Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation

Tools
- Tools
+ Tools

UNSPECIFIED (2002) Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation. JOURNAL OF PHYSIOLOGY-LONDON, 540 (3). pp. 843-850. ISSN 0022-3751.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

We have investigated the pharmacological properties and targets of ply purinoceptors in Xenopus embryo spinal neurons. ATP reversibly inhibited the voltage-gated K+ currents by 10 +/- 3 %. UTP and the analogues alpha,beta-methylene-ATP and 2-methylthio-ATP also inhibited K+ currents. This agonist profile is similar to that reported for a ply receptor cloned from Xenopus embryos. Voltage-gated K+ currents could be inhibited by ADP (9 +/- 0.8 %) suggesting that a further p2y1-like receptor is also present in the embryo spinal cord. Unexpectedly we found that alpha,beta-methylene-ADP, often used to block the ecto-5'-nucleotidase, also inhibited voltage-gated K+ currents (7 +/- 2.3 %). This inhibition was occluded by ADP, suggesting that alpha,beta-methylene-ADP is an agonist at p2y1 receptors. We have directly studied the properties of the ecto-5'-nucleotidase in Xenopus embryo spinal cord. Although ADP inhibited this enzyme, alpha,beta-methylene-ADP had no action. Caution therefore needs to be used when interpreting the actions of alpha,beta-methylene-ADP as it has previously unreported agonist activity at P2 receptors. Xenopus spinal neurons possess fast and slow voltage-gated K+ currents. By using catechol to selectively block the fast current, we completely occluded the actions of ATP and ADP. Furthermore, the purines appeared to block only the fast relaxation component of the tail currents. We therefore conclude that the ply receptors target only the fast component of the delayed rectifier. As ATP breakdown to ADP is rapid and ADP may accumulate at higher levels than ATP, the contribution of ADP acting through p2y1-like receptors may be an important additional mechanism for the control of spinal motor pattern generation.

Item Type: Journal Article
Subjects: R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Q Science > QP Physiology
Journal or Publication Title: JOURNAL OF PHYSIOLOGY-LONDON
Publisher: CAMBRIDGE UNIV PRESS
ISSN: 0022-3751
Official Date: 1 May 2002
Dates:
DateEvent
1 May 2002UNSPECIFIED
Volume: 540
Number: 3
Number of Pages: 8
Page Range: pp. 843-850
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us