
The Library
On Büchi's K3 surface
Tools
Artebani, Michela, Laface, Antonio and Testa, Damiano (2014) On Büchi's K3 surface. Mathematische Zeitschrift, 278 (3-4). pp. 1113-1131. doi:10.1007/s00209-014-1348-9 ISSN 1432-1823.
An open access version can be found in:
Official URL: https://doi.org/10.1007/s00209-014-1348-9
Abstract
We study the Büchi K3 surface proving that it belongs to the one dimensional family of Kummer surfaces associated to genus two curves with automorphism group D4. We compute its Picard lattice and show that the rational points of the surface are Zariski-dense. Moreover, we provide analogous results for the Kummer surface associated to any genus two curve whose automorphism group contains a non-hyperelliptic involution.
Item Type: | Journal Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||||||||
Library of Congress Subject Headings (LCSH): | Number theory , Kummer surfaces, Rational points (Geometry) | ||||||||||||
Journal or Publication Title: | Mathematische Zeitschrift | ||||||||||||
Publisher: | Springer | ||||||||||||
ISSN: | 1432-1823 | ||||||||||||
Official Date: | 24 August 2014 | ||||||||||||
Dates: |
|
||||||||||||
Volume: | 278 | ||||||||||||
Number: | 3-4 | ||||||||||||
Page Range: | pp. 1113-1131 | ||||||||||||
DOI: | 10.1007/s00209-014-1348-9 | ||||||||||||
Status: | Peer Reviewed | ||||||||||||
Publication Status: | Published | ||||||||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||||||||
RIOXX Funder/Project Grant: |
|
||||||||||||
Open Access Version: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |