Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

First-principles theory of the temperature and compositional dependence of atomic short-range order in disordered Cu-Pd alloys

Tools
- Tools
+ Tools

UNSPECIFIED (2002) First-principles theory of the temperature and compositional dependence of atomic short-range order in disordered Cu-Pd alloys. PHYSICAL REVIEW B, 65 (6). -. doi:10.1103/PhysRevB.65.064201 ISSN 1098-0121.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1103/PhysRevB.65.064201

Request Changes to record.

Abstract

We combine the first-principles, Korringa-Kohn-Rostoker coherent potential approximation based calculations of compositional fluctuations with a statistical mechanical ring approximation to study the temperature (T) and composition (c) dependence of the atomic short-range order (SRO) in disordered, face-centred cubic, Cu-Pd alloys. The fourfold splitting of SRO peaks around the equivalent X(0,1,0) points in reciprocal space is obtained in a wide T-c region. Such splitting is shown to be an "energy" effect caused by the absolute minima of the Fourier transform of the effective atomic interactions and related previously to the existence of nested sheets of the disordered alloy's Fermi surface. However, we find that the T dependence of the SRO peak position is mostly an "entropy" effect. Both the calculated T and c dependences of the SRO peaks position are in good correspondence with the experimental data. The real-space effective atomic interactions and SRO parameters indicate the tendency for longer-period structures with increasing Pd concentration, as observed.

Item Type: Journal Article
Subjects: Q Science > QC Physics
Journal or Publication Title: PHYSICAL REVIEW B
Publisher: AMERICAN PHYSICAL SOC
ISSN: 1098-0121
Official Date: 1 February 2002
Dates:
DateEvent
1 February 2002UNSPECIFIED
Volume: 65
Number: 6
Number of Pages: 7
Page Range: -
DOI: 10.1103/PhysRevB.65.064201
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us