic functions since these are preserved
by the transfer operator

Let U be an open ball in C. Let B = B(U) be the Banach space of bounded analytic
functions w : U → C with the norm

‖w‖ = ‖w‖∞ := sup
z∈U
|w(z)|.

(The completeness comes from Montel’s Theorem in complex analysis.)
The advantage of transfer operators that preserve Banach spaces of analytic functions

is that they take a special form, which we will now describe.

Definition 3.1. We say that a bounded linear operator T : B → B is nuclear (or trace
class) if we can write

T (·) =
∞∑
n=0

λnln(·)wn

where

1. wn ∈ B with ‖wn‖ = 1;
2. ln ∈ B∗ with ‖ln‖ = 1; and
3. |λn| = O(θn), for some 0 < θ < 1.1

Remark 3.2. Nuclear operators are automatically compact operators, as is easily seen
from the definition, and thus only have countably many isolated eigenvalues all of which,
except the one at zero, are isolated.

In the context of dynamically defined Cantor sets, let Ti : [0, 1] → [0, 1] (i = 1, 2) be
analytic and assume there are nested open sets

[0, 1] ⊂ U ⊂ U+ ⊂ C

in the complex plane such that the maps extend analytically to U+ and satisfy

closure(TiU+) ⊂ U.

By looking at the spectrum of the operators on the smaller space of analytic functions
we see that the spectrum of the operator has much more structure, which ultimately gives
us more information about, for example, the zeta function. The most useful result in this
direction is the following [58].

Theorem 3.3 (Grothendieck-Ruelle). The operators Ls : B → B (s ∈ C) are nuclear.

Rather than discussing the implications of this theorem in complete generality, let
us consider specific cases. These are best illustrated by considering the previous two
examples.

Example 3.4 (Middle 1/3-Cantor set). Let us choose

U =
{
z ∈ C : |z| < 5

2

}
and U+ = {z ∈ C : |z| < 3},

1This is slightly stronger than the usual definition of a nuclear operator, but is sufficient for
our purposes.
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say. Then a simple calculation shows

T0(U+) =
{
z ∈ C : |z| < 3

2

}
⊂ U and and T1(U+) =

{
z ∈ C :

∣∣∣∣z − 1
2

∣∣∣∣ < 3
2

}
⊂ U.

In particular, Ls(B(U)) ⊂ B(U+). Such operators are referred to as “analyticity improv-
ing” since functions in the image are analytic on a larger domain than they initially were.
By Cauchy’s theorem (which can be applied by virtue of ∂U ⊂ U+) we can write

Lsw(z) = 1
2πi

∫
|ξ|=5/2

Lsw(ξ)
z − ξ

dξ =
∞∑
n=0

λnwn(z)ln(w)

for z ∈ U+ where:

(a) wn(z) = zn ∈ B; and
(b) ln(w) � 1

2πi
∫
|ξ|=5/2

Lsw(ξ)
ξn+1 dξ

where ‖ln‖ = 1 and

λn =
∣∣∣∣ 1
2πi

∫
|ξ|=5/2

Lsw(ξ)
ξn+1 dξ

∣∣∣∣.
It is easy to see that λn = O(θn) with θ = 5

6 .

The case of the nonlinear Cantor set is slightly more interesting.

Example 3.5 (E2). Let us choose

U =
{
z ∈ C : |z − 1| < 3

2

}
and U+ =

{
z ∈ C : |z − 1| < 19

12

}
,

say. Then a simple (although not quite as simple as in the previous example) calculation
gives

T0U
+ =

{
z ∈ C :

∣∣∣∣z−288
215

∣∣∣∣ < 228
215

}
⊂ U and T1U

+ =
{
z ∈ C :

∣∣∣∣z−432
935

∣∣∣∣ < 228
935

}
⊂ U.

By Cauchy’s theorem (since ∂U ⊂ U+) we can write

Lsw(z) = 1
2πi

∫
|ξ−1|=3/2

Lsw(ξ)
z − ξ

dξ =
∞∑
n=0

λnwn(z)ln(w)

where

(a) wn(z) = (z − 1)n ∈ B;
(b) ln(w) � 1

2πi
∫
|ξ−1|=3/2

Lsw(ξ)
ξn+1 dξ

where ‖ln‖ = 1 and

λn =
∣∣∣∣ 1
2πi

∫
|ξ−1|=3/2

Lsw(ξ)
ξn+1 dξ

∣∣∣∣.
It is easy to see that λn = O(θn) with θ = 18

19 .

Now that we have introduced a suitable Banach space of analytic functions for the
transfer operators to act upon, it still remains to relate these to the zeta functions we
previously defined. There are three useful facts (which we will elaborate upon later) that
we list below for our immediate convenience:



10 M. POLLICOTT

Properties of the operators Ls acting on analytic functions. The following prop-
erties will be useful (see [29], [58], [33]).

1. The operators Ls : B → B are nuclear and so we can define a function of two variables
(z, s ∈ C)

d(z, s) := exp
(
−
∞∑
n=1

zn

n
trace(Lns )

)
(which converges for |z| sufficiently small, depending on Re(s)).

2. We can explicitly compute

trace(Lns ) =
∑

Tnx=x

|(Tn)′(x)|s

1− (Tn)′(x) .

3. d(z, s) has an analytic extension to C2. Moreover, we can expand

d(z, s) = 1 +
∞∑
n=1

an(s)zn

where there exists C > 0 such that |an(s)| ≤ Cθn2 , with explicit expressions for an(s)
in terms of (Tm)′(x), where Tmx = x, m ≤ n.

This has an immediate application to zeta functions.

Proposition 3.6. We can write ζφ(s) = d(1, s + 1)/d(s) with r = − log |T ′| to give the
connection with the zeta function ζφ(s).

The Cantor set E2 can be generalized to those points whose continued fraction expan-
sions are uniformly bounded. This links nicely to the following classical open problem:

Remark 3.7 (Zaremba Conjecture (1971)). There exists N ∈ N such that{
q ∈ N : p

q
= [a1, a2, . . . , aN ] for ai ∈ {1, 2, 3, 4, 5}

}
= N.

Bourgain and Kontorovich proved the set on the left hand side has density 1 [11], [36].

There are also classical questions and results on the differences of linear Cantor sets.
In the context of a nonlinear Cantor set (coming from bounded continued fraction ex-
pansions) we mention the following nice result.

Remark 3.8 (C. Moreira [45]). The difference set E2 − E2 has full dimension, i.e.,
dimH(E2 − E2) = 1.

4. Applications of zeta functions. We will return to discussing the properties of the
zeta functions after considering some applications.

4.1. Application I: Computing Hausdorff dimension. For definiteness, let us again
consider the nonlinear Cantor set X (= E2) with continued fraction coefficients 1 or 2.
Unlike the case of linear Cantor sets, there is no simple formula for the dimension of the
limit set. However, there is an expression which doesn’t (at first sight) seem particularly
useful [33].
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Lemma 4.1. The real number s = dimH(X) is a zero for

d(1, s) = exp
(
−
∞∑
n=1

1
n

∑
Tnx=x

|(Tn)′(x)|s

1− (Tn)′(x)

)
where the sum over periodic points corresponds to numbers with periodic continued frac-
tion expansions.

Proof. This follows from Bowen’s formula [12], [61] characterizing dimH(X) as the zero
of a function P (s) defined in terms of the maximal eigenvalue of the transfer operator
(and called the pressure). In fact, the (first) zero appears at the value s ∈ R where

eP (s) := lim
n→+∞

( ∑
Tnx=x

|(Tn)′(x)|s

1− (Tn)′(x)

)1/n
= lim
n→+∞

( ∑
Tnx=x

|(Tn)′(x)|s
)1/n

= 1.

The first encouraging sign is that the fixed points are simply quadratic surds (i.e.,
algebraic numbers of degree two). However, more importantly there is an expansion of
d(1, s) in terms of a rapidly converging series. Writing

d(1, s) = 1 +
∞∑
n=1

an(s)

where |an(s)| = O(θn2), θ = (4/5)1/4) we can approximate d(1, s) by the polynomial

dN (1, s) = 1 +
N∑
n=1

an(s)

and then sN satisfies dN (1, sN ) = 0 with sN = dimH(X) +O(θN2).

Using a more elaborate variant of this approach we have the following result [34]:

Theorem 4.2 (Jenkinson-Pollicott). We can write

dimH(E2) = 0.53128050627720514162446864736847178549305910901839
87798883978039275295356438313459181095701811852398 . . .

accurate to 100 decimal places.

The proof involves choosing N = 25. This value of N is sufficiently small to allow
a computer assisted numerical computation of dN (1, s) and yet large enough that the
difference between dN (1, s) and d(1, s) is sufficiently small that their zeros are close. In
particular the zero of dN (1, s) can be easily estimated to a high degree of accuracy, using a
delicate combination of numerical and theoretical bounds. This leads to an approximation
of the zero of d(1, s), i.e., the Hausdorff dimension dimH(E2).

