Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/108045

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Topology of interacting coiled vortex rings

Robert M. Kerr †,
Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 4 August 2018)

Pairs of nested vortex rings, one with coils, are evolved numerically to compare their topological numbers to those of recent experiments (Scheeler et al. 2017). Included are the twist T, writhe W and self-linking L_S numbers, plus centreline helicities H_c. The questions are: Can the experimental numbers be validated and do these numbers have roles in the dynamics of the global helicities H and enstrophies Z with respect to cascades? Topological analysis of the experiments $t = 0$ analytic centreline vortex trajectories validates only the writhe measurements, not their values of T and L_S which obey $T \lesssim L_S = m \gg W$ for m-coil rings. Not $T \ll W$. To suggest why the large twists do not contribute to H_c, it is noted that the mapping of the coiled rings onto the mesh is to a first approximation a single pair of Clebsch potentials, whose self-helicity $H_S \equiv 0$. Numerical rings with circulations Γ, including some single rings, show small initial helicities with $H(0) \approx H_c \sim (1 \text{ to } 2)W\Gamma^2 \ll L_S\Gamma^2$. For time and velocity scales that are consistent with the experiments, as the coils evolve their T, W, L_S numbers and their helicities are nearly static until reconnection. Nonetheless, W and T retain important complementary roles in the dynamics of the global helicity H and enstrophy Z, with the evolution of the torsion $\tau(s)$ profile showing the beginnings of a cascade to small scales.

1. Background

It has been known for over 100 years that two distinct nested and unlinked ideal vortex rings will leap-frog through one another as they propagate downstream with the inner ring becoming the outer ring and the outer ring becoming the inner.

How would this interaction be modified if the rings were coiled? Would the rings reconnect instead of leap-frogging and what diagnostics should be used? Scheeler et al. (2017) has recently shown how to experimentally generate coiled vortex rings and claim that they can follow the evolution of the rings’ discrete topological properties. This includes their twist T, writhe W and self-linking L_S numbers (2.12), along with their centreline helicities H_c (2.14). This could be an important advance and would provide evidence on the roles of topology, reconnection and helicity in the evolution of turbulence.

However, independent validation is required for the claim that their experiments can preserve the total helicity/self-linking L_S, despite large transfers between W and T, and still satisfy

$$L_S = T + W,$$ \hspace{1cm} (1.1)

a constraint introduced by Calugareanu (1959) with a simplified proof by Pohl (1968). The concern is that only W and the H_c are measured, with L_S obtained by assuming that $H = \sum H_c$ and (1.2). Then (1.1) is used to find T, instead of being used to validate the T, W and L_S results.

A known test that immediately shows that one or more of their T, W and L_S results are incorrect is to independently determine all three numbers from the analytic closed

† Email address for correspondence: Robert.Kerr@warwick.ac.uk
trajectories (2.7) of Scheele et al. (2017). This can be done using the algorithms of Moffatt & Ricca (1992) and shows that each topological number for the coil trajectories is positive with $T_w \gg W_r$, not $T_w \ll W_r$, raising questions about whether there is a physical role for the topological helicity:

$$\mathcal{H}_T = \sum_{i \neq j} \Gamma_i \Gamma_j L_{ij} + \sum_j \Gamma_j^2 L_{Sj}$$

(1.2)

where the Γ_j are the circulations of the vortices (2.10). Experimental and numerical trefoil vortex knots have found that during reconnection \mathcal{H}_T is preserved, along with some exchange of linking between the writhe and twist (Scheeler et al. 2014; Kerr 2018a,b). However, the trefoils are a unique, extremely helical configuration. To determine whether the topological numbers consistently have roles in the dynamics of reconnection and the flow of turbulent energy to small scales, identifying those numbers correctly for less helical configurations such as coiled rings is essential.

Once the T_w, W_r and L_S discrepancies in the Scheeler et al. (2017) results were recognised, numerics were begun to help determine which of the inferred topological numbers are correct and what, if any, physical roles they might play. These numerical methods have previously been validated by comparisons with experiments, the reconnecting trefoil vortex knots of Kleckner & Irvine (2013), and used to obtain run-time values for W_r and L_S (Kerr 2018a). This paper complements those topological diagnostics with an improved algorithm for calculating the twist T_w (2.12) from the Frenet-Serret relations (2.11), one that is accurate enough to allow validation of all three topological numbers using (1.1).

The bottom line for the Scheeler et al. (2017) experimental topological numbers is that the new diagnostics and numerics confirm only the values of the $t = 0$ writhe W_r, and none of their reported T_w, L_S and H_c values. In particular, their claim that linking is exchanged between W_r and T_w with $W_r \gg T_w$ is not confirmed. In contrast, $W_r \ll T_w$, all the helicities are much smaller than the predictions of (1.2) and neither W_r nor T_w changes significantly before reconnection ends.

Despite being static during reconnection, in this new picture the topological numbers W_r and T_w retain important complementary roles in the dynamics of the global helicity \mathcal{H} (2.4) and enstrophy Z (2.3), dynamics that show the beginnings of a cascade to small scales. Specifically, it is W_r that controls the H_c, and hence H, values, not the self-linking L_S, with

$$\mathcal{H} \approx \mathcal{H}_c \sim (1 \text{ to } 2) W_r \Gamma^2 \ll L_S \Gamma^2$$

(1.3)

For the enstrophy Z, its growth in figure 6 could be tied to the development of small scales in the figure 3 s-profiles of the torsion $\tau(s)$, profiles whose s-integrals are the twist (2.12). The axial velocity profiles in 3 also provide clues to the surprisingly small experimental H_c in Scheeler et al. (2017), with values smaller than even those from (1.3).

