
The Library
SUMO suppresses the activity of the jasmonic acid receptor CORONATINE INSENSITIVE1
Tools
Srivastava, Anjil Kumar, Orosa, Beatriz, Singh, Prashant, Cummins, Ian, Walsh, Charlotte, Zhang, Cunjin, Grant, Murray R., Roberts, Michael R., Anand, Ganesh Srinivasan, Fitches, Elaine and Sadanandom, Ari (2018) SUMO suppresses the activity of the jasmonic acid receptor CORONATINE INSENSITIVE1. The Plant Cell, 30 (9). pp. 2099-2115. doi:10.1105/tpc.18.00036 ISSN 1532-298X.
|
PDF
WRAP-SUMO-suppresses-jasmonic-acid-receptor-CORONATINE-INSENSITIVE1-Grant-2018.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (2418Kb) | Preview |
Official URL: https://doi.org/10.1105/tpc.18.00036
Abstract
Plants respond rapidly to sudden environmental cues, often responding prior to changes in the hormone levels that coordinate these responses. How this is achieved is not fully understood. The integrative role of the phytohormone jasmonic acid (JA) relies upon the plant’s ability to control the levels of JASMONATE ZIM (JAZ) domain-containing repressor proteins. Here, we demonstrate that regardless of intrinsic JA levels, Small Ubiquitin-like Modifier (SUMO)-conjugated JAZ proteins inhibit the JA receptor CORONATINE INSENSITIVE1 (COI1) from mediating non-SUMOylated JAZ degradation. The SUMO-deconjugating proteases OVERLY TOLERANT TO SALT1 (OTS1) and OTS2 regulate JAZ protein SUMOylation and stability. The ots1 ots2 double mutants accumulate SUMOylated and non-SUMOylated JAZ repressor proteins but show no change in endogenous JA levels compared with wild-type plants. SUMO1-conjugated JAZ proteins bind to COI1 independently of the JA mimic coronatine. SUMO inhibits JAZ binding to COI1. We identify the SUMO interacting motif in COI1 and demonstrate that this is vital to SUMO-dependent inhibition of COI1. Necrotroph infection of Arabidopsis thaliana promotes SUMO protease degradation, and this increases JAZ SUMOylation and abundance, which in turn inhibits JA signaling. This study reveals a mechanism for rapidly regulating JA responses, allowing plants to adapt to environmental changes.
Item Type: | Journal Article | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QK Botany | ||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- ) | ||||||||||
SWORD Depositor: | Library Publications Router | ||||||||||
Library of Congress Subject Headings (LCSH): | Growth (Plants) -- Regulation, Jasmonic acid, Repressors, Genetic, Ubiquitin, Plant cellular signal transduction, Botanical chemistry | ||||||||||
Journal or Publication Title: | The Plant Cell | ||||||||||
Publisher: | American Society of Plant Biologists (ASPB) | ||||||||||
ISSN: | 1532-298X | ||||||||||
Official Date: | 1 September 2018 | ||||||||||
Dates: |
|
||||||||||
Volume: | 30 | ||||||||||
Number: | 9 | ||||||||||
Page Range: | pp. 2099-2115 | ||||||||||
DOI: | 10.1105/tpc.18.00036 | ||||||||||
Status: | Peer Reviewed | ||||||||||
Publication Status: | Published | ||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||
Date of first compliant deposit: | 12 November 2018 | ||||||||||
Date of first compliant Open Access: | 13 November 2018 | ||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year