4.2. Application II: Selberg zeta function. The original application of transfer op-
erators to the theory of zeta functions associated to geodesics on (Riemann) surfaces
dates back to Ruelle’s original paper [58] (see also [53]). To illustrate the basic ideas,
we will consider the partially simple example of a pair of pants V , which is a Riemann
surface of constant curvature κ = −1 with infinite area arising from three infinite funnels.
We can write V = H2/Γ where H2 = {z = x + iy : y > 0} denotes the upper half plane
with the Poincaré metric ds2 = (dx2 + dy2)/y2 and Γ = 〈R1, R2, R3〉 is the free group
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generated by certain isometries R1, R2, R3 : H2 → H2. We first describe this construction
in a little more detail.

Example 4.3 (A pair of pants). Let [a0, b0], [a1, b1], [a2, b2] ⊂ R be disjoint intervals in
the real line, with centres cj = (aj + bj)/2 and rj = (bj − aj)/2 for j = 1, 2, 3. Let
Rj : R ∪ {∞} → R ∪ {∞} be the linear fractional transformation defined by

Rj(x) =
r2
j

x− cj
+ cj ,

for j = 1, 2, 3. This extends to the upper half plane H2 by

Rj(z) = r2
j

z − cj
|z − cj |2

+ cj ,

for j = 1, 2, 3. To construct the appropriate Banach space of analytic functions, we choose
disjoint (larger) disks

Dj = {z ∈ C : |z − cj | < tj} ⊃ [aj , bj ]
for suitable radii tj > rj , for j = 1, 2, 3. For j 6= l we arrange the radii such that
closure(Rl(Dj)) ⊂ Dl.

By analogy with the Banach spaces of analytic functions introduced to deal with the
Hausdorff dimension of dynamically defined Cantor sets, we can consider analytic func-
tions on the disksD1, D2 andD3. More precisely, letB = B(

⋃3
j=1Dj) denote bounded an-

alytic functions on the union
⋃3
j=1Dj of disjoint disks and then Ls : B → B is defined by

Lsw(z) =
∑
j 6=l
|R′j(z)|sw(Rjz) for z ∈ Dl.

We can now write the associated zeta function as

d(s) = Z(s) :=
∏
γ

∞∏
n=0

(1− e−(s+n)l(γ)) (4.1)

where γ is a primitive closed geodesic on the pair of pants V of length l(γ). The quotient
surface V is an infinite volume surface of curvature κ = −1.

Remark 4.4. The limit set of Γ = 〈R1, R2, R3〉 is the Cantor set of accumulation points
(in the Euclidean sense) of the orbit Γi of i ∈ H2. It is a nonlinear Cantor set of Hausdorff
dimension δ = dimH(X).

Remark 4.5. The recurrent part of the geodesic flow is coded by sequences and the
transition matrix

A =

0 1 1
1 0 1
1 1 0


This is a very simplified form of the Bowen-Series coding used to code geodesics on convex
co-compact surfaces[15], [64]. The coding can be naturally realized in terms of the limit
set, and the roof function on the limit set takes the form r(x) = log |R′j(x)| for x ∈ Dj .

We conclude from the properties of the determinant d(z, s) the following result:

Theorem 4.6. The zeta function Z(s) extends analytically to the entire complex plane C.
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The classical approach to studying zeta functions on finite area surfaces V of curvature
κ = −1 uses the Selberg trace formula and unitary representations in the Hilbert space
L2(V ). However, in the case of infinite area surfaces this is less natural and the dynamical
approach to the zeta function Z(s) is essentially the only approach available to extending
the zeta function.
Remark 4.7. The largest zero appears at δ = λ(1 − λ) where λ > 0 is the smallest
eigenvalue of the Laplacian. The other zeros for Z(s) in some special cases cases were
plotted by Borthwick [9], where the zeros appear to be described in terms of specific
curves. An explanation of this appears in [55].

4.3. Application III: Circle packings. In the previous section we considered a Fuch-
sian group Γ whose limit set is a Cantor set in the real line R. In this section we consider
a higher dimensional analogue where the Fuchsian group is replaced by a Kleinian group
and the limit set is now in C, called the Apollonian circle packing C. This is the closure
of a countable union of closed circles. Moreover, the radii rn of the circles satisfy rn → 0
as n→ +∞.

Let δ = dimH(C) denote the Hausdorff dimension of the set C. We have the following
simple counting result for the radii of the circles [38].
Theorem 4.8 (Kontorovich-Oh, 2009). There exists C > 0 such that

#{rn ≥ ε} ∼ Cε−δ

as ε→ 0 (i.e., limε→0 ε
δCard{rn ≥ ε} = C).

We want to describe an alternative viewpoint of this theorem, contained in [54].
Step 1. Let C1, C2, C3, C4 be four initial mutually tangent circles in C.
Step 2. Following a result of Beecroft from 1842, let K1,K2,K3,K4 be the four dual
circles (i.e., the circles passing through triples of points chosen from the four tangent
points).
Step 3. To introduce the dynamical perspective, let T1, T2, T3, T4 be reflections in the
four circles K1,K2,K3,K4.
Step 4. All the circles in C are generated by reflecting C1, C2, C3, C4 repeatedly under
T1, T2, T3, T4. Consider one of the four curved triangles X coming from the original four
tangent circles.
Step 5. Following an approach of Mauldin-Urbański [43] we can generate the circles
using the uniformly contractive maps φi = fi ◦ fnj : X → X, with i = (i, j) for i, j =
1, 2, 3, 4 with i 6= j and n ≥ 1, where fl = T4 ◦ Tl for l = 1, 2, 3. In particular, by taking
the images of the central circle K4 under iterates of the maps φi.

Finally, to get the asymptotic formula in the theorem, we want to consider the complex
function

η(s) :=
∞∑
n=1

rsn =
∫ ∞

1
t−sdπ(t)

where π(t) = Card{rn ≥ 1/t} is a monotone increasing function and the integral above is
understood as a Riemann-Stieltjes integral. For fixed z0 we can “replace” (or approximate)
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{rn} by the derivatives {(φi1 ◦ · · · ◦ φim)′(z0)} and replace η(s) by

η0(s) =
∞∑
n=1
Lns ρ(z0)

where Lsw(z) =
∑
φ |φ′(z)|sw(φz) and

ρ(z) =
∞∑
l=0
|(f li )′(z)|s.

The connection between the domain of η(s) and the asymptotic formulae comes from
classical Tauberian theorems. Before describing these let us consider a simplified situation.

Remark 4.9 (Motivation for Tauberian theorems). Recall that for Anosov diffeomor-
phisms,

ζ(z) = exp
( ∞∑
n=1

zn

n
Card Fix(Tn)

)
= P (z)
Q(z) ,

a rational function. For example for the hyperbolic toral automorphism (in Example 1.4)
we can write

ζ(z) = (1− z)2

det(I − zA) .

Therefore, denoting by λ = eh(T ) the maximum eigenvalue of the matrix A, we have
∂

∂z
log ζ(z) =

∞∑
n=1

zn−1Card Fix(Tn) = λ

1− zλ + Φ(z)

where Φ(z) is a rational function with poles and zeros in |z| > R . We can also write

λ

1− zλ =
∞∑
n=0

znλn+1.

Thus
∞∑
n=1

zn−1(λn+1 − Card Fix(Tn))

is analytic in a neighbourhood of |z| ≤ R. In particular, we deduce that

Card Fix(Tn) = λn +O(1/Rn)

as n→ +∞.

For flows the situation is a little more complicated, but in the same spirit. For flows
we would write a Stieltjes integral:

η(s) =
∫ ∞

0
t−sdπ(t).

The next result provides the appropriate Tauberian machinery required to translate
analyticity results on η(s) into an asymptotic result [24].

Lemma 4.10 (Tauberian theorem). If η(s) has an analytic extension to a neighbourhood
of Re(s) ≥ h, except for a simple pole of the form 1

s−h , then limt→+∞
π(t)
eht

= 1 (i.e.,
π(t) ∼ eht).
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Theorem 6.1 now follows from the Ikehara Wiener Tauberian theorem. In particular,
we can show that

1. η(s) is analytic for Re(s) > δ;
2. η(s) has a simple pole at s = δ, with residue C > 0;
3. η(s) has no poles s = δ + it where t 6= 0.

We can then deduce from the Ikehara Tauberian theorem (Theorem 6.1) that

π(t) ∼ Ctδ as t→ +∞.

5. Properties of the transfer operator. Returning to properties of the operators Ls,
we first want to explain how the functions d(z, s) can be expressed in terms of periodic
points. Key to this is recalling that Ls is nuclear (or trace class) and the following result.

