Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/111792

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Towards High Capacity Molecular Communications using Sequential Vortex Rings

Mahmoud Abbaszadeh\(^1\), Peter J. Thomas\(^1\), Weisi Guo\(^1\)*

Abstract—Molecular signal coherence in fluid dynamic channels is severely hindered by mass, momentum, and turbulent diffusive forces. The combination of such forces causes long molecular tails, which results in severe inter-symbol-interference (ISI) and limits the achievable symbol rate. Here, we propose to modulate information symbols into stable vortex ring structures to minimize ISI. Each vortex ring can propagate approximately \(100 \times \) the diameter of the transmission nozzle without losing its compact shape. First, we show that the ISI from sequential transmissions is minimal and reduces rapidly with distance after transmission. This is the opposite effect to conventional molecular puffs undergoing advection-diffusion, whereby ISI increases with distance. Second, we show that by maintaining a coherent signal structure, the signal-to-inference (SIR) ratio is \(211 \times \) higher over conventional puffs. Also, we demonstrate the vortex ring using a proof-of-concept prototype. The results point towards a promising pathway for higher capacity channels.

I. INTRODUCTION

Conventional molecular signals are represented by discontinuous molecular puffs that are ejected into a fluid or gas channel. After ejection, at the macro-scale, the signal is subject to various pressure, velocity, sheer stress gradients, as well as reaction forces. The coupling relationships between these forces and the flow rate are well described by the Navier-Stokes (NS) equations [1]. Existing literature in molecular communications has predominantly used isotropic diffusion-advection channel models due to their tractable expressions [2], assuming a Péclet number below 1 (e.g. mass diffusion dominates). Whilst this is reasonable for cell membranes and capillary blood flow, advection and external forces will dominate at larger-scales. Sheer stress between laminar flow layers leads to viscous momentum diffusion and turbulence will cause turbulent diffusion [3].

A. Vortex Rings in Turbulence

Turbulence is not only inherently very difficult to model, but it also doesn’t directly help us understand the communication capacity of the channel. Yet, we can take advantage of a certain structure called a vortex ring, that propagates well in turbulent fluid channels. The vortex ring retains spatial structure through its rotational momentum and has a sharper concentration time profile than a standard puff - see Fig.1. This has the potential to significantly reduce inter-symbol-interference (ISI) from sequential transmissions and as such allow us to transmit at a higher symbol rate. The vortex ring core is a torus shaped fluid or gas structure, that retains shape (e.g. mitigates dispersion) for long propagation distances (typically \(50 \times \) nozzlediameter) [4] - see Fig.2. Each vortex ring is a region, where the molecules mostly spin around an axis in a closed loop. Finally, it should be noted that one of the possible application of the vortex rings is the Line-of-sight (LOS) communication.

B. Contribution

In this letters, we will use both simulation and experimentation to outline how vortex rings are generated and how they effectively mitigate ISI over long distances. In Section II, we present the theoretical structure of a vortex ring and the transmitter design required to generate it. In Section IV, we show the propagation life cycle of sequential vortex rings in comparison to conventional molecule puffs and demonstrate it using an experimental proof-of-concept test-bed. We analyze the SIR profile for different configuration parameters and discuss capacity scalability potential. Finally, we observe the effects of the each vortex ring on the others in a sequential vortex rings and the way they can go through the channel with the minimum interference.

II. VORTEX RING STRUCTURE & GENERATION

A vortex ring is a bounded region of vorticity in which the vortex lines form closed loops [5]. Vortex rings which are circular and stable and have the ability to retain molecular information in a self-sustained structure. It is worth noting
that the vortex core can become wavy (Widnall instability) at some point during its existence depending on conditions. The general properties of every vortex ring can be observed in Fig. 2, where the vortex ring core has diameter of D (approximately $1.3 \times$ the nozzle diameter D_0) and the bulk of vorticity in the region has diameter of δ. There is also a small atmosphere surrounding the core - see Fig. 2b.

In order to design the transmitter that can generate a vortex ring, careful consideration is needed - see Fig. 2a. First, the molecules inside the piston must be subject to a sufficient sheer stress profile such that vortices are generated. This occurs when the molecules are pushed out at a sufficiently high Reynolds number, generating a vortex ring head. In the case when the molecules are pushed out at a sufficiently high Reynolds number, a vortex ring head is formed.

