Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Model-based analysis of an outbreak of bubonic plague in Cairo in 1801

Tools
- Tools
+ Tools

Didelot, Xavier, Whittles, Lilith K. and Hall, Ian (2017) Model-based analysis of an outbreak of bubonic plague in Cairo in 1801. Journal of The Royal Society Interface, 14 (131). 20170160. doi:10.1098/rsif.2017.0160

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1098/rsif.2017.0160

Request Changes to record.

Abstract

Bubonic plague has caused three deadly pandemics in human history: from the mid-sixth to mid-eighth century, from the mid-fourteenth to the mid-eighteenth century and from the end of the nineteenth until the mid-twentieth century. Between the second and the third pandemics, plague was causing sporadic outbreaks in only a few countries in the Middle East, including Egypt. Little is known about this historical phase of plague, even though it represents the temporal, geographical and phylogenetic transition between the second and third pandemics. Here we analysed in detail an outbreak of plague that took place in Cairo in 1801, and for which epidemiological data are uniquely available thanks to the presence of medical officers accompanying the Napoleonic expedition into Egypt at that time. We propose a new stochastic model describing how bubonic plague outbreaks unfold in both rat and human populations, and perform Bayesian inference under this model using a particle Markov chain Monte Carlo. Rat carcasses were estimated to be infectious for approximately 4 days after death, which is in good agreement with local observations on the survival of infectious rat fleas. The estimated transmission rate between rats implies a basic reproduction number R0 of approximately 3, causing the collapse of the rat population in approximately 100 days. Simultaneously, the force of infection exerted by each infected rat carcass onto the human population increases progressively by more than an order of magnitude. We also considered human-to-human transmission via pneumonic plague or human specific vectors, but found this route to account for only a small fraction of cases and to be significantly below the threshold required to sustain an outbreak.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Journal of The Royal Society Interface
Publisher: The Royal Society Publishing
ISSN: 1742-5689
Official Date: 2017
Dates:
DateEvent
2017Published
30 May 2017Accepted
Volume: 14
Number: 131
Article Number: 20170160
DOI: 10.1098/rsif.2017.0160
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access
Related URLs:
  • Other Repository

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us