Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/102844

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP URL’ above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Abstract—Over-the-air computation combines communication and computation efficiently by utilizing the superposition property of wireless channels, when Internet of Things (IoT) networks focus more on the computed functions than the individual messages. In this work, we study the computation of multiple linear functions of Gaussian sources over-the-air using antenna arrays at both the IoT devices and the IoT access point (AP). The key challenges in this study are the intra-node interference of multiple functions, the non-uniform fading between different IoT devices and the massive channel state information (CSI) required at the IoT AP. We propose a novel transmitter design at the IoT devices with zero-forcing beamforming to cancel the intra-node interference and uniform-forcing power control to compensate the non-uniform fading. In order to avoid massive CSI requirement, receive antenna selection is adopted at the IoT AP and a corresponding signaling procedure is proposed utilizing the “OR” property of the wireless channel. The performance of the proposed transceiver design is analyzed. The closed-form expression for the mean squared function error (MSFE) outage is derived. Due to the complexity of the expression, an asymptotic analysis of the MSFE outage is further provided to demonstrate the diversity order in terms of the transmit power constraint and the number of IoT devices. Simulation results are presented to show the performance of the proposed design.

Index Terms—antenna array, distributed data aggregation, function computing, Internet of Things, multiple access scheme, wireless sensor network

I. INTRODUCTION

The 5th generation cellular system is predicted to provide an Internet of Things (IoT) that interconnects up to 1 trillion devices with a million connections per square kilometer [1]. This raises new challenges to the distributed data aggregation for IoT networks [2].

Unlike conventional wireless networks whose main objective is to provide end-to-end information transmission, IoT networks are more interested in the functions of the observations rather than the individual observations. For example, an IoT-based monitoring system does not care about the abundant individual observations but the computed functions thereof, such as the sum and the mean [3]. The big data computing was made to extract meaningful data from a large dataset for large-scale smart grid in [4], which deleted a large amount meaningless data before communication. In [5], the traffic volume was predicated before making service degradability to alleviate the communication pressure if the network has a heavy load. A statistical machine learning approach was employed to identify the anomalies within the incoming dataset collected via various probes in the network [6]. Many event-driven IoT applications define the triggering event based on the functions of observations, such as the weighted linear combination [7]. This makes the traditional “communication-and-computation separation” method inefficient. Reconstructing a function over wireless multiple-access channel (MAC), referred to as “over-the-air computation”, provides great potential for IoT network to compute the target function using a summation structure in an efficient way. It utilizes the superposition property of wireless channel instead of making the interference between different IoT devices orthogonal.

The study in over-the-air computation first started from the information-theoretic point of view. In the seminal work [8], B. Nazer and M. Gastpar pointed out that it is beneficial to compute the sum of Gaussian sources over a Gaussian MAC, which combines communication and computation efficiently and harnesses the interference between different nodes. The achievable aggregation rate of type-sensitive functions (e.g. mean, mode, median, etc.) and that of type-threshold functions (e.g. max, min, range, etc.) was defined and derived in [9]. These works lay formulation in over-the-air computation for IoT network. When the target functions match the algebraic structure of channel, there is significant performance gain can be obtained by jointly designing communication and computation [10]. When there is mismatch between the target functions and the channel structure, the impact on the achievable performance gains with joint communication and computation designs over separation-based designs has been analyzed in [11]. Considering the correlation of sources, the information-theoretic performance has been studied for linear functions.
analog computation of two correlated Gaussian sources in [12].

In order to achieve reliable function, the use of channel coding in over-the-air computation has also been widely studied. Using nested lattice coding to compute the noisy modulo sum was investigated in [13] based on the linear property of nested lattice coding. Nested lattice coding has also been applied to compute-and-forward network to recover the combination of transmitted messages [14]. M. Goldenbaum et al. proposed a unified digital scheme to compute structured functions over-the-air in [15], where each node in the network first quantizes its real-valued pre-processed readings and then employs a nested lattice code to protect the sum of messages against Gaussian channel noise. Using randomized network coding through appropriate choice of the subspace codebooks at the source nodes was proposed for function computing in [16], where a lower bound on the number of transmissions required to ensure successful computation was provided. The over-the-air computation for a generalized IoT model consisting of multiple clusters was studied in [17], where the network was divided into several clusters with independent target functions computed. The risky virtual machines were captured in prior based on real data trace, thus guaranteeing high reliable virtual machines transferring among data centers in [18].

Since the nodes in IoT networks are generally low-power and low-cost, a practical way to realize over-the-air computation is through analog scheme. Uncoded transmission where the channel input of IoT devices is merely a scaled version of its noisy observation has been proved to be optimal for a standard Gaussian multiple-access channel in [19]. A robust analog function computation scheme was proposed in [20]. By employing random sequences, the proposed scheme is robust against synchronization errors. Utilizing retransmission to increase reliability, the achievable rate for analog computation was defined and analyzed in [21]. Considering the difficulty of gathering the channel state information (CSI) of all nodes, the effect of channel estimation error was studied in [22], [23]. The work in [24] selected a subset of sensors in an opportunistic way to improve the performance of function computation, which achieves a nonvanishing computation rate even when the number of sensors approaches infinity. Various experimental platforms have been built to verify the idea of analog over-the-air computation in [25]–[27].

To the best of our knowledge, the use of multiple functions in over-the-air computation has never been studied before. Although multi-antenna has been applied to compute-and-forward network [28], [29], it was intended to improve the communication rate using the multiplexity gain of multi-antenna and its key challenge is integer coefficient selection for adapting to the fading MAC [30], [31]. In the case of over-the-air computation, the coefficient of multiple functions becomes arbitrary and the key challenge becomes the transceiver design to create an equivalent MAC with the target coefficient.

Motivated by this observation, we study how to compute multiple functions over-the-air with antennas arrays at the IoT devices and the IoT access point (AP), where multiple linear combinations with arbitrary coefficient of Gaussian sources are computed over the Gaussian MAC. The main contributions of the work can be summarized as follows.

- **A novel transceiver design:** The transmitter is designed to cancel the intra-node interference between multiple functions and compensate the non-uniform fading between different IoT devices. Also, receive antenna selection and its corresponding signaling procedure is proposed to avoid massive CSI requirement at the IoT AP.
- **The computation performance:** We define the mean squared function error (MSFE) to analyze the performance of the computation. The closed-form expression of MSFE outage is derived for Gaussian sources over Gaussian MAC. Due to its complexity, the asymptotic analysis with large transmit power constraint and large number of IoT devices is provided.
- **The diversity order:** The diversity order of MSFE outage is further derived in terms of the transmit power constraint and the number of IoT devices, which depends on the number of antennas, the number of functions and the correlation coefficient between different sources.