To generate the vortex ring, a prescribed axial velocity can be defined at the transmitter to simulate the motion of the piston and also to define the vorticities at the edge of the cylinder [7]. For $\theta_1 < \pi$ and $\theta_2 < \pi$, the maximum circulation that a vortex ring can attain, occurs at $L_p/D_p \approx 4$ (which is refer as “formation number”) [8] and after that, as the stroke ratio increases, the leading vortex ring sheds excessive ejected fluid behind. Also, all the quantities in the present study are normalized by D_p and U_p as the characteristic length and velocity, respectively. Also, D_p/U_p is used to normalize the time.

Moreover, in order to ensure the accuracy of our numerical

The only theoretical insight comes from the piston stroke ratio. For $L_p/D_p \geq 4$ the leading vortex ring is followed by an active trailing jet-like region [8], and as the stroke ratio increases, more ejected fluid stay behind the leading vortex ring. Actually, the maximum circulation that a vortex ring can attain, occurs at $L_p/D_p \approx 4$ (which is refer as “formation number”) [8] and after that, as the stroke ratio increases, the leading vortex ring sheds excessive ejected fluid behind. Also, all the quantities in the present study are normalized by D_p and U_p as the characteristic length and velocity, respectively. Also, D_p/U_p is used to normalize the time.

Moreover, in order to ensure the accuracy of our numerical
Fig. 4. Sequential symbols transmitted: (a) Puffs, (b) Vortex Rings, and (c) Experimentation of Vortex Rings.

TABLE I
SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Ratio, L_p/D_p</td>
<td>2 - vortex ring, 14 - Puff</td>
</tr>
<tr>
<td>Maximum Injection Velocity, U_P</td>
<td>2.5 m/s at $t = 0$</td>
</tr>
<tr>
<td>Dynamic Viscosity of water, ν</td>
<td>8.9×10^{-4} Pa.s</td>
</tr>
<tr>
<td>Transmit Concentration, c_0</td>
<td>2.5 mol/m3</td>
</tr>
<tr>
<td>Pulse Width, T_0</td>
<td>2.29 s</td>
</tr>
<tr>
<td>Symbol Period, T</td>
<td>16 s</td>
</tr>
<tr>
<td>Simulation Space</td>
<td>50D_p long, 20D_p wide</td>
</tr>
</tbody>
</table>

program, we simulate the Danaila and Helie’s [6] injector and present the results in Fig.3 where a good agreement can be observed between our results and Danaila and Helie’s [6] study. In this figure, r is the normalized radial distance from the center of piston outlet and V_z is the normalized axial velocity.

III. RESULTS & DISCUSSION

A. Method and Parameters

In order to fully model turbulent diffusion with an anisotropic and time-varying velocity profile, the Reynolds-averaged Navier-Stokes (RANS) equations needs to be considered [3]:

$$c \frac{\partial \pi_j}{\partial x_j} = c \overline{J}_i + \frac{\partial}{\partial x_j} \left[- \overline{\nu} \frac{\partial \pi_j}{\partial x_j} + \mu \left(\frac{\partial \pi_i}{\partial x_j} + \frac{\partial \pi_j}{\partial x_i} \right) - c \overline{\nu}' \overline{u}_j' \right].$$

where c represents density or concentration which depends on a number of pressure, velocity, and sheer stress gradients. π represents time-averaged value, and μ is dynamic viscosity of the fluid. The $c \overline{\nu}' \overline{u}_j'$ represents the change in mean momentum of fluid element owing to the unsteadiness in the mean flow and the convection by the mean flow. This is balanced by the mean body force \overline{J}_i, the isotropic stress from the pressure field $\overline{\nu} \delta_{ij}$, the viscous stresses, and apparent stress $-c \overline{\nu}' \overline{u}_j'$ owing to the fluctuating velocity field (Reynolds stress). Whilst there are statistical approximate solutions in the form of eddy diffusivity, general tractability is still a challenge for modeling turbulent diffusion processes. This is the reason why finite-element simulation and experimentation is used.

B. Transmission

1) Simulation: The simulations are conducted using industrial standard COMSOL software with the Computational Fluid Dynamics (CFD) and Chemical Species Transport modules coupled. The simulation parameters are given in Table I. We shoot a sequence of conventional puffs and vortex rings and show their forward concentration (space domain) profiles in Fig.4. Each received signal is given by:

$$c(t) = \sum_k a_k h(t - kT),$$

where a is 1 or 0 (OOK), T is the symbol period, and the channel $h(t)$ is a complex fluid dynamic channel described by the aforementioned RANS equations to solve for the turbulence effects. In reality and for detection purposes, we can employ particle image velocimetry (PIV) and planar laser induced florescence (PLIF) techniques which is a passive receiver and by using laser, camera, and fluorescence dye we can observe the concentration of molecules [9]. The second way of detection is using array of chemical sensors which is
an active way of detection. Both of the aforementioned ways, recover the spatio-temporal profiles.