The remainder of this paper is organised as follows. First, there is a summary of the underlying continuum equations, the diagnostics and the steps used to generate the numerical coiled rings. The results begin with single rings with single coils to illustrate the relationship between the linking and helicity diagnostics and the number and size of the coils. Then the time-evolving, nested two-ring cases are presented, with the focus upon cases with 5 coils on the inner ring because all of their topological diagnostics can be determined and validated and they have the cleanest $Z^{-1/2}$ enstrophy scaling. Besides comparing the experimental writhes W_r at $t = 0$, validation that these calculations represent the dynamics of the experimental coiled rings will come from the timescales over which the rings move in and about z and begin to swap positions. The temporal
2. Equations: continuum, initial states and diagnostics

The governing equations for the simulations are the incompressible Navier-Stokes equations in a periodic box with volume \(V = \ell^3 \).

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} - \nu \nabla^2 \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= 0, \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\] \(\text{ in } T^3_\ell \times [0, T) . \) \(\tag{2.1} \)

The vorticity \(\mathbf{\omega}(x) = \nabla \times \mathbf{u}(x) \) equation is

\[
\frac{\partial \mathbf{\omega}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{\omega} = (\mathbf{\omega} \cdot \nabla) \mathbf{u} + \nu \nabla \mathbf{\omega}, \quad \nabla \cdot \mathbf{\omega} = 0 .
\] \(\tag{2.2} \)

The enstrophy density \(|\mathbf{\omega}|^2 \) equation and the volume-integrated enstrophy \(Z \) are

\[
\frac{\partial |\mathbf{\omega}|^2}{\partial t} + (\mathbf{u} \cdot \nabla)|\mathbf{\omega}|^2 = 2 \frac{\mathbf{\omega} \cdot \nabla \mathbf{\omega}}{\omega_{\text{pro}}} + \nu |\nabla \mathbf{\omega}|^2 - 2 \nu (\nabla \mathbf{\omega})^2 , \quad Z = \int |\mathbf{\omega}|^2 dV ,
\] \(\tag{2.3} \)

where \(\mathbf{S} = (1/2)(\nabla \mathbf{u} + \nabla \mathbf{u}^T) \) is the strain and the normalised enstrophy production rate or velocity-derivative-skewness is \(-S_u = D\omega \mathbf{\omega} / Z^{3/2} \). The helicity density \(h \) equation is

\[
\frac{\partial h}{\partial t} + (\mathbf{u} \cdot \nabla) h = -\mathbf{\omega} \cdot \nabla \Pi + \frac{\nu}{\omega_{\text{pro}}} \frac{\partial h}{\partial t} - \frac{2\nu}{\nabla} (\nabla \mathbf{\omega} \cdot \nabla \mathbf{u}^T) \quad \mathcal{H} = \int \mathbf{u} \cdot \mathbf{\omega} dV .
\] \(\tag{2.4} \)

where \(\Pi = p + \frac{1}{2} |\mathbf{u}|^2 \neq p_h \), the pressure head \(p_h = p + \frac{1}{2} |\mathbf{u}|^2 \), and \(\mathcal{H} \) is the global helicity.

An alternative way to formulate incompressible velocity and vorticity fields is the Clebsch decomposition, which under Euler, can be defined by pairs of advected scalar fields \((a_j(x), b_j(x)) \), for which the incompressible velocity and vorticity fields are

\[
\mathbf{u} = \sum_j a_j \nabla b_j + \nabla \phi \quad \text{and} \quad \mathbf{\omega} = \sum_j \nabla b_j \times \nabla a_j .
\] \(\tag{2.5} \)

where the extra \(\phi(x) \) potential imposes incompressibility and whose \(\mathbf{\omega} \) is similar to the definition of a pseudo-vorticity for a quantum fluid (Rorai et al. 2016). By applying integration by parts to the \(\nabla \phi \) term one can show that the global self-helicity for a single pair \((a_1, b_1) \) is identically zero:

\[
\mathcal{H}_S = \int (\mathbf{u}_1 \times \mathbf{\omega}_1) dV \equiv 0 .
\] \(\tag{2.6} \)