Lemma 5.1. Let T : X → X be the expanding Cω map. We can write

tr(Lns ) =
∑

Tnx=x

|(Tn)′(x)|s

1− ((Tn)′(x))−1 .

Proof. We will follow the method used in [44]. We will consider the case n = 1, the other
cases being similar. Let Tjxj = xj be fixed points of contractions Tj : X → X (and thus
fixed points of T : X → X). We can then use the linearity of the trace to write

tr(Ls) =
∑
j

tr(Ls,j)

where each of the operators

Ls,jw(x) = w(Tjx)|T ′j(x)|s.

is also nuclear. For each j consider the eigenvalue equation

Ls,jw(x) = λw(x)

with eigenvalue λ and evaluate at x = xj . If w(xj) 6= 0 then λ = |T ′j(xj)|s. If w(xj) = 0
then differentiate again:

w′(Tjx)T ′j(x)|T ′j(x)|s + w′(Tjx)T ′j(x) ∂
∂x
|T ′j(x)|s = λw′(x).

We can evaluate this at

w′(xj)T ′j(xj)|T ′j(xj)|s = λw′(xj).

If w′(xj) 6= 0 then λ = T ′j(x)|T ′j(x)|s, etc. Proceeding inductively, for each k ≥ 0,

λ = (T ′j(x))k|T ′j(x)|s

is an eigenvalue for Ls,j . Then by summing over k ≥ 0 we have the trace

tr(Ls,j) =
( ∞∑
n=1

(T ′j(xj))k
)
|T ′j(xj)|s =

|T ′j(xj)|s

1− T ′j(xj)
.

Thus
tr(Ls) =

∑
j

|T ′j(x)|s

1− T ′j(xj)
=
∑
Tx=x

|T ′(x)|−s

1− (T ′(x))−1 .
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5.1. Strategy for super-exponential bounds. We can associate to the operators
Ls : B → B (on bounded analytic functions with the supremum norm ‖ · ‖) a sequence
of real numbers defined as follows.

Definition 5.2. We define the approximation numbers by

sn(Ls) = inf{‖Ls −K‖ : K = operator with n-dimensional range}

for n ≥ 1, where the infimum is taken over all linear operators K : B → B whose range
is a finite dimensional space.

This definition makes sense for any bounded linear operator. However, the approxi-
mation numbers are crucial to getting bounds on the zeta functions [8].

5.1.1. Bounds on the approximation numbers. We can now explain the ideas behind
the first ingredient. Let us replace B(U), the space of bounded analytic functions, by
A = A(U), the space of analytic functions on U which are square integrable. We then
write

〈f, g〉 =
∫
U

fgd(vol).

Lemma 5.3. We can bound sn(Ls) ≤ C(s)θn+1 where

C(s) =
‖Ls‖A(U)→A(U+)

1− θ
where:

1. U+ is a disk centred at 0 of radius r; and
2. U is a disk centred at 0 of radius θr.

Proof. For w ∈ A(U) we write

Lsw(z) =
∞∑
k=0

lk(w)zk ∈ A(U+).

Since {zk}∞k=0 are orthogonal on A(U+),

〈Lsw, zk〉A(U+) = lk(w)‖zk‖A(U+).

Thus by Cauchy-Schwarz,

|lk(w)| ≤ ‖Lsw‖A(U+)/‖zk‖A(U+). (5.1)

We can define a finite rank approximation by

L(n)
s w(z) =

n∑
k=0

lk(w)zk ∈ A(U+), n ≥ 1.

Then

‖Ls − L(n)
s ‖A(U) ≤

n∑
k=n+1

|lk(w)| · ‖zk‖A(U) ≤
∞∑

k=n+1
‖Ls‖A(U+)

‖zk‖A(U)

‖zk‖A(U+)

using (5.1). But we can compute

‖zk‖A(U+) =
√

π

k + 1r
k and ‖zk‖A(U) =

√
π

k + 1θ
krk
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and ‖Ls‖A(U+) ≤ ‖Ls‖A(U)→A(U+).‖w‖A(U). Thus, since the definition of sn(Ls) involves
the infimum over all finite range operators K (including L(n)

s ), we deduce that

sn(Ls) ≤
‖Ls‖A(U)→A(U+)

1− θ θn+1.

This completes the proof.

5.1.2. Euler bounds. We next give some simple but useful inequalities [26]. The first
gives a simple but effective estimate on the terms in the tail of the series.

Lemma 5.4. Assume sn ≤ Cθn. For cm defined by
∞∏
n=0

(1 + zsn) = 1 +
∞∑
m=1

cmz
m, z ∈ C,

we can bound |cm| ≤ BCmθm(m+1)/2 where B =
∏∞
n=1(1− θn) < +∞.

Proof. Since cm =
∑
i1<···<im si1 · · · sim , for m ≥ 1, we can bound

|cm| ≤ Cm
∑

i1<···<im

θi1+···+im .

We can prove by direct evaluation that∑
i1<···<im

θi1+···+im = θm(m+1)/2

(1− θ)(1− θ2) · · · (1− θm) .

We can also consider a bound on the coefficients in the power series for det(I − zLs).
By Cauchy’s theorem, if

det(I − zLs) = 1 +
∞∑
n=1

bnz
n

then for |z| = r,

|bn| =
∣∣∣∣ 1
2πi

∫
|ξ|=r

det(I − ξLs)
ξn+1 dξ

∣∣∣∣ ≤ 1
rn

sup
|ξ|=r

|det(I − ξLs)|.

5.1.3. Bounds on the coefficients. The next bound relating the approximation numbers
{sn} to the eigenvalues {λn} is a classical result originally proved by Weyl for any compact
operator defined on a Hilbert space.

Lemma 5.5 (Weyl’s Inequality). If |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · then∣∣∣ n∏
j=1

λj

∣∣∣ ≤ n∏
j=1

sj .

We also need the following standard inequality.

Lemma 5.6 (Hardy-Littlewood-Pólya). Let {an}, {bn} be nonincreasing sequences of real
numbers such that:

1.
∑n
j=1 aj ≤

∑n
j=1 bj for n ≥ 1; and

2. Φ : R→ R is convex.

Then
∑n
j=1 Φ(aj) ≤

∑n
j=1 Φ(bj).
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We can make use of the Hardy-Littlewood-Pólya lemma as follows. Let

aj = log |λj |, bj = log |sj |, Φ(x) = log(1 + rx).

If |z| = r then

|det(I − zLs)| ≤
∞∏
j=1

(1 + |z|λj)

≤
∞∏
j=1

(1 + |z|sj) (by Lemmas 5.5 and 5.6)

≤ 1 +B

∞∑
m=1

(|z|C)mθm(m+1)/2 (by Lemma 5.4).

Let r = r(n) = θ−n/2/C. Then

(Cr)mθm
2/2 ≤

{
θn

2/2 for 1 ≤ m ≤ [n/2],
(θn/2)m for m > [n/2].

Thus we can bound

|bn| ≤ [n/2]θn
2/2 + θn

2/4

1− θn/2
= O(Θn2/2) for any θ < Θ < 1.

6. Anosov flows and geodesic flows. We can apply the previous ideas on zeta func-
tions to the particular case of properties of Anosov flows. This includes the important
classical case of geodesic flows on negatively curved surfaces. The main distinction is that
we prefer to work in the setting of C∞ systems rather than Cω. This requires modifying
the space of functions upon which the transfer operates (and ultimately changing the
operator itself).

In particular, we can consider for Anosov flows two types of problems: rates of mixing
and error terms in counting closed orbits. We begin with the definition.

Let φt : M →M be C∞ flow on compact manifold.

Definition 6.1. We call φt : M → M Anosov if there exists a Dφ-invariant splitting
TM = E0 ⊕ Es ⊕ Eu such that:

1. E0 is a one dimensional bundle tangent to the flow; and
2. there exist C, λ > 0 such that

‖Dφt|Es‖ ≤ Ce−λt and ‖Dφ−t|Es‖ ≤ Ce−λt

for t ≥ 0 [2].

We recall the classical example of an Anosov flow on a three dimensional manifold
provided by geodesic flows on surfaces.

Example 6.2 (Classic example). Let M = SV be the three dimensional unit tangent
bundle for a compact surface V of curvature κ < 0. Given v ∈ M we can consider the
unique unit speed geodesic γv : R→ V with γ̇v(0) = v. We then define the geodesic flow
φv : M →M by φt(v) = γ̇v(t).
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Let us henceforth concentrate on the particular case of geodesic flows, for which we can
prove stronger results. We shall consider the rate of mixing, and in a later section describe
the closely related asymptotic estimates on the number of closed orbits (or equivalently
closed geodesics).