The remainder of this paper is organized as follows. Section II presents the system model. The transceiver and signaling procedure are designed in Section III. The performance is analyzed in Section IV. Simulation results and discussions are present in Section V, and conclusion is given in VI.

Throughout the paper, we will use boldface lowercase to refer to vectors and boldface uppercase to refer to matrices. The real and complex numbers are denoted as \(\mathbb{R} \) and \(\mathbb{C} \) respectively. Let \(A^H \) denote the conjugate transpose of a matrix \(A \) and let \(A^{-1} \) denote inverse of a matrix \(A \). Let \(\|a\| \) denote the norm of a vector \(a \), and let \(a^T \) denote the transpose of a vector \(a \).

II. System Model

We consider a IoT network composed of \(K \) IoT devices indexed by \(k \in \{1, \cdots, K\} \) as illustrated in Fig. 1. Each IoT device observes \(L \) sources (e.g. temperature, humidity,
pressure, etc.) indexed by \(l \in \{1, \cdots, L\} \). The observations of IoT device \(k \) are expressed as an \(L \)-dimensions vector \(\mathbf{d}_k \in \mathbb{R}^L \). And the target functions at the IoT AP are linear combinations of the observations which is expressed as

\[
\mathbf{d} = \sum_{k=1}^{K} \mathbf{w}_k \mathbf{d}_k, \tag{1}
\]

where \(\mathbf{w}_k = \text{diag}(w_{k1} \cdots w_{kL}) \) is the function coefficient matrix.

As illustrated in Fig. 1(a), the AP can aggregate the observations first and then computes the target function. The distributed data aggregation requires multiple access schemes (e.g. time division multiple access (TDMA), carrier sense multiple access (CSMA)), which requires multiple time slots and incurs a high latency.

If we utilize the summation property of wireless MAC to reconstruct the target function, we can avoid the multiple access scheme for data aggregation and compute the target function in one time slot as illustrated in Fig. 1(b).

The transmit vector \(\mathbf{s}_k \in \mathbb{R}^L \) of IoT device \(k \) is

\[
\mathbf{s}_k = \mathbf{d}_k + \mathbf{v}_k, \tag{2}
\]

where \(\mathbf{v}_k \in \mathbb{R}^L \) is the observe noise vector. The elements of \(\mathbf{d}_k \) and \(\mathbf{v}_k \) are assumed to be Gaussian distributed, i.e., \(d_{kl} \sim \mathcal{N}(0, \sigma^2_{dl}) \) and \(v_{kl} \sim \mathcal{N}(0, \sigma^2_{vl}) \). Thus, the elements of \(\mathbf{s}_k \) are also Gaussian distributed, i.e., \(s_{kl} \sim \mathcal{N}(0, \sigma^2_{dl} + \sigma^2_{vl}) \).

Each IoT device is equipped with \(N_t \) antennas and the AP is equipped with \(N_r \) antennas. We assume that \(N_t \geq L \) and \(N_r \geq L \). After coherent MAC, the estimated functions at the AP can be written as

\[
\hat{\mathbf{d}} = \mathbf{A} \sum_{k=1}^{K} \mathbf{H}_k \mathbf{B}_k \mathbf{s}_k + \mathbf{A}\mathbf{n}, \tag{3}
\]

where \(\mathbf{B}_k \in \mathbb{C}^{N_t \times L} \) is the transmitter matrix of IoT device \(k \), \(\mathbf{H}_k \in \mathbb{C}^{N_r \times N_t} \) is the channel matrix between IoT device \(k \) and the AP with each element distributed as \(\mathcal{CN}(0,1) \), \(\mathbf{A} \in \mathbb{C}^{L \times N_r} \) is the receiver matrix of the AP, and \(\mathbf{n} \in \mathbb{C}^{N_r} \) is the receive noise vector with each element distributed as \(\mathcal{CN}(0, \sigma^2) \).

Comparing the target functions in (1) with the estimated ones in (3), the corresponding error vector is \(\mathbf{e} = \hat{\mathbf{d}} - \mathbf{d} \). We define the metrics of MSFE and MSFE outage to evaluate the performance of over-the-air computation.

Definition 1. (MSFE and MSFE outage) Given the target functions \(\hat{\mathbf{d}} \) and the estimated ones \(\hat{\mathbf{d}} \), the estimation error vector can be calculated as \(\mathbf{e} = \hat{\mathbf{d}} - \mathbf{d} \). Then, the MSFE is defined as

\[
\text{MSFE} = \frac{E\left(\|\mathbf{e}\|^2\right)}{E\left(\|\mathbf{d}\|^2\right)} \tag{4}.
\]

Given a MSFE threshold \(\xi \in [0, 1] \), the corresponding MSFE outage is defined as

\[
P_{\text{out}} = \Pr(\text{MSFE} > \xi). \tag{5}
\]

III. TRANSCIEVER DESIGN FOR MULTIPLE FUNCTIONS

According to the system model, the key challenges to compute multiple functions over-the-air are the intra-node interference of multiple functions, the non-uniform fading between different IoT devices, and the massive CSI gathering at the AP. In this section, we design the transceiver to combat these challenges. The signaling procedure is proposed to avoid massive CSI gathering at the AP.

A. The case that \(N_c = L \)

We first consider the case that \(N_c \geq L \) and \(N_r = L \). The case that \(N_c > L \) will be discussed in the subsection III-B. In this case, the pseudo-inverse matrix of channel matrix exists. The transmitter matrix of IoT device \(k \) is designed as

\[
\mathbf{B}_k = \sqrt{\eta} \mathbf{H}_k^H (\mathbf{H}_k \mathbf{H}_k^H)^{-1} \mathbf{w}_k, \tag{6}
\]

where \(\mathbf{w}_k \) is the function coefficient matrix in (1), and \(\eta \) is the power control factor considering transmit power constraint of the IoT device. Then the estimated functions in (3) can be rewritten as

\[
\hat{\mathbf{d}} = \mathbf{A} \sum_{k=1}^{K} \sqrt{\eta} \mathbf{H}_k^H (\mathbf{H}_k \mathbf{H}_k^H)^{-1} \mathbf{w}_k \mathbf{s}_k + \mathbf{A}\mathbf{n}, \tag{7}
\]

where the non-uniform fading is compensated to the uniform level \(\sqrt{\eta} \). If

\[
\mathbf{A} = \frac{\mathbf{I}_L}{\sqrt{\eta}}, \tag{8}
\]

we have that

\[
\hat{\mathbf{d}} = \sum_{k=1}^{K} \mathbf{w}_k \mathbf{d}_k + \sum_{k=1}^{K} \mathbf{w}_k \mathbf{v}_k + \frac{\mathbf{n}}{\sqrt{\eta}}. \tag{9}
\]

