Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Local moments and magnetic correlations above the Curie temperature in thin films on and embedded in nonmagnetic substrates: Fe/Cu(100), Co/Cu(100), and Fe/W(100)

Tools
- Tools
+ Tools

UNSPECIFIED (2002) Local moments and magnetic correlations above the Curie temperature in thin films on and embedded in nonmagnetic substrates: Fe/Cu(100), Co/Cu(100), and Fe/W(100). PHYSICAL REVIEW B, 66 (9). -. doi:10.1103/PhysRevB.66.094415 ISSN 1098-0121.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1103/PhysRevB.66.094415

Request Changes to record.

Abstract

We describe a mean-field theory of magnetic fluctuations in layered metallic materials at finite temperatures. It has a first-principles electronic structure basis and uses the spin-polarized screened Korringa-Kohn-Rostoker method and the coherent-potential approximation to describe the effects of the fluctuating "local moments" upon the electronic structure. At no stage is there a fitting to an effective classical Heisenberg model. From this disordered local moment picture we find the layer dependent paramagnetic spin susceptibility of films and multilayers above the Curie temperature T-c which describes how the type of magnetic correlations varies layer by layer. We study thin films of Fe and Co (1-8 layers) on and embedded in nonmagnetic substrates, specifically bcc-Fe/W(100), fcc-Fe/Cu(100), and fcc-Co/Cu(100). In uncapped Fe/W(100) we find intralayer ferromagnetic correlations in all thicknesses of the iron film except in the layer nearest the W substrate in agreement with experiment. The interlayer couplings are also ferromagnetic and short ranged. There are also ferromagnetic intralayer and interlayer couplings throughout the Co films in fcc-Co/Cu(100). In the Fe/Cu(100) system the top two layers are coupled ferromagnetically and the rest antiferromagnetically. Cu capping has a profound effect upon the magnetic coupling in both Fe/Cu(100) and Co/Cu(100) with T-c showing an oscillating behavior as a function of the cap layer thickness. In contrast there is no dramatic effect when Fe films are embedded in W(100).

Item Type: Journal Article
Subjects: Q Science > QC Physics
Journal or Publication Title: PHYSICAL REVIEW B
Publisher: AMERICAN PHYSICAL SOC
ISSN: 1098-0121
Official Date: 1 September 2002
Dates:
DateEvent
1 September 2002UNSPECIFIED
Volume: 66
Number: 9
Number of Pages: 10
Page Range: -
DOI: 10.1103/PhysRevB.66.094415
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us