an identity that implies that at least two Clebsch pairs are required for there to be finite hydrodynamic helicity \(\mathcal{H} \) and represents a fundamental difference between the magnetic helicity, defined as \(\mathcal{H}_M = \int \mathbf{A} \cdot \mathbf{B} dV \) with \(\nabla \cdot \mathbf{A} \) unspecified, and the \(\nabla \cdot \mathbf{u} \equiv 0 \) hydrodynamic helicity. Examples of configurations with finite helicity are linked rings, with each ring defined by its own Clebsch pair such that the helicity of their coupled velocities and vorticities is \(2\mathcal{L}_1 \mathcal{G}_1 \mathcal{G}_2 \). For the trefoil initialisation in Kerr (2018a), which gives \(\mathcal{H}/\Gamma^2 \equiv \mathcal{L}_S = 3 \), a second Clebsch pair should exist because two points from the trefoil were used to generate the vorticity at each mesh point. However, the coiled rings do not have an obvious second Clebsch pair, so (1.2) does not have to be obeyed.
Table 1. Velocities and parameters for the initial conditions using (2.8). All the calculations were done in $(144\pi)^3 \approx 542^3$ domains with the radius of the inner (or only) ring in each case $R_{\text{in}} = 72$ and the outer ring $R_{\text{out}} = 120$. Mesh = the final computational mesh. For all the cases $a_0 = 10$ and $k_f = 84$ in (2.8), giving effective radii of $a_e = 21.6$, energies of $\Gamma = 1720$, and $\omega_0 = 1.08$, except for c9 whose $\omega_0 = 1.14$ and whose L_0 is uncertain, varying with $\Delta L_0 = \pm 1.5$ for $\delta = 0.69 \pm 0.025$ with $\varepsilon = 0.18$ in (2.13). The $t = 0$ global enstrophies ζ_0, energies E_0, and helicities are given. For t_{25} the trajectory is $A(\phi) = 25(1 - \sin \phi)^2 - (1 - \sin \phi)$ and for t_{50} and t_{100}: $A(\phi) = a_f (1 - \sin \phi)$ for $a_f = 50$ and 100. For the $\varepsilon = 0.16$ cases, the Reynolds number of $Re = \Gamma/\nu = 10000$ is comparable to the experimental values of $Re = 120000-20000.

2.1. Summary of the calculations

The initial trajectories of the coiled rings $X_h(\phi) = (x, y, z)$ are:

$$
x(\phi) = R(\phi) \cos(\phi) \quad y(\phi) = R(\phi) \sin(\phi) \quad z(\phi) = A(\phi) \cos(m\phi)
$$

where $R(\phi) = R_h + A(\phi) \sin(m\phi)$ with $\phi = [1 : 2\pi]$. (2.7)

For all the $m \neq 1$ cases, R_h, and $A(\phi)$ are the values used by Scheeler et al. (2017).

Once all the trajectories are defined, vortices of finite radii are mapped onto the mesh (Kerr 2013). First, a preliminary field of two superposed vortex rings $\omega_j(x)$, $j \in [1, 2]$, is generated using the Rosenhead regularisation of a point vortex (2.8) with radii of a_0, multiplied by the tangent $T_j(\phi)$ (2.11) at $x_j(\phi)$: $\omega_j(x_j) = |\omega_j(x_j)|T_j(\phi)$ where $r = |x - x_j(\phi)|$ and $x_j(\phi)$ is the nearest point on the coiled ring. This and the next step use

$$
|\omega_j(x) = \Gamma \frac{(a_0^2)}{(r^2 + a_0^2)^{3/2}} \quad \Phi_j(k) = \hat{\omega}_j(k) \exp\left(\frac{k^4}{k_f^4}\right) \quad a_e = \left(\frac{\Gamma}{\omega_0 \pi}\right)^{1/2}, \quad (2.8)
$$

where the k_f hyperviscous smoothing is applied to the preliminary Fourier transformed $\hat{\omega}_j(k)$ field to get $\Phi_j(k)$. Incompressibility is then applied before the Fourier fields are transformed back to give a final $u(x)|t=0$ field. The vortices of the initial coiled rings all have a circulation of $\Gamma = 1720$ and after the smoothing, their effective radii have increased to $a_e \approx 1.2a_0 = 21.6$, with their initial peak vorticities adjusted to be $\omega_0 \approx 1$

The initial conditions, including the initial twist 2π, write WR_0 and global helicities H_0, for all of the simulations are given in table 1. The single ring cases demonstrate the range of T and write WR generated by different trajectories and how they contribute to the continuum helicities H. The multi-coil cases are a single ring with 6 coils, a nested pair with a 6 coil outer ring and two nested pairs with inner ring coils, one with 5 coils and one with 9. The centreline trajectories of the 6 and 9 coil cases are given by the experimental hydrofoils (Scheeler et al. 2017). The rings are visualised using vorticity isosurfaces and centreline vortices within those isosurfaces in figures 1, 2a and 4a.

Validation that the computational coiled vortices represent the new ring experiments

<table>
<thead>
<tr>
<th>Cases</th>
<th>m_{in}</th>
<th>m_{out}</th>
<th>A</th>
<th>Mesh</th>
<th>ν</th>
<th>Z_0</th>
<th>E_0</th>
<th>$T\nu_0$</th>
<th>WR_0</th>
<th>L_0</th>
<th>H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_a</td>
<td>1</td>
<td>-</td>
<td>t_{25}</td>
<td>256</td>
<td>$t = 0$</td>
<td>5.14e5</td>
<td>1e8</td>
<td>0.67</td>
<td>0.33</td>
<td>1</td>
<td>0.3I^2</td>
</tr>
<tr>
<td>s_b</td>
<td>1</td>
<td>-</td>
<td>t_{50}</td>
<td>256</td>
<td>$t = 0$</td>
<td>6.8e5</td>
<td>1.31e8</td>
<td>0.29</td>
<td>0.71</td>
<td>1</td>
<td>0.53I^2</td>
</tr>
<tr>
<td>s_c</td>
<td>1</td>
<td>-</td>
<td>t_{100}</td>
<td>256</td>
<td>$t = 0$</td>
<td>5.14e5</td>
<td>1e8</td>
<td>0.83</td>
<td>-0.83</td>
<td>0</td>
<td>-0.68I^2</td>
</tr>
<tr>
<td>s_d</td>
<td>6</td>
<td>-</td>
<td>4.3</td>
<td>512</td>
<td>0.162</td>
<td>3.4e5</td>
<td>1.25e8</td>
<td>5.65</td>
<td>0.35</td>
<td>6</td>
<td>0.36I^2</td>
</tr>
<tr>
<td>c_A</td>
<td>0</td>
<td>6</td>
<td>4.3</td>
<td>256</td>
<td>0.162</td>
<td>1e6</td>
<td>6.6e8</td>
<td>5.81</td>
<td>0.16</td>
<td>6</td>
<td>0.34I^2</td>
</tr>
<tr>
<td>c_B</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>512</td>
<td>0.162</td>
<td>1e6</td>
<td>6.9e8</td>
<td>4.596</td>
<td>0.44</td>
<td>5</td>
<td>0.76I^2</td>
</tr>
<tr>
<td>c_C</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>512</td>
<td>0.162</td>
<td>1.05e6</td>
<td>6.9e8</td>
<td>4.596</td>
<td>0.44</td>
<td>5</td>
<td>0.75I^2</td>
</tr>
<tr>
<td>c_D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>512</td>
<td>0.162</td>
<td>1.11e6</td>
<td>6.8e8</td>
<td>7.62</td>
<td>1.36</td>
<td>(9 ± 1.5)</td>
<td>1.51I^2</td>
</tr>
</tbody>
</table>
is done in two ways. One is the values of the \(t = 0 \) writhe. The other validation is, as in Kerr \(\text{(2018a)} \), to scale the rings’ evolution by the nonlinear time and velocity scales,