The transmit power of IoT device \(k \) is

\[
P_k = \|\mathbf{B}_k \mathbf{s}_k\|^2
= \eta \|\mathbf{w}_k \mathbf{s}_k\|^2 (\mathbf{H}_k \mathbf{H}_k^H)^{-1} (\mathbf{w}_k \mathbf{s}_k)
\]

where

\[
\tau_k = \left(\|\mathbf{w}_k \mathbf{s}_k\|^2 (\mathbf{H}_k \mathbf{H}_k^H)^{-1} (\mathbf{w}_k \mathbf{s}_k)\right)^{-1}, \tag{11}
\]

and \(\tau_k \) is “the ratio between the channel power gain to the effective signal power”. Considering a special case that \(N_t = N_r = 1 \), \(\tau_k \) can be rewritten as \(\tau_k = |h_k|^2/|w_k s_k|^2 \), where \(|h_k|^2 \) and \(|w_k s_k|^2 \) are the channel power gain and the effective signal power of IoT device \(k \) respectively.

With an instantaneous power constraint considered, i.e., \(P_k \leq P_0 \), the power control factor \(\eta \) can be calculated as
\[\eta = P_0 \min_k (\tau_k), \]
(12)

which depends on the IoT device with the minimum ratio between the channel power gain to the effective signal power.

Remark 1. (To avoid massive CSI gathering) The transceiver design avoids massive CSI gathering at the AP. According to transmitter matrix in (6), each IoT device needs its own CSI \(H_k \) and the power control level \(\eta \) to determine \(B_k \). \(H_k \) can be estimated based on the broadcasting pilots. And \(\eta \) is determined at the AP and broadcasted to all IoT devices subsequently. According to receiver matrix in (8), the AP only needs \(\eta \) to determine \(A \). It seems that the AP requires all IoT devices’ CSI to determine \(\eta \) in (12), which may incur massive CSI gathering at the AP. In the subsection III-C, we will propose a novel signaling procedure to determine \(\eta \) without gathering all IoT devices’ CSI.

B. The case that \(N_r > L \)

When \(N_r > L \), we adopt receive antenna selection to select \(L \) receive antennas from \(N_r \). Although it is not optimal, it also avoids massive CSI gathering at the AP and only needs the power control level \(\eta \). The selected subset from \(N_r \) receive antennas is \(\Phi_i \), where \(i \in \{1, \ldots, C_{N_r}^L\} \). The corresponding receiver matrix \(A_{\Phi_i} \) is composed of \(L \) rows of \(I_{N_r}/\sqrt{\eta} \), where the index set of selected rows is \(\Phi_i \). The equivalent channel matrix after receiver is

\[H_{k,\Phi_i} = A_{\Phi_i} H_k. \]
(13)

Then the transmitter matrix for IoT device \(k \) can be rewritten as

\[B_k = \sqrt{\eta} H_{k,\Phi_i}^H \left(H_{k,\Phi_i} H_{k,\Phi_i}^H \right)^{-1} w_k, \]
(14)

The optimal selection criterion for subset \(\Phi_i \) is

\[\Phi^{opt} = \arg \max_{\Phi_i} \min_k \tau_{k,\Phi_i}, \]
(15)

where

\[\tau_{k,\Phi_i} = \left[(w_k s_{k})^H \left(H_{k,\Phi_i} H_{k,\Phi_i}^H \right)^{-1} (w_k s_{k}) \right]^{-1}. \]
(16)

The optimal antenna selection algorithm is based on exhaustive search and sort, whose complexity is related to the search space. Thus, the complexity of the optimal antenna selection algorithm in terms of the search space will be \(O \left(C_{N_r}^L \right) \), where \(C_{N_r}^L \) is the size of the search space. In order to avoid the prohibitive complexity, we adopt a sub-optimal algorithm as illustrated in Algorithm 1. Instead of comparison and selection over \(C_{N_r}^L \) possible subsets, we simplify the search and sort into \(M = \lfloor N_r/L \rfloor \) disjoint subsets. The corresponding receive antenna subset \(\Phi_m \) consists of antennas from \((m-1)L + 1 \) to \(mL \), where \(m \in \{1, 2, \ldots, M\} \). Thus, the complexity of the Algorithm 1 in terms of the search space will be \(O \left(\lfloor N_r/L \rfloor \right) \). Also, due to the independence between antennas subsets, the analytical evaluation of Algorithm 1 becomes tractable, which will be provided in Proposition 6.

Algorithm 1 Antenna selection with disjoint subsets

- **Step 1** IoT device \(k \) estimates its own CSI \(H_k \) based on the broadcasting pilots of AP. It further calculates \(\tau_{k,\Phi_m} \) for receive antennas subset \(\Phi_m \) according to (16).
- **Step 2** The AP determines the \(\tau_{\Phi_m} = \min_k \tau_{k,\Phi_m} \) for each selected antennas subsets \(m \) respectively. Then it sorts \(\tau_{\Phi_m} \), and selects the \(\Phi_m \) with the largest \(\tau_{\Phi_m} \).

![Figure 2. The signaling procedure to avoid massive CSI gathering](image)

C. Signaling Procedure

According to the transceiver design above, both the IoT devices and the AP requires the power control level \(\eta \) in (12). In order to avoid gathering all IoT devices’ CSI to calculate \(\eta \), we utilize the "OR" property of the wireless channel [32] to determine the max (1/\(\tau_k \)), i.e., \(\min (\tau_k) \).

Firstly, each IoT device \(k \) locally calculates its own \(\tau_k \) based on its own CSI according to (11) and quantizes the (1/\(\tau_k \)) into a binary representation as

\[\frac{1}{\tau_k} = \sum_{b = -b_L}^{b_M} \nu_b 2^b, \]
(17)

where \(\nu_b \in \{0, 1\} \), \(b_M \) is the most significant bit (MSB) and \(b_L \) is the least significant bit (LSB). Then the AP uses several rounds of inquiry from MSB \(b_M \) to LSB \(b_L \) in order to determine the max (1/\(\tau_k \)), i.e., \(\min (\tau_k) \). It can be described in Algorithm 2.

The whole signaling procedure is illustrated in Fig. 2. The time complexity of Algorithm 2 is related to the length of the quantized 1/\(\tau_k \). According to the definition of \(\tau_k \) in (11), the value range of \(\tau_k \) can be defined as \(\tau_k \in [\tau_{\min}, \tau_{\max}] \).
Algorithm 2 Utilizing “OR” property of the wireless channel to determine $\min (\tau_k)$

- **Step 1** In the first inquiring round, IoT devices with 1 in the MSB respond, while IoT devices with 0 in the MSB keep silent. The AP detects the signal to determine whether the MSB of $\max (1/\tau_k)$ is 1. If so, the MSB of $\max (1/\tau_k)$ is set as 1. Otherwise, it is set as 0.

