Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Algorithms for the analysis of bone marrow cancer histology images

Tools
- Tools
+ Tools

Song, Tzu-Hsi (2017) Algorithms for the analysis of bone marrow cancer histology images. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Song_2017.pdf - Submitted Version - Requires a PDF viewer.

Download (5Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3163242~S15

Request Changes to record.

Abstract

Automated computer-aided systems and approaches are widely required to investigate and analyze histology images for improving the accuracy of cancer diagnosis and effective treatment decision making. Quantitative analysis has immense potential to investigate and analyze the tissue and cellular characteristics of histology images in cancer research. It is based on accurate cellular, morphological, and tissue features. Automated approaches not only make the feature extraction and analysis more objective and more reproducible, but they can also help pathologists look for useful potential clues from a vast amount of hidden information in cancer tissues, whose clinical value may not be fully realized and visualized. This entails the automated computer algorithms with a key role of quantitative analysis of histology images for different cancers.

In this thesis, I concentrate on bone marrow cancers and develop automated computer algorithms to extract and realize cellular and texture characteristics of bone marrow biopsies for efficiently characterizing different types of bone marrow cancers in further investigation and analysis. We focus on the development of automated algorithms for identifying various types of cells in bone marrow trephine biopsies, which are tiny cores of bone marrow tissues. All the algorithms are specifically designed for histological sections stained by a standard hematoxylin and eosin (H&E) stain. Firstly, we propose an automated framework with a novel segmentation model for delineating and segmenting megakaryocytes. Secondly, we create a novel deep learning network that processes the nuclear detection with irregular shape for various types of bone marrow stem cells. Then we construct another synchronized deep learning approach to simultaneously do detection and classification. We demonstrate the effectiveness of the network of detection and classification at same time and the training time consumed in this synchronized network

Item Type: Thesis or Dissertation (PhD)
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
Library of Congress Subject Headings (LCSH): Bone marrow -- Cancer -- Histology, Bone marrow -- Cancer -- Diagnosis, Bone marrow -- Biopsy, Algorithms
Official Date: July 2017
Dates:
DateEvent
July 2017UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Rajpoot, Nasir M. (Nasir Mahmood)
Extent: xx, 145 leaves : illustrations
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us