\[
t \Gamma = \frac{R^2}{\Gamma} \quad \text{and} \quad U_z \sim \Gamma / R_e,
\]

where \(R_e \) is the average radii of the vortex rings. This allows comparisons between the times that the numerical and experimental rings pass one another and how far the rings have propagated by those times.

The calculations use the same filtered pseudospectral method \(\text{(Kerr \ 2013)} \) as the trefoil calculations, with that experience used to guide the choice of \(\nu \) for the given ratios of the vortex thicknesses to the resolution. The one proper resolution test is cases c5a,b, which were run on both 512\(^3\) and 1024\(^3\) meshes, at different viscosities, \(\nu=0.162 \) and 0.08, for which the small increases in \(\|\omega\|_\infty \) as \(\nu \) decreased and resolution improved were consistent with those observed at early times in Kerr \(\text{(2018b)} \).

\[\text{2.2. Vortex line diagnostics} \]

Once the three-dimensional simulations have been run, for the two \(j \in [1, 2] \) vortex rings, one coiled, the positions \(x_j(s, t) \) of their centreline vortices can be identified by applying the stream3 function in Matlab to seed-points \(x_j(s = 0) \) at, or near, local vorticity maxima:

\[
\frac{dx_j(s)}{ds} = \omega(x_j(s)) \quad \text{with circulations given by} \quad \Gamma_j = \oint_{D_j} u \cdot dr_j,
\]

where the \(r_j \in D_j \) are taken about the \(x_j(s) \). The \(x_j(s) \) curves, which tend to have thousands of points, rarely close exactly upon themselves. To get closed curves, stream3 is run in opposite directions from the local \(\omega \) maxima, giving curves that nearly meet on the opposite side of the rings from their \(x_j(s = 0) \). These are then linearly blended using 128 points on either side of where they nearly meet to produce closed rings.

Given there are closed curves, the topological numbers \(T, W, L \) can, in principle, be found using the Frenet-Serret relations

\[
T_j = \partial_s x_j / |\partial_s x_j|; \quad \kappa N_j = \partial_s T_j; \quad \tau B_j = \kappa T_j = \partial_s N_j; \quad \tau N_j = -\partial_s B_j;
\]

for which the twist given in principle by

\[
Tw_j = \frac{1}{2\pi} \oint ds \tau \quad \text{using} \quad \tau = \frac{dN}{ds} \cdot B
\]

with \(L_{Sj} \) and \(Wr_j \) determined by regularised Gauss linking integrals between loops

\[
L_{jk} = \sum_{j,k} \frac{1}{4\pi} \oint_{C_j} \oint_{C_k} \frac{(dx_j \times dx_k) \cdot (x_j - x_k)}{|(x_j - x_k)|^2 + \delta^2}^{1.5} \quad \text{with} \quad x_k = x_j + \varepsilon N_j.
\]

That is, \(L_{Sj} \) can be got by defining \(x_k \) as an \(\varepsilon N_j \) push added to \(x_j \), then applying (2.13). Or \(x_k \) could come from a slightly different seed in (2.10). To get the writhe \(Wr \) one uses \(k=j \) and \(\delta \neq 0 \) in (2.13). These steps are based upon the suggestions of Berger & Field (1984), then applied to analytic curves by Moffatt & Ricca (1992).