- **Step 2** In the second inquiring round, if MSB is set as 1, the AP inquires the IoT devices with MSB as 1 whether they have 1 in the second MSB. Otherwise, the AP inquires all IoT devices whether they have 1 in the second MSB. Then the second MSB is determined.

- **Step 3** The AP inquires in this way until the LSB is determined. Then $\max (1/\tau_k)$, i.e., $\min (\tau_k)$, can be determined according to (17).

where τ_{\min} and τ_{\max} are the minimum value and maximum value of τ_k. The MSB b_M is determined by the $1/\tau_{\min}$, i.e., $2^{b_M} \geq 1/\tau_{\min}$. And the LSB b_L is determined by the maximum tolerable quantization error Δ, i.e., $2^{-b_L} \leq \Delta$. Thus, the length of the quantized $1/\tau_k$ satisfies

$$b = b_M + b_L \geq \log_2 \frac{1}{\tau_{\min} \Delta}. \quad (18)$$

The pilot signal for each IoT device should be an $N_t \times N_t$ matrix for estimating an $N_r \times N_t$ channel matrix. It takes at least N_t symbol slots to complete the channel training process in Algorithm 2. According to the length of the quantized $1/\tau_k$, it takes b symbol slots to determine the $\min (\tau_k)$. Thus, it takes $N_t + b$ symbol slots for Algorithm 2.

In contrast, the conventional channel training process for each IoT device takes at least N_t symbol slots for estimating an $N_r \times N_t$ channel matrix. Thus, it takes $K N_t$ symbol slots to obtain all IoT devices CSI at the AP. Consider a typical dense sensor network with $K = 100$ and $N_t = 2$, it takes 200 time slots for conventional channel training process. Assuming $b = 18$, it only takes 20 time slots for the proposed channel training process in Algorithm 2, which achieves 10-time of time complexity reduction in this example.

IV. PERFORMANCE OF MULTIPLE FUNCTIONS COMPUTATION

In this section, we further provide the performance of multiple functions computed over the air based on the defined MSFE in Definition 1. Both the exact and asymptotic analysis is given, and the diversity order in term of the transmit power and the number of devices is also derived.

A. Exact analysis of MSFE

Proposition 1. (The expression of MSFE) Assuming that different observation sources are i.i.d. and the observation sources of different IoT devices are correlated, the MSFE of multiple functions computed over-the-air with the transceiver designed above can be calculated as

$$\text{MSFE} = \frac{\sum_{l=1}^{L} \sum_{k=1}^{K} w_{kl}^2 \sigma_{el}^2 + L \sigma_a^2 / \eta}{\sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{k' = 1}^{K} \sum_{k_2 = 1}^{K} w_{kl} w_{k'l} \rho_{kk_1k_2} \sigma_{dl}^2} \quad (19),$$

where $\rho_{kk_1k_2}$ is the correlation coefficient between IoT device k_1 and IoT device k_2 for the observation source l.

Proof. According to the target functions in (1) and the estimated ones in (9), the error vector is

$$e = \sum_{k=1}^{K} w_k v_k + n / \sqrt{\eta}. \quad (20)$$

Due to the distribution of v_k and n, the lth element of $\sum_{k=1}^{K} w_k v_k$ satisfies $\mathcal{N} (0, \sum_{k=1}^{K} w_{kl}^2 \sigma_{el}^2)$ and the lth element of $n / \sqrt{\eta}$ satisfies $\mathcal{CN} (0, \sigma_a^2 / \eta)$. For d_k, the target function d_l satisfies $\mathcal{N} (0, \sum_{k=1}^{K} \sum_{k' = 1}^{K} \sum_{k_2 = 1}^{K} w_{kl} w_{k'l} \rho_{kk_1k_2} \sigma_{dl}^2)$. Then according to Definition 1, the expression of MSFE in (19) can be given.

Remark 2. (A case that MSFE is a function of K) We consider a special case that the target function has the same coefficient, and the data sources have the same spacial correlation coefficient, i.e., $w_{kl} = 1$ and $\rho_{kl} = \rho_{w}$ for $k_1 \neq k_2$. Also, the observation data and noise for different sources obey the same distribution, i.e., $\sigma_{dl}^2 = \sigma_d^2$ and $\sigma_a^2 = \sigma_a^2$. Then the corresponding MSFE in (19) is a function of the number of IoT devices K and can be simplified as

$$\text{MSFE} = \frac{\sigma_a^2 + \sigma_d^2 / K \eta}{\sigma_d^2 + (K - 1) \rho_w \sigma_a^2}. \quad (21)$$

The MSFE is a function of power control factor η, and η in (12) is a function of τ_k. We first provide the following lemma about the distribution of τ_k.

Lemma 1. (The distribution of τ_k) τ_k in (11) is a transformation of Wishart distributed matrix $H_k H_k^H$, which obeys a chi-square distribution with $2 (N_t - L + 1)$ degrees of freedom. Specifically,

$$2 \mu_k \tau_k \sim \chi^2 (2 (N_t - L + 1)), \quad (22)$$

where μ_k is defined as

$$\mu_k = \|w_k s_k\|^2 = \sum_{l=1}^{L} (w_{kl} s_{kl})^2. \quad (23)$$

Proof. The proof of Lemma 1 is provided in Appendix A.

Then with fixed μ_k, the cumulative distribution function (CDF) of τ_k can be given as

$$F_{\tau_k} (\tau_k, \mu_k) = \frac{\gamma (N_t - L + 1, \mu_k \tau_k)}{\Gamma (N_t - L + 1)}, \quad (24)$$

where $\gamma (\cdot)$ is the lower incomplete gamma function, $\Gamma (\cdot)$ is the gamma function, and μ_k in (23) can be regard as “the effective signal power gain” with the distribution approximated in the following lemma.
Lemma 2. (The distribution of μ_k) μ_k in (23) is the linear combinations of independent chi-square random variables, which can be approximated as a chi-square distribution. Specifically,
\[
bk \mu_k \sim \chi^2(b_k)
\]
where the constant a_k and b_k are given as
\[
a_k = \sum_{l=1}^{L} w_{kl}^2 (\sigma_{dl}^2 + \sigma_{vl}^2)
\]
and
\[
b_k = \frac{\left(\sum_{l=1}^{L} w_{kl}^2\right)^2}{\sum_{l=1}^{L} w_{kl}^4}.
\]

Proof. The proof of Lemma 2 is provided in Appendix B.

