Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Synthesis of biodegradable microparticles for controlled active ingredient release

Tools
- Tools
+ Tools

Christie, Annette Louise (2017) Synthesis of biodegradable microparticles for controlled active ingredient release. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Christie_2017.pdf - Submitted Version - Requires a PDF viewer.

Download (15Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3174344~S15

Request Changes to record.

Abstract

This thesis investigates the degradation and release of a fluorescent dye from biodegradable microparticles. Particular attention is given to determining the effect of polymeric properties on the subsequent microparticle degradation and release rate. Chapter 1 reviews the current polymerisation techniques for the synthesis of polyesters and introduces the synthetic procedures and degradability currently attainable for biodegradable microparticles. The concept of ‘smart’ release technology is introduced and the potential for using biodegradable ‘smart’ particles for enhanced agricultural formulations is explored.

In Chapter 2, the ring-opening polymerisation (ROP) of a variety of polyesters is demonstrated, including an investigative study on the ROP of poly(3-hydroxybutyrate) (PHB) using magnesium 2,6-di-tert-butyl-4-methylphenoxide (Mg(BHT)2(THF)2). The polyesters are used to prepare microparticles via a single oil-in-water solvent evaporation technique, a range of formulation parameters are studied to enable optimisation of the subsequent particle size and stability.

Chapter 3 investigates the encapsulation of a model fluorescent dye into poly(L-lactide) (PLLA) microparticles and the subsequent PLLA particle degradation and dye release under simulated environmental conditions is reported.

Chapter 4 describes the degradation and release of 3-bromo-4-(butylamino)-2,5-dihydro-1H- pyrrole-2,5-dione (ABM) from a range of polyester microparticles, investigating the effect of polymer properties (e.g., molecular weight, crystallinity, etc.) on the particle degradation and release rate.

In Chapter 5, the incorporation of a stimulus responsive polymer using optimised particle synthesis and degradation conditions (detailed in Chapter 2 and 3) is investigated. The successful tuneable microparticle degradation and release is described by incorporation of a light-responsive poly(nitrobenzyl malic acid) (PNO2BnMA) into homopolymer blends of PLLA microparticles.

Chapter 6 explores the synthesis of degradable poly(vinyl acetate) (PVAc) microparticles by the incorporation of 2-methylene-1,3-dioxepane (MDO) degradable ester linkages into the polymer backbone via free radical ring-opening polymerisation (rROP) and post- polymerisation microparticle synthesis (using the optimised solvent evaporation technique detailed in Chapter 2). The successful encapsulation of ABM into P(MDO-co-VAc) microparticles is reported and compared to encapsulation into PVAc microparticles.

In Chapter 7, the synthesis of poly(ω-pentadecalactone) (PPDL) microparticles using the optimised single oil-in-water emulsion technique (Chapter 2) is reported. Investigation into the synthesis and degradation of films prepared from random copolymers of PPDL and poly(ɛ- caprolactone) (PCL) is described. An attempt at polymerisation-induced self-assembly (PISA) using block copolymers of PPDL and poly(ɛ-decalactone) (PeDL) is demonstrated.

In chapter 8, a general summary of Chapters 2-7 is presented and key findings and conclusions highlighted. Chapter 9 provides the experimental methods used throughout this thesis and Chapter 10 provides supporting degradation studies for Chapter 3 and 4.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
T Technology > TP Chemical technology
Library of Congress Subject Headings (LCSH): Controlled release technology, Polyesters -- Biodegradation, Polymers -- Biodegradation, Block copolymers
Official Date: August 2017
Dates:
DateEvent
August 2017UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Dove, Andrew P.
Extent: xxxv, 272 leaves : illustrations, charts.
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us