To obtain consistent \(Wr \) and \(L \), some care is required in the choice of the two small parameters, \(\delta \) and \(\varepsilon \). If \(\delta \) and \(\varepsilon \) are too small, the kernel of (2.13) can become very large, and if \(\delta \) and \(\varepsilon \) are too large, the original coiled ring is not being represented. For all of the time-evolving cases in table 1, except c9, the \(L \) did not vary by more than 0.05 as \(\varepsilon \) is varied by a factor of 4 and the \(Wr \) varied by only a few percent as \(\delta \) was changed by a factor of 20.
This leaves as undetermined only the torsion τ and the twist Tw, the integral of τ (2.12). Previously, Rorai et al. (2016) applied Frenet-Serret (2.11) to time-evolving quantum pseudo-vorticity lines to find their curvature κ and normal vectors N. However, calculating the torsion $\tau(s)$ requires a third-derivative of the trajectory positions, leading to the problem illustrated by figure 3 for the centreline trajectory $x_{in}(s_{in})$ of the inner coiled ring of c5. What is plotted first is x to the problem illustrated by figure 3 for the centreline trajectory $\tau(s)$. What is plotted first is τ, where the subscript 1 indicates that this $\tau(s)$ solution uses every point of x_{in}. This curve has strong oscillations that are due to the high-frequency flutter generated by the ODE45 function contained within Matlab’s stream3 solutions for $x_{in}(s_{in})$. Flutter that is amplified by the third-derivatives that determine $\tau_{1}(s)$.

Despite these oscillations, the $\tau_{1}(s)$ stay within a clear envelope, so applying (2.12) to $\tau_{1}(s)$ still gives Tw values that are close to expectations. Could a simple smoothing or interpolation of the points in the $x_{j}(s)$ suppress the oscillations and improve the results? Only one method has worked: Using only every fourth point on the trajectories to find $\tau_{4}(s_{in})$ from $x_{in}(s_{in})$.

Taken together, these algorithms provide independent determinations of Tw, Wr and \mathcal{L}_{S} for which $Tw + Wr$ and \mathcal{L}_{S} do not vary from their expected m-integer values by more than 0.02 and 0.05 respectively. This provides validation by the (1.1) constraint until the first reconnection finishes, with the exception in table 1 being \mathcal{L}_{S} for c9 due to its tightly wound coils.

What, if any, relationship is there between these topological numbers and the global helicity \mathcal{H}? Moffatt & Ricca (1992) suggested (1.2), with only \mathcal{L}_{S} having a role. Scheeler et al. (2017) suggests taking an intermediate step, using centreline helicities H_{cj} as proxies for the \mathcal{H} where

$$
H_{cj} = \Gamma_{j} \oint_{C_{j}} \mathbf{u}_{j} \cdot d\mathbf{x}_{j} = \Gamma_{j} \oint_{C_{j}} u_{\omega}(s)|\partial \mathbf{x}_{j}/\partial s| ds, \quad \omega = \mathbf{u}_{j} \cdot \mathbf{T}_{j},
$$

with the circulations Γ_{j} determined using (2.10). Note that both the H_{cj} and the Γ_{j} (2.10) in Scheeler et al. (2017) are found using closed velocity path-integrals, with the experimental velocities determined using PIV, particle-image-velocimetry.

This is the first time circulations have been measured instead of being estimated by either a flat-plate approximation (Kleckner & Irvine 2013) or with a correction due to camber (Kerr 2018a), which are respectively

$$
\Gamma_{fp} = \pi U C \sin(\theta) \quad \text{and} \quad \Gamma = \Gamma_{fp} + \Delta \tau_{cam} \approx 1.5 \Gamma_{fp}.
$$

Do the measured coiled ring circulations of Scheeler et al. (2017) correspond to either prediction? Surprisingly, neither is correct. Instead, by applying values from the Scheeler et al. (2017) supplement to these predictions, with $U = 1.75m/s$ the speed of their model, $C = 15mm$ the chord (or width) of the hydrofoil ribbons and $\theta = 35^\circ=0.61$rad the angle of attack, the measured circulation is $\Gamma \sim UC$, a factor of 1.8 less than the Γ_{fp} prediction. Nonetheless, using the times t_{q} when $r_{in} \approx r_{out}$ in figures 2a and 4a, respectively $t_{q} = 7.5$ and 10.5, and scaling them by $t_{T} = 5.35$ (2.9), one gets $t_{q}/t_{T} = 1.4$ and 1.95 respectively.

To compare to the experimental times, scaling using t/t_{T} (2.9) is needed. To get there, what are given in Scheeler et al. (2017) are $t^{*} = (\nu/\nu_{0}^{2})t$, where $\nu_{0} = 1.5mm$ and $\nu/\nu_{0} = 0.44$, with the structural evolution shown in the on-line S2 and S3 experimental movies. Using $t_{q}^{*} - t_{0}^{*} \approx 0.3$ as the equivalent times for when the rings swap positions and the empirical circulation $\Gamma = UC$ to get t_{T} (2.9), after removing the ν/ν_{0}^{2} scaling on t one gets experimental $t_{q}/t_{T} \approx 2$, which is qualitatively similar to $t_{q}/t_{T} = 1.4$ and 1.95 for numerical cases c5a,b and c6o.

The second set of closed velocity integrals are those taken along vortex lines to get
3. Results

The results are broken into four parts. First analysis of single ring initial states that demonstrate that the twists Tw of all the analytic trajectories with small coils are large, with $Tw \lesssim L_S \sim m$ the number of coils of the rings, and small writhes $Wr \lesssim 1$. Then, after mapping the trajectories onto the mesh, the relationships between the linking numbers and the continuum helicities are found. After the single-ring diagnostics clarify these relationships, the methods are applied to the interaction and reconnection of nested rings, inner coiled then outer coiled, and last, the evolution of the global diagnostics is presented.

3.1. Single rings, single coil

Figure 1 shows two single ring/single coil initial conditions to demonstrate what the topological twist and writhe are physically and provide comparisons to the illustrations that Scheeler et al. (2017) called the twist and writhe of vortices. In those illustrations, twist is represented as a bundle of swirling vortices about a common axis, a property of systems with an internal structure, for example DNA, but a property that does not exist for vortices in a continuum fluid.