Then the probability distribution function (PDF) of μ_k is
\[
f_{\mu_k}(\mu_k) = \frac{1}{2b_k/2^{b_k/2} \Gamma(\mu_k/2)} \left(\frac{b_k}{a_k}\right) \left(\frac{b_k \mu_k}{a_k}\right)^{b_k/2 - 1} e^{-\frac{b_k \mu_k}{a_k}},
\]
where a_k and b_k are given in (26) and (27) respectively.

According to Lemma 1 and Lemma 2, we can further derive the closed-form expression of MSFE outage.

Proposition 2. (The expression of MSFE outage) The MSFE outage can be calculated as
\[
P_{out} = \Pr\left[\min_{k} (\tau_k) < \psi \right]
\]
and
\[
1 - \left[1 - F_{\tau_k}(\psi) \right]^K,
\]
where
\[
\psi = \frac{L \sigma_a^2}{\xi \sum_{l=1}^{L} k_{1l} \sum_{k_{2}=1}^{K} w_{kl}^2 \rho_{kl}^2 \rho_{k1l}^2 \sigma_{al}^2 + \sum_{l=1}^{L} \sum_{k_{1}=1}^{K} w_{kl}^2 \sigma_{vl}^2},
\]
\[
F_{\tau_k}(\cdot) \text{ is the CDF of } \tau_k \text{ given as (31) at the bottom and } _2F_1(\cdot) \text{ is the Gauss hypergeometric function.}
\]

Proof. The procedure (a) is calculated according to (19). The procedure (b) is because the ordered distribution of the minimum one of K i.i.d. variables. The CDF of τ_k can be derived by
\[
F_{\tau_k}(\tau_k) = \frac{\Gamma(N_l - L + 1 + \frac{b_k}{2}) \tau_k^{N_l - L + 1 + \frac{b_k}{2}}}{\Gamma(N_l - L + 2) \Gamma(\frac{b_k}{2}) \left(\tau_k + \frac{b_k}{2\tau_k}\right)^{N_l - L + 1 + \frac{b_k}{2}}} _2F_1\left(1, N_l - L + 1 + \frac{b_k}{2}; N_l - L + 2; \frac{\tau_k}{\tau_k + \frac{b_k}{2\tau_k}}\right)
\]

B. Asymptotic Analysis of MSFE

The exact closed-form expression of MSFE outage in Proposition 2 is too complex to give us any insights. Thus, we will provide some asymptotic analysis to illustrate the diversity order in terms of the transmit power constraint and the number of IoT devices.

We first give the definition about the diversity order of MSFE outage in terms of the transmit power constraint and the number of IoT devices.

Definition 2. (The diversity order) The MSFE outage P_{out} is a function of the transmit power constraint P_0 and the number of IoT devices K, the diversity order of MSFE outage in terms of the transmit power constraint is defined as
\[
D_P = \lim_{P_0 \to \infty} \log P_{out}(P_0) / \log P_0,
\]
and the diversity order of MSFE outage in terms of the number of IoT devices is defined as
\[
D_K = \lim_{K \to \infty} \log P_{out}(K) / \log K.
\]

Then we provide the asymptotic analysis with a large transmit power constraint P_0. Based on series expansion of the MSFE outage expression in Proposition 2, we have the following results.

Proposition 3. (Asymptotic MSFE outage with large P_0) As the transmit power constraint P_0 is sufficiently large, the MSFE outage can be approximated as
\[
\log P_{out} \sim -(N_l - L + 1) \log P_0.
\]
where \(a \to \) means asymptotically converging to (as \(P_0 \) becomes large).

Proof. The Proposition 3 is proved in Appendix C. \(\square \)

Remark 3. (The diversity order \(D_P \)) According to Definition 2, the diversity order of MSFE outage in terms of transmit power constraint \(P_0 \) is \(D_P = N_t - L + 1 \), which depends on the number of the transmit antennas and the number of computed functions.

Then we provide the asymptotic analysis with a large number of IoT devices. According to the extreme value theory of ordered statistics, if some specific convergence conditions are satisfied, the distribution of \(\min_k (\tau_k) \) with large \(K \) approaches to Weibull-\(\alpha \) distribution with CDF given by

\[
F_W(x) = 1 - \exp(-x^\alpha), \quad x > 0, \tag{37}
\]
where \(\alpha > 0 \) is the shape parameter.

The specific convergence conditions are provided by the following lemma, and the value of \(\alpha \) is also determined accordingly.

Lemma 3. (The extreme value theory of ordered statistics) \(F(\cdot) \) is the CDF of \(X \) iff \(F^{-1}(0) \) is finite and

\[
\lim_{\varepsilon \to 0^+} \frac{F\left(F^{-1}(0) + \varepsilon x\right)}{F\left(F^{-1}(0) + \varepsilon\right)} = x^\alpha \tag{38}
\]
for all \(x > 0 \). When \(n \) is sufficiently large, one can choose \(a_n^* = F^{-1}(0) \) and \(b_n^* = F^{-1}(1/n) - F^{-1}(0) \) such that

\[
(X_{n:n} - a_n^*)/b_n^* \to W, \tag{39}
\]
where \(W \) is a Weibull distribution variable with CDF given in (37), \(X_{n:n} \) is the \(n \)th large (minimum) variable from \(n \) i.i.d. random \(x \), and \(\to \) means convergence in distribution.

Proof. [34, Theorem 8.3.5 \& 8.3.6] \(\square \)

Proposition 4. (Weibull approximation of \(\min_k (\tau_k) \)) The distribution of \(\min_k (\tau_k) \) satisfies the convergence condition in Lemma 3. And we have

\[
\frac{\min_k (\tau_k)}{K^{-1}\frac{2}{\alpha} - C^{-1}} \to W \left(N_t - L + 1\right), \tag{40}
\]
where

\[
C = \left[\frac{\Gamma(N_t - L + 1 + b_k/2)}{\Gamma(N_t - L + 2)\Gamma(b_k/2)}\right]^{1/\alpha} \sum_{k=0}^{\lfloor a_k/b_k \rfloor} \left(\frac{2a_k}{b_k}\right). \tag{41}
\]

Proof. The Proposition 4 is proved in Appendix D. \(\square \)

In order to make the analysis tractable, we consider the MSFE in Remark 2, which is an explicit expression of the number of IoT devices \(K \). Based on the Weibull approximation, the asymptotic MSFE outage for large number of IoT devices can be given as follows.

