Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The complexity and diversity of the pathogenicity locus in Clostridium difficile clade 5

Tools
- Tools
+ Tools

Elliott, Briony, Dingle, Kate E., Didelot, Xavier, Crook, Derrick W. and Riley, Thomas V. (2014) The complexity and diversity of the pathogenicity locus in Clostridium difficile clade 5. Genome Biology and Evolution, 6 (12). pp. 3159-3170. doi:10.1093/gbe/evu248

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1093/gbe/evu248

Request Changes to record.

Abstract

The symptoms of Clostridium difficile infection are caused by two closely related toxins, TcdA and TcdB, which are encoded by the 19.6 kb Pathogenicity Locus (PaLoc). The PaLoc is variably present among strains, and in this respect it resembles a mobile genetic element. The C. difficile population structure consists mainly of five phylogenetic clades designated 1–5. Certain genotypes of clade 5 are associated with recently emergent highly pathogenic strains causing human disease and animal infections. The aim of this study was to explore the evolutionary history of the PaLoc in C. difficile clade 5. Phylogenetic analyses and annotation of clade 5 PaLoc variants and adjoining genomic regions were undertaken using a representative collection of toxigenic and nontoxigenic strains. Comparison of the core genome and PaLoc phylogenies obtained for clade 5 and representatives of the other clades identified two distinct PaLoc acquisition events, one involving a toxin A+B+ PaLoc variant and the other an A−B+ variant. Although the exact mechanism of each PaLoc acquisition is unclear, evidence of possible homologous recombination with other clades and between clade 5 lineages was found within the PaLoc and adjacent regions. The generation of nontoxigenic variants by PaLoc loss via homologous recombination with PaLoc-negative members of other clades was suggested by analysis of cdu2, although none is likely to have occurred recently. A variant of the putative holin gene present in the clade 5 A−B+ PaLoc was likely acquired via allelic exchange with an unknown element. Fine-scale phylogenetic analysis of C. difficile clade 5 revealed the extent of its genetic diversity, consistent with ancient evolutionary origins and a complex evolutionary history for the PaLoc.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Genome Biology and Evolution
Publisher: Oxford University Press
ISSN: 1759-6653
Official Date: 10 December 2014
Dates:
DateEvent
10 December 2014Published
3 November 2014Accepted
Volume: 6
Number: 12
Page Range: pp. 3159-3170
DOI: 10.1093/gbe/evu248
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us