For the vortices considered in this paper, both experimental and numerical, the only relevant topological properties are those given in table 1 for the centreline vortices and the continuum. Twist is illustrated in figure 1a using a single ring with a single, small coil that has $Tw = 0.67$, $Wr = 0.33$ and $L_S = m = 1$. All of the multi-coil rings whose trajectories follow (2.7) are similar in that their twist is $Tw \lesssim L_S \lesssim m$ and $Wr \lesssim 1$.

Figure 1b illustrates writhe using a ring with a modest coil, for which $Tw = 0.3$, wrthe is $Wr = 0.67$ and $L_S = m = 1$. While this is similar to the illustration of writhe in Scheeler et al. (2017), figure 1b does not represent the coiled experimental rings (2.7), whose coils are smaller and are a closer match to 1a.
What are the helicities, centreline H_c and global H (2.14) generated by these single rings with coils? Earlier trefoil calculations found that $H = H_T$ is obeyed for trefoils (Kerr 2018a,b). For the two cases in figure 1, plus two others in table 1, to an order of magnitude $H_c \approx |W_r|^2$ (1.3), consistent with a Laing et al. (2015) suggestion that the twist might only be of secondary importance in determining H. This writhe dependence even holds for case s_c, a single massive coil version of case s_b in figure 1 with $W_r \approx -W_r$ and $L_S \approx 0$. One way to interpret the small coil result is that the intermediate vorticity field $\omega_i(x)$ (2.8) is nearly a single Clebsch pair (2.5), whose self-helicity is identically zero, $H_S \equiv 0$ (2.6).

3.2. Two rings, inner coiled

The primary cases for comparison with the experiments are the nested rings, with one coiled and the other uncoiled. These are c6o with a 6 coil outer ring in figure 4, cases c5a,b with a 5 coil inner ring in figures 2 and 3 and case c9 with a 9 coil inner ring. In the three-dimensional images, the original $t = 0$ outer and inner rings at the top are indicated by magenta and blue centreline vortices respectively and at the later reconnection times, magenta and green isosurfaces indicate how those rings have evolved.

The centrelines of c6o and c9 are exactly those from the experiments, but because the c9 coils were too tight to allow consistent determination of its self-linking L_S, the c5a,b cases were run to provide an inner coiled case for which all the topological numbers could be found. This allows validation using (1.1) and for this reason the c5 cases are used for most of the global analysis in figure 5.

The following is observed for all the nested rings. Their global helicities H in figure
Figure 3. For case c5a, profiles of the torsion τ, gradient of the writhe $W_{r,s}$, and weighted velocities u_{ω}/Γ and $u_{\perp}/\Gamma = |u - u_{\omega}/T|/\Gamma$. τ is calculated using only every 4th point (red) to control the large fluctuations generated by the raw data (black with only $s > 400$ shown). $10W_{r,s}$ follows τ, but the u_{ω}/Γ that contribute to H_c (2.14) have stronger variations, including $u_{\omega}/\Gamma < 0$. $H_c/(\Gamma^2 W_r) = \int ds u_{\omega}/(\Gamma W_r) = 1.4 > 1$, similar to $H/Wr\Gamma^2$ in figure 5. The perpendicular velocities on the trajectories u_{\perp}/Γ are the order of $|U_z|$.

are preserved until at least $t = 6$ and all have similar enstrophy growth, with the strongest for case c5b. For their topological numbers, the self-linking identity (1.1) is satisfied at all cases either by direct determination of W_r, T_w and L_S, or for case c9 by assuming that $L_S = m = 9$. There are also almost no changes in these numbers until reconnection, including no exchange of L_S between between the twist and the writhe.

Figure 2 shows how the structure and topological numbers for case c5a evolve. In 2a, the $t = 0$ centreline vortices are at the top and the $t = 7$ structures are at the bottom, with the beginning of reconnection represented by the magenta bulges on the previously outer ring that contain helicity that has been transferred from the inner to the outer ring during reconnection.

Figure 2b shows that the topological numbers on that inner, coiled ring are relatively static for $t \leq 7.5$ with $L_S = m = 5$, $T_w \lesssim 5$ and the writhe $W_r \approx 0.44$. While twist does not become writhe, as reported experimentally in figure 3 Scheeler et al. (2017), their $\tau(s)$ profiles do deform, with the $\tau(s)$ peaks splitting, beginning with those shown at $t = 3$ in 3. Post-reconnection, some of the original inner-coil, self-linking re-emerges at $t \geq 10.5$ with different topological numbers. There is a reduction of $L_{S,in}$ on the original coiled ring along with new, self-linking of $L_{S,\text{out}} = 1$ on the original outer ring from the $t = 7.5$ magenta bulges. The net change in the global linking is $\Delta L_T \approx -1$ or using (1.2), $\Delta H_T \approx -\Gamma^2$.