Proposition 5. (Asymptotic MSFE outage with large \(K \)) As the number of IoT devices \(K \) is sufficiently large, the MSFE outage in (21) can be approximated as

\[
\log P_{\text{out}} \to \left\{ \begin{array}{ll}
-(N_t - L) \log K, & \rho_c = 0 \\
-(2N_t - 2L + 1) \log K, & \rho_c > 0 \end{array} \right. \tag{42}
\]

Proof. The Proposition 5 is proved in Appendix E. \(\square \)

Remark 4. (The diversity order \(D_K \)) When \(\rho_c > 0 \), the diversity order of MSFE outage in terms of the number of IoT devices \(K \) is \(D_K = 2N_t - 2L + 1 \) according to Definition 2. The increasing of correlation coefficient \(\rho_c \) will achieve the diversity gain with the diversity order unchanged. When \(\rho_c = 0 \), the diversity order of MSFE outage in terms of the number of IoT devices \(K \) decreases to \(D_K = N_t - L \).

Finally, we discuss the selection diversity for the sub-optimal selection algorithm proposed in Algorithm 1. Due to the independence between antenna subsets, the analytical evaluation of selection is tractable. The asymptotic MSFE outage of the proposed algorithm can be given as follows.

Proposition 6. (Asymptotic MSFE outage with antenna selection) For the proposed sub-optimal Algorithm 1, as the transmit power constraint \(P_0 \) is sufficiently large, we have the MSFE outage in Proposition 3 asymptotically converges as

\[
\log P_{\text{out}} \to -M(N_t - L + 1) \log P_0. \tag{43}
\]

And as the number of IoT devices \(K \) is sufficiently large, we have the MSFE outage in Proposition 5 asymptotically converges as

\[
\log P_{\text{out}} \to \left\{ \begin{array}{ll}
-M(N_t - L) \log K, & \rho_c = 0 \\
-M(2N_t - 2L + 1) \log K, & \rho_c > 0 \\
-M(N_t - L + 1) \log \rho_c, & \rho_c > 0 \end{array} \right. \tag{44}
\]

where \(M = \lfloor N_r/L \rfloor \) is the number of antenna subsets.

Proof. The Proposition 6 is proved in Appendix F. \(\square \)

Remark 5. (The diversity order of antenna selection) The diversity order of MSFE outage in terms of transmit power constraint and that in terms of the number of IoT devices both increase \(M = \lfloor N_r/L \rfloor \) times for the proposed Algorithm 1 due to antenna selection diversity.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide some simulation results to illustrate the performance of multiple functions computed over-the-air. The simulation parameters are set as follows unless specified otherwise. The number of transmit and receive antennas \(N_t = N_r = 2 \), the number of computed functions \(L = 2 \), the number of IoT devices \(K = 10 \), the observation data of source \(l \) for IoT device \(k \) \(d_{kl} \sim \mathcal{N}(0, 1) \), the threshold of MSFE outage \(\xi = 0.1 \), the target function coefficient matrix for IoT device \(k \) \(w_k = 1_L \), the signal to observe noise ratio (SNR) \(\sigma_d^2/\sigma_n^2 = 10 \text{dB} \) and the signal to receive noise ratio (SRN) \(\sigma_d^2/\sigma_n^2 = 10 \text{dB} \).
The MSFE outage versus different SRNR from 0dB to 30dB with different numbers of transmit antennas is illustrated in Fig. 3. Firstly, the MSFE outage is a monotone-decreasing function of SRNR. That is because the computed error caused by receive noise decreases. Then, the log function of MSFE outage almost linearly decreases with the increase of SRNR at the high SRNR regime. And the decreasing rates increases with the increase of the number of transmit antennas N_t. It verifies the Proposition 3 which reveals that the diversity order of MSFE outage in terms of transmit power constraint is $N_t - L + 1$.

The performance of different receive antenna selection schemes is present in Fig. 4, where the number of receive antennas N_r is 6. The mean MSFE of 10^6 Monte Carlo simulations is shown. The random selection scheme, the optimal selection scheme based on brute-force search, and the sub-optimal scheme proposed in Algorithm 1 are all illustrated with different SRNR from 10dB to 30dB. For random selection, we have no prior knowledge. Any selection chosen L elements from the set with N_r elements can be regarded as random selection. In our simulated results, we just chose the first L antennas from all N_r antennas. It can be seen that the performance of Algorithm 1 is between the performance of the optimal selection and the performance of the random selection. The reason can be explained from the search space point of view. There is no doubt that the optimal selection based on brute force search will go over the entire search space. It can obtain the optimal performance at the price of the high complexity. The motivation of the proposed algorithm is to make a tradeoff between the complexity and the performance, where the search space is limited to $M = \lfloor N_r / L \rfloor$ disjoint subsets. Thus, its performance is always inferior to the optimal one. We have provided the theoretical performance of the proposed algorithm in Proposition 6, which can obtain a selection diversity gain of $M = \lfloor N_r / L \rfloor$. Thus, its performance is superior to the random one. As the

Figure 3. The MSFE outage versus different SRNR with different numbers of transmit antennas

Figure 5. The MSFE outage versus different numbers of IoT devices with different numbers of transmit antennas

Figure 4. The mean MSFE of different receive antenna selection schemes

Figure 6. The MSFE outage versus different numbers of IoT devices with different correlation coefficient ρ_c.

The number of sensors

MSFE Outage

exact
approximated

$N_t = 2$
$N_t = 3$
$N_t = 4$
Diversity order

$N_t = 2$
$N_t = 3$
$N_t = 4$
Diversity order

$\rho_c = 1$
$\rho_c = 0$
$\rho_c = 0.1$
diversity order
diversity gain

$\frac{\rho_c}{\rho_c} = 0$
$\frac{\rho_c}{\rho_c} = 0.1$
$\frac{\rho_c}{\rho_c} = 1$
diversity order
diversity gain

$\frac{\rho_c}{\rho_c} = 0$
$\frac{\rho_c}{\rho_c} = 0.1$
$\frac{\rho_c}{\rho_c} = 1$
diversity order
diversity gain

$\frac{\rho_c}{\rho_c} = 0$
$\frac{\rho_c}{\rho_c} = 0.1$
$\frac{\rho_c}{\rho_c} = 1$
diversity order
diversity gain
SRNR becomes large, the performance gap between different schemes decreases. That is because receive antenna selection only affects the transmission error. As the SRNR increases, the MSFE caused by transmission error decreases and the observation error gradually dominates the whole errors.

