Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Effects of crosswind and burner aspect ratio on flame characteristics and flame base drag length of diffusion flames

Tools
- Tools
+ Tools

Tang, Fei, He, Qing and Wen, Jennifer X. (2019) Effects of crosswind and burner aspect ratio on flame characteristics and flame base drag length of diffusion flames. Combustion and Flame, 200 . pp. 265-275. doi:10.1016/j.combustflame.2018.11.011

[img]
Preview
PDF
WRAP-crosswind-burner-aspect-ratio-flame-drag-length-diffusion-flames-Wen-2019.pdf - Accepted Version - Requires a PDF viewer.
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (2238Kb) | Preview
Official URL: http://dx.doi.org/10.1016/j.combustflame.2018.11.0...

Request Changes to record.

Abstract

Experimental investigations were conducted to characterise the impacts of crosswind and burner aspect ratio on the flame evolution characteristics and flame base drag length of gas diffusion flames on rectangular burners. The burners have the same surface area of approximately 100 cm2. The tests to capture the flame base drag length were conducted three times for each condition with the differences between the original and repeated tests being less than 6%. The thermocouple readings were corrected for the effect of radiative and convective heat exchange with the surroundings. Overall, 84 independent test conditions were conducted on 4 different burner aspect ratios, 3 fuel supply rates and 7 crosswind conditions. The changing behaviour of the flame with different burner aspect ratios, heat release rates and crosswind speeds were carefully analysed. The appearance of “blue flames” in the upstream edge of the main diffusion flames just above the burner in relatively strong winds was analysed. Unlike the flame tilt angle and flame height which either increase (the former) or decrease (the later) monotonically with the increase of wind speed, the flame base drag length was found to increase with the wind speed firstly until a critical point and then decrease with further increase of the crosswind for a given heat release rate. This is thought to be due to the competing influence of thermal buoyancy and wind induced inertial forces. The transition point for the maximum flame base drag length with regard to crosswind was found to decrease with the increasing aspect ratio of the burner for a given heat release rate. A new physics-based correlation considering decay phase with the crosswinds was proposed for the flame base drag length incorporating all important physical factors including inertia force, fire induced thermal buoyancy, Froude number, dimensionless heat release rate and fuel/air density ratio. The proposed formulations were found to correlate well with the current measurements of gas burner fires as well as some published data in the literature for pool fires on the ground which were not used in their derivation.

Item Type: Journal Article
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Science > Engineering
Library of Congress Subject Headings (LCSH): Flame, Crosswinds, Drag (Aerodynamics), Plumes (Fluid dynamics), Fire prevention, Gas-burners
Journal or Publication Title: Combustion and Flame
Publisher: Elsevier Inc.
ISSN: 0010-2180
Official Date: 1 February 2019
Dates:
DateEvent
1 February 2019Published
5 December 2018Available
12 November 2018Accepted
Date of first compliant deposit: 6 December 2018
Volume: 200
Page Range: pp. 265-275
DOI: 10.1016/j.combustflame.2018.11.011
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
RIOXX Funder/Project Grant:
Project/Grant IDRIOXX Funder NameFunder ID
655138H2020 Marie Skłodowska-Curie Actions (International Fellowship scheme)http://dx.doi.org/10.13039/100010665
51776060[NSFC] National Natural Science Foundation of Chinahttp://dx.doi.org/10.13039/501100001809

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us