The dashed in figure 2a and 4a show the azimuthal+vertical motion of the coils, motion that could be compared to experimental measurements. Quantitatively,

$$ u_{in} = \dot{x}_{in}(s,t) = (u_{\phi-in} \hat{e}_\phi, u_{z-in}) , \quad \text{and} \quad u_{out} = \dot{x}_{out}(s,t) = (u_{\phi-out} \hat{e}_\phi, u_{z-out}). \quad (3.1) $$

The two $t = 3$ components of $u_{\perp} = u - u_{\omega}/T$, first averaged over the c5 inner ring, then
for U_z averaged over both rings, are
\[\bar{\mathfrak{u}}_{z,\in} = 10.9, \quad \bar{\mathfrak{u}}_{\phi,\in} \approx \left(u_{\perp} - \bar{\mathfrak{u}}_{z,\in} \right) = 10.3 \quad \text{and} \quad U_z = 0.5(\bar{\mathfrak{u}}_{z,\in} + \bar{\mathfrak{u}}_{z,\out}) = 6.8, \]
consistent with the (2.9) prediction. The experimental case c9 has similar values, except with more coils its $\bar{\mathfrak{u}}_{\phi}$ is larger.

Using these velocities, figure 3 includes s-profiles at $t = 3$ of u_ω / Γ and u_{\perp} / Γ in addition to $W r_\omega$ in order to gain insight into the relationship between H_c (2.14), an integral of u_ω, and $W r_\omega$ in the simulations. As well as insight into why the H_c from the Scheeler et al. (2017) experiments are unexpectedly small. These insights are:

First, consider the small $t = 0$ values of $W r$ and H_c in table 1, with $H_c / \Gamma^2 \approx 0.15 T w$, which is significantly less than the (1.2) prediction that $H_T / \Gamma^2 \sim L_S \sim T w$. Second, u_ω has extensive negative excursions, $u_\omega \lesssim 0$. These negative excursions and small averages could make their line integral, H_c, difficult to determine experimentally given their acknowledged difficulties in measuring the centreline velocities and could explain why their $t = 0$ experimental helicities, their total H_s, are consistently $\approx 1/3$ of $W r \Gamma^2$, compared to the equivalent simulations: Cases s6, c6o and c9. Could this be due to a consistent π^{-1} bug in their analysis? Or can this effect be reproduced in the simulations?

Surprisingly, it seems likely that the two stages in the analysis of case c9 could be reproducing this effect. In the first stage, when every point on the trajectory was used to calculate the topological numbers, besides the difficulties noted in table 1 with L_S for c9, the c9 writhe was $W r_1 \approx 0.85$, such that $T w_1 + W r_1 \approx 8.4 < m = 9$ and H_c was about half the global helicity H. However, with the 4th-point algorithm, for the values in table 1, $T w_4 + W r_4 \approx 9 = m$. Since it is writhe more than twist that is tied to H_c (2.14), this could be an example of how large fluctuations in the centreline velocities could lead to underestimates of H_c.

3.3. Two rings, outer coiled

Figure 4 gives the structures and topological numbers of case c6o, with 6 coils on the outer ring. Before $t = 10.5$, on the coiled ring $L_S = m = 6$, $T w \lesssim 6$ and the writhe is small, $W r \approx 0.16$. At $t = 11.25$, L_S and $T w$ jump to ≈ 0, then briefly rebound to approximately $L_S = 6 \gtrsim T w$ for $t \gtrsim 13.5$, before the rings merge at $t \approx 15$. Throughout the calculation, the global $\| \omega \|_\infty$ stays on the black vortex line running through the inner, uncoiled ring, plateauing at $\| \omega \|_\infty \approx 2$ at $t \approx 10.5$, smaller than for case c5, while the local max $| \omega |$ on the outer coiled ring barely changes.

3.4. Time dependencies of global H and vorticity statistics.

The evolution of the continuum helicity H (2.14) and the enstrophy Z (2.3) given in figures 5 and 6 allows comparisons to be made between the reconnecting coiled rings and the reconnection of trefoil vortex knots and anti-parallel vortices in Kerr (2018a,b).

First the similarities between the two-ring configurations. By weighting H by $W r \Gamma^2$, figure 5 shows that $H \sim (1 \text{ to } 2) W r \Gamma^2$ until there is reconnection, already indicated by the sudden changes in $T w$ and L_S in figures 2b and 4b for $t \sim 7.5$ and 10.5 respectively. One difference between the inner and outer coiled ring cases is that post-reconnection, $H / W r \Gamma^2$ decreases for the inner coiled cases (c5a,b, c9) and increases for the outer coiled case (c6o). For the trefoils, reconnection is also associated with when H begins to change (Kerr 2018a).

For the enstrophy Z, as it grows, $Z^{-1/2}$ decreases linearly for all the nested, coiled cases during the first temporal stage, defined by relatively constant H up to $t \approx 7.5$ to ≈ 11 depending on the case. This scaling improves slightly between cases c5a and c5b as ν decreases. If there are no coils, case c0, enstrophy growth comes only from the two-ring
Topology of interacting coiled vortex rings

Figure 4. c6o, with a 6 coil outer ring. a) At the top are $t = 0$ centreline vortices (\square, \triangle) and at the bottom are $t = 10.5$ isosurfaces with centreline vortices that show the configuration as reconnection ends. Dashes show the x out (s_c, t) motion (3.1) of an outer coil (s_c) as that ring moves inside the $t = 0$ uncoiled ring. b) Evolution of T_w, W_r and L_s, which are almost constant until the rings interact and partially reconnect at $t_q \approx 10.5$ when they swap positions in a). The scaled reconnection/swapping time is $t_q/t_\Gamma \approx 1.95$ (2.9).