Let m be the Liouville (or SRB) measure for φ. This is the unique invariant measure
equivalent to the volume on SV = M . As is well known the geodesic flow is ergodic with
respect to m. However, it is also known that the flow is (strong) mixing with respect
to m. We recall a useful definition.

Definition 6.3. Let F,G : M → R be C∞ and define the correlation function by

ρ(t) :=
∫
F ◦ φtGdm−

∫
Fdm−

∫
Gdm

for t ≥ 0.

The flow is strong mixing because ρ(t)→ 0 for any C∞ functions F,G (or equivalently,
for F,G ∈ L2(m)).

However, a much stronger result is known on the speed of convergence to zero of ρ(t).
This is presented as the following theorem, which deals with the first of two intimately
related properties [21].

Theorem 6.4 (Dolgopyat: Exponential mixing). Let φt : M → M be the geodesic flow
on a compact surface of (variable) negative curvature. There exists ε > 0 such that for
all F,G ∈ C∞(M) there exists C > 0 with

|ρ(t)| ≤ Ce−εt for t ≥ 0.

This famous result is due to D. Dolgopyat and is now 20 years old, but because of the
technical nature of the proof it still remains a little mysterious to many people. A more
geometric formulation, which works better for geodesic flows on higher dimensional man-
ifolds, was given by C. Liverani [40].

We shall briefly describe the original proof, which uses Markov sections and trans-
fer operators in a C1 setting. Although this particular approach is perhaps a little old
fashioned, it fits in well with our preceding analysis of iterated function schemes. We will
also concentrate on the three dimensional case for simplicity. The choice of Markov sec-
tions for the flow is then done by analogy with the well known approach of Adler-Weiss
constructing Markov partitions for linear hyperbolic toral automorphisms [1], [56]. There
one uses the stable and unstable manifolds for a fixed point to give the boundaries of the
Markov partition and for geodesic flows one uses the weak stable and unstable manifolds
associated to a closed orbit for the flow.

Step 1. Let dimM = 3 and let τ be a closed orbit for φ. We can define the weak stable
and unstable manifolds for τ , which are two dimensional immersed submanifolds

W s(τ) = {x ∈M : d(φtx, τ)→ 0 as t→ +∞},
Wu(τ) = {x ∈M : d(φ−tx, τ)→ 0 as t→ +∞}.

(These are weak stable and unstable manifolds for the closed orbit τ .) In practice we will
only want to consider parts of W s(τ) and Wu(τ) which are a bounded distance (along
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the submanifolds) to the original orbit τ . We also introduce sections Si transverse to the
flow (with boundaries contained in W s(τ) and Wu(τ)) which help divide M into flow
boxes Pi, say, for i = 1, . . . ,m. We can view these as parallelepipeds of the form

Pi = {φtw : 0 ≤ t ≤ ri(w)}, i = 1, . . . , n,

where ri : Si → R+.

Step 2. We can now define a discrete map. This is first achieved by identifying the flow
boxes along the the leaves of a suitable foliation. More precisely, we can define the one
dimensional stable manifolds:

W ss(x) = {y ∈M : d(φtx, φty)→ 0 as t→ +∞}

for each x ∈ M . The following classical result helps explain why we can work in the C1

setting.

Lemma 6.5 (Hopf, Hirsch-Pugh). For geodesic flows on surfaces the family {W ss(x)}x∈M
gives a C1 foliation of M [32].

Step 3. We can now introduce an associated C1 one dimensional expanding map. “Iden-
tifying” sections Si along stable manifolds gives a one dimensional C1 manifold or “in-
terval”.

We begin with the natural projection Pi → Si from each three dimensional par-
allelepiped to the corresponding two dimensional section along the orbits of the flow.
We also have the following useful trick to relate the C1 nature of the foliations to the
sections [58].

Lemma 6.6 (after Ruelle). We choose the sections Si so that they (and thus the paral-
lopipeds Pi) are foliated by strong stable manifolds.

The Poincaré map between sections gives a C1 map T :
⋃
i Ii →

⋃
i Ii. The return (or

transition) time between sections gives a C1 function r :
⋃
i Ii → R+.

Step 4. We can construct invariant measures (following Bowen-Ruelle). Let ψ : I → R
be a Hölder continuous function (used as a potential to define a Gibbs measure).

Definition 6.7. We can define the Gibbs measure (or equilibrium state) µψ:

h(µψ) +
∫
ψdµψ = sup

{
h(µ) +

∫
ψdµ : µ = T -invariant

}
=: P (ψ)

where P (ψ) is the pressure function for ψ.

The measures µψ on
⋃
i Ii correspond to a flow invariant measure m on M , which is given

by a simple construction [14]:

1. we can extend µψ on I to µ̄ψ on
⋃
i Si (the natural extension);

2. we can extend µ̄ψ to a φ-invariant measure m on M by

dm = dµ̄ψ × dt∫
rdµ̄ψ

where m(∂Pi) = 0.
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Of course, we can consider particular choices of Hölder continuous potentials. These
give rise to different invariant measures for the geodesic flow.

Example 6.8. Let ψ : I → R. Then

1. if ψ(x) = − log |T ′(x)| then m is the Liouville measure; and
2. if ψ(x) = −hr, where h is the topological entropy of the flow, then m is the measure

of maximal entropy (or Bowen–Margulis measure).

Step 5. We can now introduce transfer operators. Let C1(I) be the Banach space of C1

functions w : I → C with norm ‖w‖ = ‖w‖∞ + ‖w′‖∞.
We can understand the properties of the measures µφ (and thus of the correspond-

ing measure µφ and flow invariant measure m) through the spectral properties of an
associated transfer operator.

Definition 6.9. Let ψ : I → R be a C1 function. Then we can define the transfer
operator Lψ : C1(I)→ C1(I) by

Lψw(x) =
∑

y:Ty=x
eψ(y)w(y).

We can now describe the properties of this operator [59], [13], [47].

Theorem 6.10 (Ruelle). Let ψ : I → R be C1.

1. Lψ has a (maximal) positive eigenvalue eP (ψ) (and a positive eigenvector hψ).
2. The dual operator L∗ψ : C1(I)∗ → C1(I)∗ (defined by L∗ψν(w) = ν(Lψw) for ν ∈
C1(I)∗ and w ∈ C1(I)) has an eigenmeasure νψ, i.e., L∗ψνψ = eP (ψ)νψ.

3. If supx∈I 1/|T ′(x)| < θ < 1, say, then Lψ : C1(I)→ C1(I) has only isolated eigenval-
ues outside the disk of radius θeP (ψ).

Recall that in the previous context of Cω functions the operator Lψ was nuclear, and
thus had countably many eigenvalues. But since we now have to work in the C1 category,
there may be more eigenvalues, although part 3 of the above result implies that they
don’t occur outside of the disk of radius θeP (ψ).

Part 1 of the theorem allows us to make a particularly useful simplification [47].

Corollary 6.11 (Normalization). Given ψ ∈ C1(I) we define ψ = ψ+ log hψ− log hψ ◦
T − P (ψ). Then

1. Lψ1 = 1, the constant function with value 1;
2. L∗

ψ
νψ = νψ, and then νψ = µψ, the Gibbs measure for ψ

Step 6. Finally, we have a strategy for proving “statistical properties”, such as ex-
ponential mixing, for the original flow. Let µ be a φ-invariant Gibbs measures and
F,G ∈ C∞(M). We have the Laplace transform

ρ̂(s) =
∫ ∞

0
e−stρ(t)dt, s ∈ C,

which converges for Re(s) > 0. We want to apply the following result to convert properties
of ρ̂(s) into bounds on ρ(t) [57].
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Theorem 6.12 (Paley-Wiener). Assume we can show ρ̂(s) has an analytic extension to
Re(s) ≥ −ε0 say, and

sup
−ε0≤δ≤0

∣∣∣∣∫ ∞
0

ρ̂(δ + it)dt
∣∣∣∣ < +∞

for some ε0 > 0. Then for any 0 < ε < ε0 there exists C > 0 such that |ρ(t)| ≤ Ce−εt for
t ≥ 0.

What remains is to modify the transfer to include the complex variable s ∈ C and to
write ρ̂(s) in terms of this. We will discuss this in the next section.

7. The complex transfer operator. Given C1 functions ψ, r : I → R and s ∈ C we
can define a complex transfer operator Lψ−sr : C1(I)→ C1(I) by

Lψ−srw(x) =
∑
Ty=x

e(ψ−sr)(y)w(y).

Remark 7.1. When s = 0, this reduces to the usual “real” operator.

Usually it is convenient to assume Lψ−hr1 = 1 where 1 denotes the constant function 1
(and then L∗ψ−hrµψ−σr = µψ−hr is a Gibbs measure for ψ − hr). In fact, we can usually
assume this without loss of generality, by Corollary 6.11.

The following is a partial analogue of Theorem 6.10 for the operator Lψ−sr [49], [47].

Theorem 7.2 (Complex Ruelle Operator Theorem). Let s = σ + it. Then

1. The spectral radius of Lψ−σr satisfies ρ(Lψ−sr) ≤ eP (ψ−σr).
2. Lψ−sr : C1(I)→ C1(I) has only isolated eigenvalues outside θeP (ψ−σr).

We can now try to relate the transfer operator Lψ−σr to the Laplace transform ρ̂(s).
The spectral properties of the operator then lead to properties of the complex function.

Claim 7.3. We have the following properties.

1. There exists ε > 0 such that ρ̂(s) has a meromorphic extension to Re(s) > −ε.
2. If s = s0 is a pole for ρ̂(s) then 1 is an eigenvalue for Lψ−σ0r.

We briefly recall the idea of the proof of the claim. We want to write

ρ̂(s) =
∫
I

fs

( ∞∑
n=0
Lnψ−σrg−s

)
dµ(x)

where
∑∞
n=0 Lnψ−σr = (1−Lψ−σr)−1 for suitable functions fs, g−s. If we can replace the

functions F and G by functions which are constant on stable leaves in the parallelepiped
then we could associate

F 7→ fs(x) =
∫ r(x)

0
e−stF (x, t)dt ∈ Cα(I),

G 7→ g−s(x) =
∫ r(x)

0
estF (x, t)dt ∈ Cα(I).

The justification for this comes from a result of Ruelle.
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All of the above framework was in place in the 1980s. However, it took another decade
for this to be used to deduce exponential decay of correlations.

To apply the Paley-Wiener theorem we need control on the eigenvalues of Lψ−σr (i.e.,
poles of ρ̂(s)). This is achieved by the following famous result of Dolgopyat [21].

Theorem 7.4 (Dolgopyat). There exist ε > 0 and 0 < ρ < 1 so that for s = σ + it:

1. Lψ−sr : C1(I)→ C1(I) (or Lψ−sr : Cα(I)→ Cα(I) ) has spectral radius ρ(Lψ−sr) ≤ ρ
whenever σ > −ε and t > ε; and

2. there exist C > 0 and A > 0 so that whenever σ > −ε, |t| > ε and

n = k[A log |t|] + l for k ≥ 0 and 0 ≤ l ≤ [A log |t|]− 1

then ‖Lnψ−sr‖ ≤ Cρk[A log |t|].

Having outlined the way in which properties of the transfer operator lead to the
dynamical properties of the geodesic flow, the following question remains.

Question. What properties does the geodesic flow have which are needed for the result?
How do they filter through to the transfer operator?

The geometric features of geodesic flow can be encoded into the Markov sections and
their collapsed versions.

8. Uniform bounds on transfer operators. In this section we outline the key ideas
in the proof of Dolgopyat’s estimate.

8.1. A sketch of the proof. We want to define a C1 function ∆ : I → R of the
form ∆(x) = r(y) − r(z) where y, z are preimages of x under the expanding map, i.e.,
Ty = Tz = x.

We then have a function defined locally (in a neighbourhood of x0 with distinct
preimages y0, z0, i.e., T (y0) = T (z0) = x0) by

∆(x) = (r(y)− r(z))− (r(y0)− r(z0)).

We can assume that I 3 x 7→ ∆(x) is C1 and there exists C > 0 such that locally we can
write

1
C
≤ ∆(x)
x− x0

≤ C.

This is essentially all that is required from the flow.2

Sketch proof of Dolgopyat’s theorem. We want to show that Lψ−sr is a C1-contraction.
Actually, this is achieved by a series of steps:

(i) showing that Lψ−sr is a L1-contraction;
(ii) showing that Lψ−sr is a L1-contraction implies it is a C0-contraction; and
(iii) showing that Lψ−sr is a C0-contraction implies it is a C1-contraction (or Cα-

contraction).

2In practice, we need to take higher iterates of T .
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This is a form of “bootstrapping argument” whereby we improve the regularity step by
step.

We will consider each of these steps (in reverse order) where w ∈ C1(I):

Sketch of part (iii). Assume we already have a C0 estimate: There exists 0 < θ0 < 1 such
that

‖Lnw‖∞ = O(θn0 ). (8.1)

Then we can use the following important bound.

Lemma 8.1 (after Doeblin-Fortet, Lasota-Yorke). There exist C>0 and ‖1/T ′‖∞<θ<1
such that

‖Lnψ−srw‖ ≤ C|t|‖w‖∞ + θn‖w‖ (8.2)

for all n ≥ 1, where s = σ + it.

Applying (8.2) twice we can write

‖L2n
ψ−srw‖ = ‖Lnψ−sr(Lnψ−srw)‖ ≤ C|t|‖Lnψ−srw‖∞ + θn(C|t|‖w‖∞ + θn‖w‖)

where ‖Lnψ−srw‖∞ = O(θn0 ) by (8.1) and C|t|‖w‖∞+ θn‖w‖ is uniformly bounded. Thus

‖L2n
ψ−srw‖ = O(|t|θn1 )

where θ1 = max(θ, θ0).

Sketch of part (ii). Assume we had L1-estimates

‖Lnψ−srw‖L1 =
∫
|Lnψ−srw|µσ = O(θn2 ) (8.3)

for some 0 < θ2 < 1, where Lψ−σrµσ = µσ is the Gibbs measure for ψ − σr.
By Theorem 6.10 (i.e., the existence of a spectral gap for Lψ−σr) there exists 0 <

θ3 < 1 such that ∥∥∥∥Lψ−σrw − ∫ wdµσ

∥∥∥∥
∞

= O(θn3 ).

Thus for n ≥ 1:

‖L2n
ψ−σrw‖∞ = ‖Lnψ−σr(Lnψ−σrw)‖∞ ≤

∫
|Lnψ−σrw|dµσ +O(θn3 ),

and using (8.3) we get that ‖L2n
ψ−σrw‖∞ = O(θn4 ) where θ4 := max{θ2, θ3}.

Finally, “all” that remains is an argument to get L1-contraction (somehow using the
properties of ∆(x)).

Sketch of part (i). The basic idea is that the operator contracts in the L1 norm because
of cancellations that arise because of differences in the arguments that can occur in the
various terms arising from Lψ−sφ. The important thing is that this should be uniform in
t = |Im(s)| to ensure that the Laplace transform has an analytic extension to a uniform
strip.

More precisely, we can summarize the idea as follows:

(a) Lψ−σrw(x) contains contributions from two terms

eψ(y)−σr(y)e−itr(y) + eψ(z)−σr(z)e−itr(z)
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with Ty = Tz = x and where the difference in the arguments of the two terms is obviously
t(r(y)− r(z)) = t∆(x) (mod 2π).

(b) In particular, when π
2 ≤ t∆(x) ≤ 3π

2 (mod 2π) a little trigonometry shows that

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|

for some 0 < β < 1 (which is independent of t).

(c) For each sufficiently large t we can divide I into a union of (small) subintervals {Ii}
of length |Ii| � 1/|t| consisting of:

(i) Good intervals. These are intervals Ii for which x ∈ Ii implies that t∆(x) ∈ [π/2, 3π/2].
Thus by (b) above, if Ii is a good interval and x ∈ Ii then

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|.

(ii) Bad intervals. These are simply the complements of the good intervals and here we
just use the trivial inequality

|Lψ−srw(x)| ≤ |Lψ−σrw(x)|.

A natural question to ask at this stage is: What do we use about µ and what properties
does it have which lead to a uniform contraction? We will now address this.

(d) Although as t increases one expects more good (and bad) intervals, the total mea-
sure of their union is (uniformly) bounded away from zero. In particular, the uniform
contractions on the good intervals then lead to a uniform contraction in the L1-norm.

To see this crucial feature, we can compare the measures of each good interval Ii and
one of its neighbouring bad intervals Ii+1, say. The important thing about the measure
is that it has the “doubling property”: there exist A,B > 0 such that providing |t| is
sufficiently large we can bound A ≤ µ(Ii)/µ(Ii+1) ≤ B for all such intervals Ii and Ii+1.

We can therefore conclude that providing t is sufficiently large we can bound

|Lψ−srw(x)| ≤ β|Lψ−σrw(x)|

on a set of uniformly bounded (from below) measure. This implies contraction in L1-norm.
This completes our sketch of the basic argument of Dolgopyat. However, at the risk

of obscuring the basic idea with too much detail, let us flesh out part (d) a little more.

8.2. More details on the proof. A more elaborate account of part (d). For notational
convenience we denote

‖h‖ = max{‖h‖∞, ‖h′‖/|t|}

and consider two cases: one very easy, and the other less so.

