
The Library
The dynamical behavior of the discontinuous Galerkin method and related difference schemes
Tools
UNSPECIFIED (2002) The dynamical behavior of the discontinuous Galerkin method and related difference schemes. MATHEMATICS OF COMPUTATION, 71 (239). pp. 1075-1103.
Full text not available from this repository, contact author.Abstract
We study the dynamical behavior of the discontinuous Galerkin finite element method for initial value problems in ordinary differential equations. We make two different assumptions which guarantee that the continuous problem defines a dissipative dynamical system. We show that, under certain conditions, the discontinuous Galerkin approximation also defines a dissipative dynamical system and we study the approximation properties of the associated discrete dynamical system. We also study the behavior of difference schemes obtained by applying a quadrature formula to the integrals defining the discontinuous Galerkin approximation and construct two kinds of discrete finite element approximations that share the dissipativity properties of the original method.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Journal or Publication Title: | MATHEMATICS OF COMPUTATION | ||||
Publisher: | AMER MATHEMATICAL SOC | ||||
ISSN: | 0025-5718 | ||||
Official Date: | 2002 | ||||
Dates: |
|
||||
Volume: | 71 | ||||
Number: | 239 | ||||
Number of Pages: | 29 | ||||
Page Range: | pp. 1075-1103 | ||||
Publication Status: | Published |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |