
The Library
Thermoelectric transport in the Quantum Hall regime
Tools
Asman, Poppy (2017) Thermoelectric transport in the Quantum Hall regime. PhD thesis, University of Warwick.
|
PDF
WRAP_Theses_Asman_2017.pdf - Submitted Version - Requires a PDF viewer. Download (4Mb) | Preview |
Official URL: http://webcat.warwick.ac.uk/record=b3163897~S15
Abstract
This research develops a theoretical model to explain the behaviour of the thermo-power in the quantum Hall regime. It uses the concept that at low temperatures the transport through the system will be caused by thermal activation as well as that caused by the conductance. The model is built up in stages, starting with proving the assumption that Dykhne's theorem will work for an asymmetric distribution of particle transport through the system and deriving the behaviour of the particles in the edge states of the system. It then combines this information with a previously developed simple model for the bulk of the modulation-doped GaAs/AlGaAs heterostructure and compares this with experimental data. This reveals that this simple system is not a viable model to represent the data, and as such the model is made more complex with the inclusion of tunnelling. The different parameters which describe the model are found, the saddle energy gap , the transition value for the edge states c, the current splitting parameter and the tunnelling parameter . This is done either by extracting them from the experimental data, or in the case of considering it as a free parameter. How these values vary with the temperature is investigated before a comparison of the theoretical model including tunnelling is conducted with the experimental data. The result from the comparison show a promising alignment between the model and experiment, and further work is proposed where is no longer considered a constant.
Item Type: | Thesis (PhD) | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QC Physics | ||||
Library of Congress Subject Headings (LCSH): | Quantum Hall effect, Transport theory, Heterostructures | ||||
Official Date: | October 2017 | ||||
Dates: |
|
||||
Institution: | University of Warwick | ||||
Theses Department: | Department of Physics | ||||
Thesis Type: | PhD | ||||
Publication Status: | Unpublished | ||||
Supervisor(s)/Advisor: | D'Ambrumenil, Nicholas | ||||
Extent: | xiv, 90 leaves : charts | ||||
Language: | eng |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year