(I) Easy case. Assume 2C|t| · |h|∞ ≤ |h′|∞ where C is the constant from Lemma 8.1. We
can fix 1

2 < η < 1 and then choose k such that 1
2 + θk < η. Then by Lemma 8.1 we have

1
|t|
|(Lkh)′|∞ ≤ C|h|∞ + θk

|t|
≤ (1/2 + θk) ≤ η‖h‖

by hypothesis and definition of ‖ · ‖, i.e., ‖ · ‖ contracts (in this case).

This still leaves the other case.
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(II) Difficult case. Assume 2C|t||h|∞ ≥ |h′|∞. We want to choose a sequence of C1

functions un : I → R, n ≥ 0, such that the following properties hold:

1. 0 ≤ |vn| ≤ un for vn := Lnψ−srh, n ≥ 1;
2. there exists 0 < β < 1 with ‖un‖2 ≤ βn, n ≥ 1;
3. |u′n/un| ≤ 2C|t|, n ≥ 1; and
4. |v′n/un| ≤ 2C|t|, n ≥ 1.

The functions un have the advantage over vn of being real valued. The existence of
such functions un comes from an iterative construction. Let u0 = 1, say. Assume un has
been constructed. We need a “calculus lemma” relating un to vn.

Lemma 8.2 (Calculus Lemma). There exist 0 < η < 1, ε > 0, δ > 0 such that for all
x0 ∈ I there exists a nearby interval [x1− δ/|t|, x1 + δ/|t|] with |x1−x0| ≤ ε/|t| such that
for all x in this interval we have either

|e−sr(y)vn(y) + e−sr(z)vn(z)| ≤ ηe−σr(y)un(y) +−σr(z) un(z)

or
|e−sr(y)vn(y) + e−sr(z)vn(z)| ≤ ηe−σr(z)un(z) +−σr(y) un(y).

We can choose (reasonably good) intervals

[x0, x1], [x2, x3], . . . , [x2n−2, x2n−1]

upon which one of the two inequalities in Lemma 8.2 hold. We then continue to define
the sequence of functions iteratively by

un+1(x) = Lψ−δr(unχ)(x)

where

χ(x) =


η if x2n − x2n+1−x2n

4 < x < x2n + x2n+1−x2n
4 ,

1 if x2n+1 ≤ x ≤ x2n+2,

a smooth interpolation in-between,

with |χ|∞ ≤ 1 and |χ′|∞ ≤ E|t|χ(x). By construction we then have

|u′n+1| = |(Lψ−σr(unχ))′| ≤ C|t||(unχ)|+ θ|(unχ)′)|

and by the chain rule

|(unχ)′)(x)| ≤ |u′n(x)|χ(x) + un(x).|χ′(x)| ≤ (2C|t|un(x))χ(x) + un(x)(E|t|χ(x)).

Combining these bounds we have |u′n+1(x)| ≤ 2C|t||un+1(x)| (providing 0 < θ < 1 is
sufficiently small) i.e., 3. holds for un+1. Moreover,

|v′n+1(x)| = |(Lψ−σrvn)′(x)| ≤ C|t|Lψ−σr|vn(x)|+ θLψ−σr|v′n(x)|
≤ C|t|Lψ−σrun(x) + θLψ−σru′n(x) ≤ 2C|t|un+1(x),

i.e., 4. holds for un+1.
To establish 2. it suffices to show that there exists 0 < β < 1 such that ‖un+1‖2 ≤

β‖un‖2 for all n ≥ 0. Moreover, this is (essentially) what we need to complete the proof
of the theorem since then

‖Lnψ−σrh‖2 ≤ ‖un‖2 ≤ βn
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for n ≥ 1. To this end, observe that if x ∈ [x2i+1, x2i+2] then

u2
n+1(x) = (Lψ−σr(χun)(x))2 ≤ (Lψ−σr(χ2)(x))(Lψ−σr(u2

n)(x))

where
Lψ−σr(χ2)(x) ≤ β0 < 1.

Thus (on these good intervals)∫ x2i+2

x2i+1

u2
n+1(x)dν(x) ≤ β0

∫ x2i+2

x2i+1

Lψ−δru2
n(x)dν(x)

and we can trivially bound (on the bad intervals)∫ x2i+1

x2i

u2
n+1(x)dν(x) ≤

∫ x2i+1

x2i

Lψ−δru2
n(x)dν(x).

But for x′ ∈ [x2i, x2i+1] and x′′ ∈ [x2i+1, x2i+2] we have

un+1(x′)2

un+1(x′′)2 ≤ exp
(

2
∫ x′′

x′
|(log un+1)′(x)|dx

)
≤ exp(2|x2i+2 − x2i|.2C|t|) ≤ B

say.
Moreover, ∫ x2i+1

x2i
u2
ndν∫ x2i+2

x2i+1
u2
ndν

≤ B
(

sup
i

{
ν([x2i, x2i+1])
ν([x2i+1, x2i+2])

})
≤ A

say. Thus ∫
u2
n+1dµ =

∑
i

β0

∫ x2i+1

x2i

u2
ndν +

∫ x2i+2

x2i+1

u2
ndν ≤ β2

∫
u2
ndν

for some 0 < β < 1.
Of course this method seems a little complicated and, perhaps, rather restricted in

its application. This begs the question:

Question. More generally, how useful are these ideas?

In fact, this basic method has been used in several different settings. For example:

(i) Baladi-Vallée used similar results on transfer operators to study statistical properties
of (Euclidean) algorithms [7].

(ii) Avila-Gouëzel-Yoccoz showed exponential mixing for Teichmüller geodesic flows [5].

Remark 8.3 (Teichmüller flows). Let V be a closed surface. Let M be the space of
Riemann metrics g (moduli space). Let ρ be the Teichmüller metric onM with normalized
volume (vol)ρ.

Let F,G : SM→ R be smooth (compactly supported) functions. Then

ρ(t) =
∫
FφtGd(vol)ρ −

∫
Fd(vol)ρ

∫
Gd(vol)ρ

tends to zero exponentially fast.
The method is based on modelling by a symbolic flow. A simpler example would be

when V = T2; then the modular surface M is equal to H2/PSL(2,Z) and the dynamics
corresponds to (the natural extension of) the Gauss map T : (0, 1) → (0, 1) defined by
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T (x) = 1/x (mod 1) and a roof function r : (0, 1) → R defined by r(x) = −2 log x and
the volume d(vol)ρ = Cdxdt/(1 + x).

Remark 8.4 (Weil-Petersson flows). Another metric onM is the Weil-Petersson metric
which has a nice dynamical interpretation (after McMullen [46]). To a family gλ ∈M of
metrics λ ∈ (−ε, ε) we can associate the geodesic flows φgλt : SM → SM. Each can be
modelled by a suspension of a subshift of finite type σ : Σ→ Σ and a family of Hölder roof
functions rλ : Σ→ R. If we write rλ = rλ0 + (λ−λ0)ṙλ0 + o(λ−λ0) corresponding to the
change in metric gλ = gλ0 + (λ−λ0)ġλ0 +o(λ−λ0) then we can write the Weil-Petersson
metric or pressure metric where

‖ġλ0‖WP = ∂2

∂t2
P (−r0 + tṙλ0)|t=0 > 0.

The ergodicity and mixing properties of the geodesic flow with this metric were studied
by Burns-Masur-(Matheus)-Wilkinson [18], [17].

9. Counting closed geodesics. The same basic method leads to error terms in count-
ing functions for the number of closed orbits (or equivalently closed geodesics) for the
flow.

One can improve the famous Margulis estimate for lengths of closed geodesics γ:

Card{γ : l(γ) ≤ T} ∼ ehT /hT as T → +∞

where h is the topological entropy of φt=1 [41], [42].
The improvement is the exponential error term, once we get the correct principal

term:

Theorem 9.1 (Counting closed geodesics). Let φt : M → M be the geodesic flow on a
compact surface of (variable) negative curvature. There exists ε > 0 such that

Card{γ : l(γ) ≤ T} =
∫ ehT

2

1
log udu+O(e(h−ε)T ) as T → +∞

where ∫ ehT

2

1
log udu ∼ e

hT /hT as T → +∞.

This is a companion result to the exponential mixing for the geodesic flows. In place
of the Laplace transform of the correlation function consider another complex function,
the Selberg zeta function

Z(s) =
∞∏
n=1

∏
γ

(1− e−(s+n)l(γ)), s ∈ C.

This converges for Re(s) > h. We can consider the logarithmic derivative
d

ds
logZ(s) = Z ′(s)

Z(s) = −1
s− h

+A(s)

where A(s) is an analytic function for Re(s) > h− ε, say.
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Using Cauchy’s theorem we can relate∫
Re(s)=ε/2

Z ′(s)
Z(s) ds

to π(T ) = Card{γ : l(γ) ≤ T} and deduce Theorem 9.1 using a straightforward analysis
borrowed from prime number theory [52].

We have formulated this in the context of compact surfaces V . However, the dynamical
approach is much more flexible.

Question. How can we generalize the Selberg zeta function?

Let us try to answer this question in the next two items.

(iii) Thin groups. Examples of “thin groups” are nonlattice subgroups of PSL(2,R).
Let us mention a recent result in this direction. Let Γ < PSL(2,Z) be a subgroup.
Let γ0 ∈ PSL(2,Z/qZ) and let δ(Γ) = δ be the Hausdorff dimension of the limit set.
Bourgain-Gamburd-Sarnak [10] estimated

Card{γ ∈ Γ : ‖γ‖ ≤ T, γ = γ0((mod q))} = CT 2δ

CardPSL(2,Z/qZ) + “error term”

with an explicit error term. For 1
2 < δ ≤ 1 the proof uses the classical Laplacian. However,

for 0 < δ ≤ 1
2 the proof uses transfer operator techniques.

(iv) Higher Teichmüller theory. Given a compact Riemann surfaces V with κ = −1 we
recall that the surface V can be written as H2/Γ where Γ are isometries of H2. A closed
orbit (or closed geodesic) then corresponds to a conjugacy class [g] in Γ−{e}. The length
of the closed orbit γ is then given by l(γ) = cosh−1(tr(g)/2). The Selberg zeta function
for the Riemann surface V can be written as

Z2(s) =
∞∏
n=0

∏
γ

(1− e−(s+n)l(γ)),

where s ∈ C. This has an analytic extension to C. One natural generalization to Higher
Teichmüller Theory and representations in PSL(d,R) would involve R([g]) ∈ PSL(d,R),
where R is a representation in PSL(d,R). In the case of an appropriate representation
(in the so called Hitchin component) there exists a largest eigenvalue el(g) of R([g]) [39]
and we could again define the corresponding zeta function by

Zd(s) =
∞∏
n=0

∏
g

(1− e−(s+n)l(g))

where s ∈ C. This too has a meromorphic extension to C.

10. The newer approach to transfer operators. The traditional approach to trans-
fer operators we have described in the previous sections has proved quite successful, but
has several disadvantages:

(i) we often need to work with operators on Banach spaces of C1 or Hölder functions,
despite the smoothness of the diffeomorphism or flow (given by the regularity of the
stable foliations);
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(ii) this makes it particularly difficult to get a meromorphic extension to C (because of
the existence of the essential spectrum of the operator, as we commented earlier);

(iii) it is very cumbersome to convert invertible systems to noninvertible systems just to
introduce some transfer operator (or averaging operator).

Therefore it is desirable to develop a new approach to overcome these. In the classical
approach, the invertible system T : X → X, typically the Poincaré map with respect
to Markov sections for the geodesic flow, gives rise to a noninvertible system (with local
inverses Ti) which gives a transfer operator averaging over the preimages under Ti. How-
ever, in the new approach the invertible system is again studied. But now one introduces
a Banach space of anisotropic distributions (generalized functions). The transfer operator
is essentially simple composition.

10.1. Banach spaces of anisotropic analytic distributions. Historically, the first
step was for real analytic Anosov diffeomorphisms, and was initiated by H. Rugh [62], [63].
Recall that we can divide T2 into elements of a Markov partition {Ti} These have natural
real analytic coordinates (xi, yi) ∈ Ti and let (xj , yj) = T (xi, yi) ∈ Tj . Let us write

T (xi, yi) = (f1(xi, yi), f2(xi, yi)).

Let Du
i , D

s
i be disks in the complexification of the coordinates.

(a) We can solve
f2(xi, φs(xi, yj)) = yj

to get a family of contractions

φs(xi, ·) : Du
j → Du

i

indexed by xi.

(b) We can then define a family of contractions φu(·, yj) : Ds
i → Ds

j indexed by yj by

φu(xi, yj) = f1(φs(xi, yj), yj).

(Note that if f was linear then the foliation would be straight lines and then φs would
also be linear.)

(c) We can define an operator on distributions on
⋃
i Ti by

Lψ(xi, yi) =
∑

j:A(i,j)=1

(
−1
2πi

)2 ∫
∂Ds

j

∫
∂Du

j

∫
∂Ds

j

dxjdyjψ(xj , yj)× ∂2φs(xi, yj)
(xi − φu(xi, yj))(jj − φs(xi, yj))

defined on the Banach space of analytic functions on
∑
j(C−Ds

j )×Du
j .

Remarkably, the operator is nuclear (and thus trace class) and has trace

trace(Ln) =
∑
fnx=x

1
|det(DxTn − I)| .

If we choose the coordinates

{z ∈ C : |z| > 1} × {w ∈ C : |z| < 1}

the elements can be expanded in terms of z−(n+1)wm where n,m ≥ 0.
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This construction hints at the use of dual spaces, but still has lots of anachronisms
(e.g. Markov partitions).

10.2. Banach spaces of anisotropic smooth distributions. More generally, we can
consider the Gouëzel-Liverani approach for Anosov diffeomorphisms [28]. The aim is to
construct Banach spaces of distributions built so as to have a special form of “duality”,
which makes the composition with the Anosov diffeomorphism into a contraction.

Let Σ denote the C∞ embedded leaves of bounded length (of dimension dimEs) which
lie in a C∞ cone field close to the stable bundles

C = {vs ⊕ vu ∈ Esx ⊕ Eux : ‖vs‖ ≤ K‖vu‖}
for some K > 0. One can fix p, q ≥ 1. Let w : M → R be C∞ and let Dpw be the pth
order derivative (p ≥ 1). Let Cq0(W ) = {φ : W → R be Cq which vanish on ∂W} for
W ∈ Σ then we define a semi-norm by

‖w‖−p,q = sup
W∈Σ

sup
D

sup
φ∈Cq0 (W )

∫
W

Dpwφd(vol)

(a Sobolev-like inner product) and a norm by
‖u‖p,q = sup

0≤k≤p
‖u‖−p,q+k.

We let Bp,q be the completion of C∞(M) with respect to ‖ · ‖p,q (There was an earlier
attempt at constructing such Banach spaces due to Kitaev [35], but it is a little difficult
to understand.) The transfer operator acting on this Banach space takes a simple form.
Definition 10.1. The transfer operator takes the form L : Bp,q → Bp,q where

Lw = 1
det(DT ) ◦ T−1w ◦ T

−1

i.e.,
∫
M
wu ◦ Td(vol) =

∫
M

(Lw)ud(vol), which corresponds to a change of variables.
We can consider a particularly simple case:

Example 10.2. When det(DT ) = 1 then Lw = w ◦ T−1.
The main result that ultimately leads to a host of applications is the quasi-compact-

ness of this operator (with bounds on the essential spectral radius). The next lemma
summarizes the useful spectral properties of L on this space.
Theorem 10.3. Let 0 < θ < 1 be determined by the expansion and contraction rates.
Then
1. L has a maximal positive eigenvalue (and eigenprojection µ corresponding to the SRB

measure); and
2. L : Bp,q → Bp,q has only isolated eigenvalues in |z| > θmin{p,q}.

Thus the larger one chooses p, q the more fine structure of the spectrum is revealed.
The proof of Theorem 10.3 parallels those in which the quasi-compactness of the earlier
transfer operators was established. In particular, it is based on two ingredients, which we
formulate in the next two lemmas.
Lemma 10.4. The unit ball in Bp,q ⊂ Bp−1,q+1 is relatively compact.
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Lemma 10.5 (Doeblin-Fortet/Lasota-Yorke). There exist A,B > 0 such that for all
n ≥ 0,

‖Lnw‖p,q ≤ Aθmin{p,q}n‖w‖p,q +B‖w‖p−1,q+1

Here ‖ · ‖p−1,q+1 is the “weak norm” and ‖ · ‖p,q is the “strong norm”.

We briefly describe the proof of the Fortet-Doeblin/Lasota-Yorke inequality in Lemma
10.5. To establish this, one needs to estimate terms like∫

W

Dk(Lw)φd(vol)W

where 0 ≤ k ≤ p, φ ∈ C∞(W ). Let us try and explain the basic idea in the construction.
Let n� 1. Then since T−nW is “long” we can break it into standard size pieces: T−nW =⋃
jWj . Thus ∫

W

Dk(Lnw)φd(vol) =
∑
j

∫
TnWj

Dk(Lnw)φd(vol).

Writing D = Du + Ds, with derivatives Ds along W and Du “close” to the unstable
direction gives terms∫

TnWj

Dl
sD

k−l
u (w ◦ T−n)φd(vol) +O(‖w‖p−1,q+1)

where the error term is the price of reordering with Ds to the front. Integrating by parts
moves Dl

s to give ∫
TnWj

Dk−l
u (w ◦ T−n)Dl

sφd(vol).