The MSFE outage versus different numbers of IoT devices from 2 to 100 is present in Fig. 5 and Fig. 6 with different numbers of transmit antennas N_t and different correlation coefficient ρ_c. Both the exact expression and Weibull approximation are shown. According to these two figures, the MSFE outage is a monotone-decreasing function of the number of IoT devices. On one hand, it is due to the increase of the combined received signal power, which decreases the transmission error caused by the receive noise. On the other hand, it is due to the decrease of the observation error when the observe sources of different IoT devices are correlated with each other. Also, it can be observed that the Weibull approximation proposed in Proposition 4 is accurate, especially when the number of IoT device is in a large regime. In Fig.5, the MSFE outage almost linearly decreases when the number of IoT devices K exponential increases. And the decreasing rate increases with the increase of the number of transmit antennas N_t. It verifies the Proposition 5 that the diversity order in terms of the number of IoT devices increases with N_t. In Fig.6, when $\rho_c > 0$, the decreasing rate with the increase of the number of IoT devices is the same for different correlation coefficient ρ_c. And the increase of ρ_c will bring diversity gain. When $\rho_c = 0$, the diversity order decreases. That verifies the Proposition 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel transceiver design for multiple functions computed over-the-air. The transmitter matrix is designed to cancel the intra-node interference of multiple functions and compensated the non-uniform fading between different IoT devices. The receive antenna selection is adopted and the corresponding signaling procedure is proposed to avoid massive CSI gathering problem by utilizing the "OR" property of the wireless channel. The performance of MSFE outage is derived based on the signal and channel distributions. Due to the complexity of the expression, asymptotic analysis is provided by series expansion and Weibull distribution approximation. The diversity order are defined and derived in terms of transmit power constraint and the number of IoT devices, which are determined by the number of transmit antennas, the number of functions, and the correlation coefficient between different sources.

In the future work, we will study the robust design for multiple functions computed over-the-air, where the CSI estimation error and the synchronization error will be considered. Also, the network model will be extended to the IoT network with multiple clusters and experimental platforms will be built.

APPENDIX A

PROOF OF LEMMA 1

Considering τ_k defined in (11), $H_kH_k^H$ obeys a complex Wishart distribution with N_c dimensions and $2N_t$ degrees of freedom with Rayleigh fading assumed, i.e.,

$$H_kH_k^H \sim CW\left(\frac{1}{2}I_{N_c}, L, 2N_t\right)$$

Then according to [35, Proposition 8.9] about the transformation of Wishart distributed matrix. That is suppose S_0 has a nonsingular Wishart distribution, say $W(\Sigma, p, n)$, and let A be an $r \times p$ matrix of rank r. We have

$$(AS_0^{-1}A^H)^{-1} \sim W\left((A\Sigma^{-1}A^H)^{-1}, r, n-p+r\right).$$

Thus, $\tau_k = \left[(w_k^*s_k)(H_kH_k^H)^{-1}(w_k^*s_k)^{-1}\right]^{-1}$ also obeys a complex Wishart distribution, i.e.,

$$\tau_k \sim CW\left(((w_k^*s_k)^H2I_{N_c}(w_k^*s_k))^{-1}, 1, 2(N_t - L + 1)\right).$$

The above one-dimensional complex-valued Wishart distribution is actually a chi-square distribution with $2(N_t - L + 1)$, i.e., $2\mu_k \tau_k \sim \chi^2(2(N_t - L + 1))$.

APPENDIX B

PROOF OF LEMMA 2

We adopt the Welch-Satterthwaite approximation to approximate the linear combinations of independent chi-square random variables [36].

That is let M_1, \ldots, M_n be independent random variables, and let $a_1, \ldots, a_n, b_1, \ldots, b_n$ and k_1, \ldots, k_n be positive numbers. If we have that

$$\frac{b_jM_j}{a_j} \sim \chi^2(b_j)$$

Then the distribution of $M = k_1M_1 + \ldots + k_nM_n$ can be approximated as

$$\frac{bM}{a} \sim \chi^2(b)$$

with

$$a = k_1a_1 + \ldots + k_na_n$$

and

$$b = \frac{a_1^2}{b_1} + \ldots + \frac{(k_na_n)^2}{b_n}.$$

Because $s_{kl} \sim N\left(0, (\sigma_{sl}^2 + \sigma_{vl}^2)\right)$, we have

$$\frac{(s_{kl})^2}{\sigma_{sl}^2 + \sigma_{vl}^2} \sim \chi^2(1)$$

The distribution of $\mu_k = \sum_{l=1}^L(w_{kl})(s_{kl})^2$ is approximated as chi-square distribution according to Welch-Satterthwaite approximation, i.e.,

$$\frac{b_k\mu_k}{a_k} \sim \chi^2(b_k)$$

where
\begin{equation}
 a_k = \sum_{l=1}^{L} w_{kl}^2 \left(\sigma_{dl}^2 + \sigma_{vl}^2 \right)
\end{equation}

and

\begin{equation}
 b_k = \frac{\left[\sum_{l=1}^{L} w_{kl}^2 \left(\sigma_{dl}^2 + \sigma_{vl}^2 \right) \right]^2}{\sum_{l=1}^{L} \left[w_{kl}^2 \left(\sigma_{dl}^2 + \sigma_{vl}^2 \right) \right]^2} = \frac{\left(\sum_{l=1}^{L} w_{kl}^2 \right)^2}{\sum_{l=1}^{L} w_{kl}^4}.
\end{equation}

APPENDIX C

PROOF OF PROPOSITION 3

The series expansion of the Gauss hypergeometric function \(_2F_1 (\cdot) \) in [33, 9.100] is

\begin{equation}
 _2F_1 (\alpha, \beta; \gamma; z) = 1 + \frac{\alpha \beta}{\gamma} z + O(z^2),
\end{equation}

As the transmit power constraint \(P_0 \) is large, \(\psi/P_0 \to 0 \). The closed-from expression of \(F_{\tau_k}(\tau_k) \) in (38) is approximated as

\begin{equation}
 F_{\tau_k} \left(\frac{\psi}{P_0} \right) \approx \frac{\Gamma (N_t - L + 1 + \frac{b_k}{2})}{\Gamma (N_t - L + 2) \Gamma \left(\frac{b_k}{2} \right)} \left(\frac{2a_k \psi}{b_k} + P_0 \right)^{N_t-L+1} \tag{57}
\end{equation}

by ignoring the higher order terms. And the MSFE outage in (29) is approximated as

\begin{equation}
 P_{out} \approx KF_{\tau_k} \left(\frac{\psi}{P_0} \right). \tag{58}
\end{equation}

Combining (57) and (58), we have that

\begin{equation}
 \log P_{out} \approx - (N_t - L + 1) \log P_0 + \log \frac{K \Gamma (N_t - L + 1 + \frac{b_k}{2})}{\Gamma (N_t - L + 2) \Gamma \left(\frac{b_k}{2} \right)} + (N_t - L + 1) \log \frac{2a_k \psi}{b_k}. \tag{59}
\end{equation}

APPENDIX D

PROOF OF PROPOSITION 4

According to the series expansion of \(_2F_1 (\cdot) \) [33, 9.100] in (56) and \(F_{\tau_k}(\tau_k) \) in (58), we have that

\begin{equation}
 \lim_{\varepsilon \to 0^+} \frac{F_{\tau_k}(\varepsilon x)}{F_{\tau_k}(\varepsilon)} = \lim_{\varepsilon \to 0^+} \left(\varepsilon x \right)^{N_t-L+1} = x^{N_t-L+1} \tag{60}
\end{equation}

for large number of IoT devices.

