Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Investigations of pure and derivatized fullerenes by mass spectrometry

Tools
- Tools
+ Tools

Barrow, Mark Peter (2000) Investigations of pure and derivatized fullerenes by mass spectrometry. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Barrow_2000.pdf - Submitted Version - Requires a PDF viewer.

Download (12Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3252923~S15

Request Changes to record.

Abstract

The following thesis represents an investigation into the gas-phase behavior of fullerenes and fullerene derivatives, using mass spectrometry as an analytical method. This thesis encompasses the formation and structure elucidation of carbon-based clusters which have been formed through the ablation of fullerene derivatives, the formation of fullerenes from non-fullerene precursor material, an evaluation of the stability of solid C60, the delayed ionization of pure fullerenes, and the assessment of an alternative ionization method for the direct analysis of fullerenes and fullerene derivatives. The coalescence reactivities of C60H36, oxides of C60, and C70, metallofullerenes, fluorinated fullerenes, and three fullerene derivatives of the formula C60[C(COOEt)2]n (where n = 1,2, and 3) have been studied. Analogously, an organometallic compound of the formula [Cp5CpMn(CO)3] has been evaluated as a possible precursor for fullerene formation using laser ablation. The stability of Q under ambient conditions, in the presence of light and air, has been studied, revealing that dimerization reactions occur following oxidation. Following analysis of the structures of coalesced species, it became apparent that time-of-flight instruments of a particular design may be prone to artifact signals originating from the delayed ionization of fullerenes; a subsequent study led to the development of a new method for examining this behavior and the findings have far reaching consequences for studies using similar instrumentation. Laser desorption/ionization and matrix-assisted laser desorption/ionization are not always suitable ionization methods due to the observation of high degrees of fragmentation or reactions with the matrix. Electrospray ionization represents an obvious solution, but an investigation into the suitability of this method was required due to the lack of successful analyses in the literature. Though the topics involved and the samples used are diverse, each investigation thus represents a mass spectrometric study into the gas-phase behavior of fullerenes and their derivatives, along one of several themes.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
Library of Congress Subject Headings (LCSH): Fullerenes -- Derivatives, Mass spectrometry, Electrospray ionization mass spectrometry, Laser ablation
Official Date: 2000
Dates:
DateEvent
2000UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Drewello, Thomas
Extent: xi, 352 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us