It is worth noting that under RANS, these are the averaged profiles over a small simulation element. We assume that the vortex rings are sufficiently separated such that each behaves independently, but will explore mutual interactions in the future, especially the effects of leap-frogging and the leading vortex ring’s drag.

Puff Sequence - Fig.4a-i shows the concentration profile, where there is a rapid deterioration in concentration structure and intensity over distance. As such, the tail from prior symbols leads to strong ISI. Fig.4a-ii is the 3D concentration profile and reveals that there is not a specific circular ring in the environment and the tail of the puff remains in the environment for a whole period of transmission.

Vortex Ring Sequence - The results in Fig.4b-i show that the vortex ring core has a high concentration compared to the quiescence environment and maintains this into distance. This means that the vortex ring is carrying the momentum of the transmitter and is dominant in the way it propagates through the environment. Fig.4b-ii shows the concentration profile in three dimensional, where high concentration is maintained and the ISI effects are small. Overall, we observe that the ISI tail is significantly lower for the vortex ring (as shown in the concentration time profile in Fig.1).

2) **Experimentation:** We also present a proof-of-concept demonstration of the vortex ring, being shot 20m into an uncontrolled environment in Fig.4c. We have a 0.5m diameter vortex canon that is shooting a vortex ring captured on a slow motion camera. The red rings label the location of the vortex ring as it propagates away from the canon. The vortex ring becomes clearer as it moves into the distance.

C. Signal-to-Interference (SIR) Ratio

For the received signal with empirical response \(h(t) \), we define the signal \(S = \int_{0}^{T} h(t) \, dt \) as the aggregate peak concentration values detected over symbol period \(T \). We define the ISI as \(I = \sum_{k=1}^{\infty} \int_{0}^{T} h(t + kT) \, dt = \int_{0}^{\infty} h(t) \, dt \) as the remaining tail concentration \(t > T \). For a single symbol, the resulting SIR is as follows - see Fig.1: (1) Vortex Ring: +51.5dB, and (2) Puff: +9.5dB. We can see approximately a 211\times improvement when the vortex ring is compared to the puff. As shown in Fig.5, we can see that SIR as a function of transmission distance for a standard puff (SIR decays with distance) and a vortex ring (SIR increases with distance).

D. Sequential Vortex Rings

In this section, we transmitted eight vortex rings in order to observe the effects of the each vortex ring on the others and to see how a sequence of information can be carried by vortex rings with minimum interference and maximum symbol rate. Parameters: \(U_p = 5 \text{ m/s} \) and the \(L_p/D_p = 1 \). The vortex rings concentration profiles are displayed in Fig.6 at four different time snapshots after transmission. After 10s (Fig.6-a), we can see that the second vortex ring \(k + 1 \) catches up to the first \(k \), due to the lower drag forced faced by the second, and merge at 20s. This also repeats for symbols \(k + 2 \) and \(k + 3 \). As a consequence, when the symbol period is small, the first four vortex rings will merge together (Fig.6-c/d). However, subsequent vortex rings remain separated and can be detected coherently. This seems to indicate that an initial sacrifice of 4 symbols is needed to clear the channel up to the 50\(D_p \) critical distance [4], allowing subsequent symbols to propagate coherently. Any longer distances and the vortex rings become unstable. As such, we may regard the first 4 symbols as pilot symbols to sense the channel or communicate non-data bearing information. In contrast, if we consider the receiver at a critical distance (for example in this simulation setup, the critical distance is 10\(D_p \)), the merging would not be happened and the receiver can detect each symbols separately.

IV. **Conclusions & Future Work**

In this paper, we demonstrate how packing information in vortex rings can effectively mitigate ISI using computation fluid dynamic numerical simulation and proof-of-concept experimentation. Not only do we show that ISI has been reduced by one order of magnitude compared to standard puff emissions, but we also show that ISI actually reduces with distance in the far field. In future work, we will explore the potential for longer distance guided transmission and capacity scaling using parallel vortex rings in MIMO.
REFERENCES