According to the extreme value theory of ordered statistics in Lemma 3, the distribution of \(\min_k (\tau_k) \) converge to a Weibull distribution with \(\alpha = N_t - L + 1 \),

\begin{equation}
 a_k^* = F_{\tau_k}^{-1}(0) = 0, \tag{61}
\end{equation}

and

\begin{equation}
 b_k^* = F_{\tau_k}^{-1} \left(\frac{1}{K} \right) \approx K^{-\frac{N_t-L+1}{\alpha}} C^{-1} \tag{62}
\end{equation}

with \(C \) given in (41).

APPENDIX E

PROOF OF PROPOSITION 5

According to the Weibull approximation in Proposition 4, we get that

\begin{equation}
 \Pr \left(\min (\tau_k) \leq x \right) \approx 1 - \exp \left(-C^{N_t-L+1} K x^{-N_t-L+1} \right) \tag{63}
\end{equation}

Then the corresponding MSFE outage in (29) can be further approximated as

\begin{equation}
 P_{out} = \Pr \left(\min (\tau_k) < \frac{\psi}{P_0} \right) \approx 1 - \exp \left(-C^{N_t-L+1} K \frac{1}{P_0} \frac{L \sigma_n^2}{K \xi [1 + (K - 1) \rho_c] \sigma_d^2} \right) \tag{64}
\end{equation}

where the procedure (a) is due to (12) and (21), the procedure (b) is due to the series expansion of exponential function for \(\psi \to 0 \). Then we have that

\begin{equation}
 \log P_{out} \to - (N_t - L) \log K - (N_t - L + 1) \log [1 + (K - 1) \rho_c]. \tag{65}
\end{equation}

Then the proposition is proved.

APPENDIX F

PROOF OF PROPOSITION 6

Because of the independence between antenna subsets, the MSFE outage with the selected subset \(\Phi_m \) can be calculated according to ordered distribution, i.e.,

\begin{equation}
 P_{out} = \Pr \left(\max \min_k \tau_k \Phi_m < \frac{\psi}{P_0} \right) = \left[1 - \left[1 - F_{\tau_k} \left(\frac{\psi}{P_0} \right) \right]^M \right]^M. \tag{66}
\end{equation}

Then the asymptotic analysis for large transmit power constraint in (58) can be rewritten as

\begin{equation}
 P_{out} \approx K^M \left[F_{\tau_k} \left(\frac{\psi}{P_0} \right) \right]^M. \tag{67}
\end{equation}

And the asymptotic analysis for large number of IoT devices in (64) can be rewritten as
\[P_{\text{out}} \approx C^{M(N_L-L+1)+1} \frac{L_0^2}{P_0} \frac{K}{K(1+(K-1)p_0)} \sigma_2^2 \]

Then the MSFE outage with large \(P_0 \) and large \(K \) can be given in (43) and (44), respectively.

REFERENCES

Li Chen received the B.E. in electrical and information engineering from Harbin Institute of Technology, Harbin, China, in 2009 and the Ph.D. degree in electrical engineering from the University of Science and Technology of China, Hefei, China, in 2014. He is currently a faculty member with the Department of Electronic Engineering and Information Science, University of Science and Technology of China. His research interests include wireless IoT communications and wireless optical communications.
Nan Zhao (S’08–M’11–SM’16) is currently an Associate Professor at Dalian University of Technology, China. He received the B.S. degree in electronics and information engineering in 2005, the M.E. degree in signal and information processing in 2007, and the Ph.D. degree in information and communication engineering in 2011, from Harbin Institute of Technology, Harbin, China. His recent research interests include UAV Communications, Interference Alignment, and Physical Layer Security.

Dr. Zhao is serving or served on the editorial boards of 7 SCI-indexed journals. He received Top Reviewer Award from IEEE Transactions on Vehicular Technology in 2016, and was nominated as an Exemplary Reviewer by IEEE Communications Letters in 2016. He won the best paper awards in IEEE VTC’2017-Spring and MLICOM 2017.

Yunfei Chen (S’02–M’06–SM’10) received his B.E. and M.E. degrees in electronics engineering from Shanghai Jiaotong University, Shanghai, P.R.China, in 1998 and 2001, respectively. He received his Ph.D. degree from the University of Alberta in 2006. He is currently working as an Associate Professor at the University of Warwick, U.K. His research interests include wireless communications, cognitive radios, wireless relaying and energy harvesting.

F. Richard Yu (S’00–M’04–SM’08–F’18) received the PhD degree in electrical engineering from the University of British Columbia (UBC) in 2003. From 2002 to 2006, he was with Ericsson (in Lund, Sweden) and a start-up in California, USA. He joined Carleton University in 2007, where he is currently a Professor. He received the IEEE Outstanding Service Award in 2016, IEEE Outstanding Leadership Award in 2013, Carleton Research Achievement Award in 2012, the Ontario Early Researcher Award (formerly Premiers Research Excellence Award) in 2011, the Excellent Contribution Award at IEEE/IFIP TrustCom 2010, the Leadership Opportunity Fund Award from Canada Foundation of Innovation in 2009 and the Best Paper Awards at IEEE ICNC 2018, VTC 2017 Spring, ICC 2014, Globecom 2012, IEEE/IFIP TrustCom 2009 and Int’l Conference on Networking 2005. His research interests include wireless cyber-physical systems, connected/autonomous vehicles, security, distributed ledger technology, and deep learning.

He serves on the editorial boards of several journals, including Co-Editor-in-Chief for Ad Hoc & Sensor Wireless Networks, Lead Series Editor for IEEE Transactions on Vehicular Technology, IEEE Transactions on Green Communications and Networking, and IEEE Communications Surveys & Tutorials. He has served as the Technical Program Committee (TPC) Co-Chair of numerous conferences. Dr. Yu is a registered Professional Engineer in the province of Ontario, Canada, a Fellow of the Institution of Engineering and Technology (IET), and a Fellow of the IEEE. He is a Distinguished Lecturer, the Vice President (Membership), and an elected member of the Board of Governors (BoG) of the IEEE Vehicular Technology Society.

Guo Wei received the B.S. degree in electronic engineering from the University of Science and Technology of China (USTC), Hefei, China, in 1983 and the M.S. and Ph.D. degrees in electronic engineering from the Chinese Academy of Sciences, Beijing, China, in 1986 and 1991, respectively. He is currently a Professor with the School of Information Science and Technology, USTC. His current research interests include wireless and mobile communications, wireless multimedia communications, and wireless information networks.