By a change of variables (using Tn), we get∫
Wj

Dk−l
u (w)Dl

sφ ◦ Tnd(vol).

One contribution comes from k = p and l = 0 (the others are dominated by ‖h‖p−1,q+1).
Then ∫

Wj

Dp
u(w)φ ◦ Tnd(vol) = O(θpn‖w‖) = O(θpn‖w‖p,q)

where Dp
u(w) contributes the scaling by θpn and φ ◦ Tn and then we can sum. Note that

the contribution from the term l = k = p is O(θqn‖w‖).

Remark 10.6. Other Gibbs measures require modifying the norms fundamentally. A
more comprehensive discussion of related anisotropic Banach spaces can be found in [6].

10.3. Anosov flows. We want to move from the setting of Anosov diffeomorphisms to
that of Anosov flows. To study dynamical properties of Anosov flows we would like to use
a similar approach to that for the particular case of geodesic flows. Using the Butterey-
Liverani approach for the Anosov flows φt : M → M we can associate suitable Banach
spaces Bp,q [19]. The definition of these Banach spaces for Anosov flows is analogous to
that for Anosov diffeomorphisms. (We can use Σ to denote a space of C∞ curves close
to the strong stable leaves, i.e., lying in a C∞ cone family.)

We next define a suitable operator for the Anosov flow.
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Definition 10.7. We can define operators Lt : Bp,q → Bp,q (t > 0) by

Ltw = w ◦ φt
det(Dφ) ◦ φ−t

and the resolvent operator(s) R(z) : Bp,q → Bp,q by

R(z)w =
∫ ∞

0
e−ztLtdt

for Re(z) > 0.

One of the many advantages of the use of anisotropic spaces is that we can work
directly with the resolvent operator R(s). This luxury was not previously available to use
when we used suspension semi-flows.

The next result describes the meromorphic extension of the resolvent [19]. Let λ > 0
be the contraction rate for the Anosov flow.

Theorem 10.8. The operator R(z) is meromorphic for Re(z) > −λmin{p, q}.

In particular, recall that given an Anosov flow we can consider the correlation function

ρ(t) =
∫
F ◦ φrGdµ−

∫
Fdµ

∫
Gdµ

where F,G ∈ C∞(M) and µ is the invariant volume (or more generally the SRB mea-
sure). We can deduce the following result on the meromorphic extension of the Laplace
transform of the correlation function.

Theorem 10.9. The Laplace transform

ρ̂(z) =
∫ ∞

0
e−ztρ(t)dt

is meromorphic for Re(z) > −λmin{p, q} (for all z ∈ C if we can choose p, q arbitrarily
large).

To study the periodic orbits for the Anosov flow φt : M → M we can define a zeta
function as follows.

Definition 10.10. Given an Anosov flow we can formally define the zeta function
ζ(s) =

∏
τ

(1− e−sλ(τ))−1, s ∈ C,

where τ denotes a (primitive) closed orbit of least period λ(τ).

The meromorphic extension of this complex function is again based on the analysis
of the transfer operator. By choosing p, q sufficiently large we get

Theorem 10.11. The zeta function ζ(s) for a C∞ Anosov flow is meromorphic for all
s ∈ C. The value s = h is a simple pole for ζ(s) [30].

We briefly describe the main steps in the proof.

Step 1 (The role of s). Recall that in Definition 10.7 we defined linear operators R(s) :
Bp,q → Bp,q by

R(s)w =
∫ ∞

0
e−stLtdt

for Re(s) > 0.
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Step 2 (“Better” Banach spaces). We replace C∞(M) by a Banach space of distributions
B

(0)
p,q and, more generally, construct Banach spaces B(l)

p,q(M) for l = 0, . . . ,dimM replacing
functions by l-forms. This gives families of operators: R(l)

s : B(l)
p,q → B

(l)
p,q defined by

analogy to R(0)
s .

For simplicity, consider dimM = 3 and denote σ1 = h, where h is the topological
entropy of the flow and σ0 = σ2 = h − σ where λ > 0 is a bound on the exponential
contraction.

Proposition 10.12 (Spectrum of R(l)
s : B(l)

p,q → B
(l)
p,q). Assume that Re(s) > σl (l =

0, 1, 2). Then

(a) the spectral radius satisfies ρ(R(l)
s ) ≤ 1

Re(s)−σl ;
(b) the essential spectral radius satisfies

ρe(R(l)
s ) ≤ 1

Re(s)− σl + λ[(k − 2)/2]
where k = min{p, q}.

Step 3 (The extension). We can associate to the resolvent a complex function (“the
determinant”) defined as follows:

Dl(s) = exp
(
−
∞∑
n=1

1
n

“trace”(R(l)
s )
)

where we ignore the nonessential part of the spectrum. In particular, Dl(s) is analytic
for Re(s) > σl − λ[(k − 2)/2]. We can then write

ζ(s) = D0(s)D2(s)/D1(s)

where the numerator gives zeros for Re(s) < h − λ. The denominator gives poles for
Re(s) < h.

In particular, the conclusion is that for Ck Anosov flows, the zeta function ζ(s) is
meromorphic for Re(s) > h − λ[(k − 2)/2], and letting k → +∞ gives a meromorphic
extension to C.

Remark 10.13. Previous results in the direction include:

(a) Ruelle showed Corollary 10.11 under the additional assumption that the stable man-
ifolds are Cω [58].

(b) Fried (adapting Rugh’s approach) showed the result assuming the flow is Cω [27].

Remark 10.14. There is another construction of Banach spaces by Dyatlov-Zworski
using microlocal analysis [23].

For some geodesic flows there is also an analytic extension to a strip [30]. Let φt : M →
M be the geodesic flow for a compact manifold V with negative sectional curvatures.

Theorem 10.15 ([30]). For 1/9-pinched negative sectional curvatures, for all ε > 0, ζ(s)
has a nonzero analytic extension to h− ε < Re(s) < h.

This leads to the following estimate on the number of closed orbits of period at most T .
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Corollary 10.16. For 1/9-pinched negative sectional curvatures,

Card{τ : λ(τ ≤ T )} = li(ehT )(1 +O(e−εT )).

Remark 10.17. Previous results in the direction include:

(a) This is true for surfaces without extra conditions [52].
(b) The principal term is true for manifolds without the pinching condition [41]:

Card{τ : λ(τ ≤ T )} ∼ ehT

hT
as T → +∞.

This generalizes to contact Anosov flows with 1/3-pinching.

Remark 10.18. We can also use this formalism to consider decay of correlations for
the maximal entropy measure (or Bowen-Margulis measure) rather than the SRB-mea-
sure [30]. Let µ denote the measure of maximal entropy for φt : M → M and let
F,G ∈ C∞(M). Let

ρ(t) =
∫
F ◦ φtGdµ−

∫
Fdµ

∫
Gdµ,

for t > 0, be the correlation functions. The asymptotic behaviour of ρ(t) is given by the
analytic properties of the Laplace transform

ρ̂(s) =
∫ ∞

0
e−stρ(t)dt, s ∈ C.

We observe that:

(a) ρ̂(s) converges for Re(s) > 0;
(b) ρ̂(s) has a meromorphic extension to C;
(c) typically s is a pole for ρ̂(s) if s+ h is a pole for ζ(s) (actually zero for Z(s)), since

both can be related to properties of R(s);
(d) there exist C > 0, λ > 0 such that |ρ(t)| ≤ Ce−λt, t > 0 providing the curvature is

1/9-pinched.

11. Other notes. The more discerning reader may prefer other notes which have a
more specific focus on particular topics.

1. For the reader wanting a more pure and undiluted theory of dynamical zeta functions
the author has some unpublished notes from lectures in Grenoble [51] (about 35 pages).

2. For the reader wanting more details on the connections with fractals the author has
some notes from lectures in Porto [48] (about 106 pages).

3. For the reader wanting a more geometrical or number theoretical viewpoint, I would
recommend reading elsewhere on the Selberg zeta function, e.g., [31].

Acknowledgments. I am very grateful to Richard Sharp and the anonymous referee
for reading these notes and helping me to eliminate (some of) the mistakes.

This work was partially supported by the grant 346300 for IMPAN from the Simons
Foundation and the matching 2015-2019 Polish MNiSW fund. I am grateful to IMPAN
for their hospitality during my stay.



36 M. POLLICOTT

References

[1] R. Adler and B. Weiss, Similarity of automorphisms of the torus, Mem. Amer. Math. Soc.
98 (1970).

[2] D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy
Mat. Inst. Steklov. 90 (1967) (in Russian).

[3] V. Arnol’d and A. Avez, Ergodic Problems of Classical Mechanics, W. A. Benjamin, New
York, 1968.

[4] M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99.
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[43] R. Mauldin and M. Urbański, Dimension and measures for a curvilinear Sierpiński gasket
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