Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Statistical inference from large-scale genomic data

Tools
- Tools
+ Tools

Yuan, Yinyin (2009) Statistical inference from large-scale genomic data. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Yuan_2009.pdf - Requires a PDF viewer.

Download (1786Kb)
Official URL: http://webcat.warwick.ac.uk/record=b2260449~S15

Request Changes to record.

Abstract

This thesis explores the potential of statistical inference methodologies in their applications in functional genomics. In essence, it summarises algorithmic findings in this field, providing step-by-step analytical methodologies for deciphering biological knowledge from large-scale genomic data, mainly microarray gene expression time series.
This thesis covers a range of topics in the investigation of complex multivariate genomic data. One focus involves using clustering as a method of inference and another is cluster validation to extract meaningful biological information from the data. Information gained from the application of these various techniques can then be used conjointly in the elucidation of gene regulatory networks, the ultimate goal of this type of analysis. First, a new tight clustering method for gene expression data is proposed to obtain tighter and potentially more informative gene clusters. Next, to fully utilise biological knowledge in clustering validation, a validity index is defined based on one of the most important ontologies within the Bioinformatics community, Gene Ontology. The method bridges a gap in current literature, in the sense that it takes into account not only the variations of Gene Ontology categories in biological specificities and their significance to the gene clusters, but also the complex structure of the Gene Ontology. Finally, Bayesian probability is applied to making inference from heterogeneous genomic data, integrated with previous efforts in this thesis, for the aim of large-scale gene network inference. The proposed system comes with a stochastic process to achieve robustness to noise, yet remains efficient enough for large-scale analysis.
Ultimately, the solutions presented in this thesis serve as building blocks of an intelligent system for interpreting large-scale genomic data and understanding the functional organisation of the genome.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
Library of Congress Subject Headings (LCSH): Genomics -- Data processing, Genomics -- Statistical methods, Mathematical statistics -- Data processing, Bioinformatics -- Methodology, Ontology
Official Date: March 2009
Dates:
DateEvent
March 2009Submitted
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Li, Chang-Tsun ; Wilson, Roland, 1949-
Format of File: pdf
Extent: 205 leaves : col. ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us