Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Structure-property relationships of conjugated polymers

Tools
- Tools
+ Tools

Lawton, Samuel S. (2018) Structure-property relationships of conjugated polymers. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Lawton_2018.pdf - Submitted Version - Requires a PDF viewer.

Download (14Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3255220~S1

Request Changes to record.

Abstract

Conjugated polymers for application in optoelectronic devices have been an increasingly popular topic of research over the past two decades, with photovoltaic devices incorporating conjugated polymers now nearing large-scale commercialisation. This work focuses on the structure-property relationships of conjugated polymers.

Firstly, the difference in backbone structure between an alternating copolymer and its statistical counterpart are investigated, the differences in backbone sequence is elucidated by kinetic and microscopic techniques. The resulting polymers are found to be more gradient or block-like and form better BHJ blends with the PC61BM acceptor and have deeper HOMOs resulting in the observed increase in PCE.

Subsequently, alterations to the catalytic system for the synthesis of statistical copolymer by Stille polycondensation are investigated. Variations in the ligands electronic and steric effects are shown to have a profound effect on the relative rates of monomer conversion. Changing the catalyst directly effects the backbone sequence of the polymer. Polymers synthesised using various catalysts are investigated and their optoelectronic and morphological properties are discussed related to the monomer sequence.

Finally, well-defined all-conjugated block copolymers are investigated. Electron deficient PTBT and electron rich PTBnDT blocks are synthesised and characterised. Each of the homoblocks demonstrate distinctly different miscibility and film morphology with the PC61BM electron acceptor. When coupled, the resulting block copolymers show signs of micro-phase separation and the viability of block copolymers as a means of domain size control is investigated.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
Library of Congress Subject Headings (LCSH): Conjugated polymers, Optoelectronic devices -- Materials, Photovoltaic power generation -- Materials, Copolymers, Heterojunctions
Official Date: July 2018
Dates:
DateEvent
July 2018Submitted
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Haddleton, David M.
Sponsors: Merck KGaA
Format of File: pdf
Extent: xxv, 175 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us