Figure 5. Continuum helicities normalised by $W_r \Gamma^2$ for two rings with one coiled. For inner rings with $m = 5$ and 9 coils, $H(0) \approx (1.8$ and $1.1)W_r \Gamma^2$ until $t \approx 12$, twice the reconnection time of $t \approx 7.5$ indicated by jumps in the topological numbers in figure 2b. For an outer ring with 6 coils, $W_r \approx 0.16$ is small with $H(0) \approx 2.1W_r \Gamma^2$ until reconnection ends, then H grows.

leap-frog interaction and if there is only one multi-coil ring, case s_6, from the relaxation of the coils, suggesting that the linear in time $Z^{-1/2}$ scaling requires both coils and nesting.

Is the $Z^{-1/2}$ scaling for nested coiled rings viscous or inviscid? Consider the insets in figure 6, with $\| \omega \|_\infty$, the maximum of vorticity, in the upper-right and $-S_u = C\omega S \omega / Z^{3/2}$,
Figure 6. As the enstrophy Z grows, $Z^{-1/2}$ decreases linearly for $c5a,b$ until $t \approx 11$, when reconnection finishes (when \mathcal{L}_S rebounds in figure 2b) and helicity starts changing. $c6o$ and $c9$ have similar $Z(t)^{-1/2}$. The enstrophy growth is weaker for s_6, a single ring with coils, and $c0$, nested rings with no coils. In the upper inset, $\|\omega\|_\infty$ has similar case-dependent growth. In the lower inset, the normalised enstrophy production $-S_u$ (2.3) is large for the 5 coil cases, independent of ν, and very weak for cases $c0$ (shown) and s_6.

the normalised enstrophy production (2.3) or velocity-derivative-skewness, in the lower-left. Both are independent of ν until about $t = 6$, implying that the calculations are essential inviscid, or Euler, until then. And given that, then the enstrophy growth can be understood in terms of the variations in $-S_u$. As $-S_u$ is increasing strongly for $t \leq 3$, Z does not change significantly. Then as the inner ring is pulled outside of the outer ring, $-S_u$ is relatively constant, allowing use of the classic closure of $dZ/dt = C_Z |S_u| Z^{3/2}$, which gives the observed linear $Z(t)^{-1/2}$ scaling.

Longer regimes of linearly decreasing $Z^{-1/2}$ scaling were previously found during the reconnection of both trefoils (Kerr 2018a) and anti-parallel vortices (Kerr 2018b), with two significant differences. First, their initial configurations do not have coils and second it is $B_v(t) = (\sqrt{\pi}Z)^{-1/2}$ that converges, not simply $Z^{-1/2}$. What might be similar is that the $(\sqrt{\pi}Z)^{-1/2}$ scaling does not begin until viscous reconnection begins and some twist develops, determined crudely for the trefoils and seen visually on the reconnected anti-parallel vortices. Could this mean that linear $Z^{-1/2}$ regimes require vortices with twist? Either imposed or generated by viscous reconnection?

4. Summary

The three primary results of this paper are:

- A set of algorithms has been demonstrated that are able to independently extract the
writhe W_r, the twist T_w and the self-linking L_S numbers of closed trajectories determined from grid-based vector fields. In addition to the Gauss linking algorithms (2.13) for W_r and L_S (Kerr 2018a), by taking every fourth point on trajectories $x_j(s)$ (2.10), the Frenet-Serret (2.11) twist (2.12) can now be found.

- Furthermore, since the experiments are already finding digital trajectories, these direct methods for calculating the topological numbers might be capable of replacing the use of the trajectory crossings (Scheeler et al. 2014), with validation provided by $L_S = T_w + W_r$ (1.1).
- The current limitations of using these methods for quantitative analysis, in particular for tightly coiled vortices, are discussed. However, even then, and as configurations become turbulent (Kerr 2018a), they can provide useful qualitative insight.

- For the Scheeler et al. (2017) coiled ring experiments, only their $t = 0$ writhe W_r values are confirmed and by applying the twist integral (2.12) to the coil trajectories (2.7) one gets $T_w \gg W_r$, not $T_w \ll W_r$.
 - Their self-linking L_S numbers gotten by using H_c (2.14) for H_T in (1.2) are also inconsistent with values gotten from using the analytic centreline trajectories (2.7).
 - The origin of the faulty L_S values is probably two-fold. First, it is empirically shown that for single coils with a large twist T_w that $H_c \sim W_r \Gamma^2$ (1.3) with $W_r \ll L_S$. Not $H_c \sim L_S \Gamma^2$ (1.2). Second, there could be errors related to $u_{\omega} < 0$ in (2.14), as discussed in section 3.3.

- Consistent with the numerical results for reconnecting trefoil vortices and anti-parallel vortices, until the first reconnection is finished, the global helicity H is preserved and there is linear $Z^{-1/2}(t)$ enstrophy scaling. Comparison of the configurations suggests that twist, either imposed or due to viscous reconnection, could be the common property.

These final results confirm that there is a relationship between the evolution of the topological and the continuum dynamics, with the writhe and twist playing complementary roles, but not as suggested by Scheeler et al. (2017). Besides continued analysis of the existing coiled rings, more coiled ring calculations are needed. These should include rings with thinner vortices and a wider range of viscosities. Furthermore, with the new tool for finding the twist and better insight into its role, the trefoil calculations need to be revisited.

Acknowledgements I wish to thank S. Schleimer and M.A. Berger for discussions on topological structures. Computing resources have been provided by the Centre for Scientific Computing at the University of Warwick.

REFERENCES

