Numerical simulation of flashing jets atomisation using a unified approach

Konstantinos G. Lyrasa, Siaka Démélea, Jennifer X. Wenb,*

aDepartment of Mechanical and Automotive Engineering, Kingston University London, SW15 3DW, London, UK
bSchool of Engineering, University of Warwick, Coventry, UK

Abstract

The physics of the atomisation of flash boiling jets is known to be extremely complex with plethoric interactions of different mechanisms in microscopic and macroscopic level. Early studies describe both the mechanical and thermodynamic effectes focusing on the influence of the initial pressure and temperature on the spray characteristics. The resulting flashing jet usually emerges to the low-pressure region with a high velocity and fragments to large blobs and ligaments which break up to droplets due to both mechanical and thermodynamic effects. This paper presents a numerical approach for simulating the atomisation of flashing liquids suitable for both primary atomisation and secondary break-up using the Eulerian-Lagrangian-Spray-Atomisation model coupled with a pressure equation for the metastable jet. The proposed approach aims at describing the atomisation of superheated jets and the impact of bubble nucleation at different stages and regimes inside the channel the liquid emerges from. The changes in the regime outside the nozzle are discussed for various cases of flashing liquids providing insights for the interactions of the mechanisms that contribute to the liquid fragmentation and the spray characteristics such as the droplet size and velocity and the spray angle.

Keywords: flashing, boiling, atomisation, ELSA model

*Corresponding author

Email address: jennifer.wen@warwick.ac.uk (Jennifer X. Wen)
1. Introduction

The disintegration of liquid jets from a high pressure region to a small pressure environment is a process where multiple interactions take place. Depending on the application a pressure drop may occur when the liquid flows through a nozzle or a pipe. If the pressure drops below the vapour pressure, a rapid phase change begins which is generally termed flashing. In case of pure cavitation, the pressure recovers above the limit of the vapour pressure unlike the extreme case of flashing in which pressure remains below the saturation pressure. Both of these processes have multiple industrial applications in fuel spray injection systems, health and safety in nuclear energy and in aerosol industries to name a few. Prior research from Oza (1984) and Ishii (1975) suggest that flash boiling is associated to three different processes, which are, bubble nucleation, bubble growth and atomisation. In order to establish a modelling strategy for flashing one has to give an illustration of the factors that contribute to this multi-facet problem. Flashing of a liquid can occur when the fluid, initially being either sub-cooled or saturated, follows an isothermal pressure drop or an isobaric heating path respectively. As long as the liquid moves towards the low pressure region, the pressure drops and upon reaching the liquid saturation curve it becomes superheated yielding a wide range of droplet sizes stemming from an explosive atomisation at the exit of the channel. In cases of a liquid flowing within a channel, the fluid might be superheated inside or outside the channel depending on the geometry and the thermodynamic conditions.

Experimental investigations on the nucleation kinetics report a different response of the liquids in the temperature variations which corresponds to different nucleation rates (Pavlov 1988). The intensity of the bubble nucleation rate generally leads to an enhanced boiling and is a primary cause of change in the flow regime which might be combined with a shattering of the jet attributing explosive characteristics to the process. Previous studies have shown that even small changes in temperature may alter the jet structure (Park and Lee 1994). In light of this, it is likely to have a two-phase jet inside the nozzle with a variety of
possible regimes (Sher et al., 2008; Park and Lee, 1994). A paradigm of the most crucial parameters for bubble nucleation is the geometry of the nozzle the fluid flows through (Park et al., 1997). Many studies have been carried out regarding the expected regimes in industrial depressurisations applications (van den Bosch and Waterings, 2005; Benajes et al., 2004; Yildiz, 2005; Cleary, 2008).

Usually, phenomenological approaches induced from experiments consider the length-to-diameter of the nozzle to be the integral geometrical parameter that influences the flow regime. The resulting jet can be thought as the outcome of two mechanisms; the fluid instabilities (i.e. Kelvin-Helmholtz) and the boiling conditions together with bubble nucleation. These mechanisms act within the jet in a competing way and give rise to a violent disintegration, characteristic of the flashing process. Flashing continues until the generated vapour has enough energy to achieve equilibrium. Thermodynamic and mechanical effects act inside the jet and on the jet surface altering the jet shape and dynamics. The pressure drops rapidly leading to a phase transition in cases of cavitation and flashing. During flashing bubbles form and grow from the vapour clusters. The changes that happen in a microscopic level vary locally in time and space and is hard to define a characteristic spatial scale for the liquid structures. The liquid break-up gives droplets with a spectrum of sizes from a droplet size (d_{max}) of the order of some millimetres to a minimum size which can be thousands of times less.

Various experimental works have been conducted the last three decades for unravelling the mysteries of the liquid atomisation of flashing jets. Reitz (1990) studied flash boiling atomisation of water under relatively small pressure (p_{inj}) and different initial temperatures (T_{inj}). The jet was well atomised giving small sized droplets that dispersed downstream the nozzle exit. The majority of the droplet sizes was measured to be around 100μm. The flow was bubbly with a two-phase jet observed outside the nozzle with minimum and maximum droplet diameters varying around two orders of magnitude. The droplet diameter decreased along the radial direction by contrast to the trend at the axial direction. Similar scales for the drop diameter were reported by Allen (1998) for flashing
propane jets. The diameters measured, were within the range of some microns up to 500µm for a storage pressure of 6 bar. Some insights for the velocity profiles across the jet were obtained. The velocity had a characteristic bell shape with a maximum at the jet centreline. The velocity decreased moving further away the nozzle exit while preserving the same shape. The change in the regime of the jet was observed. The change in the measured drop sizes was attributed to the bubbles that burst each other giving new drops with smaller diameter. Park and Lee (1994) using flashing water provided some interesting details regarding the anatomy of flashing jets. The droplet sizes were measured at various locations at the radial direction. The higher size at the jet centreline indicated an intact liquid core which progressively disintegrated across the radial and axial directions. Similar velocity profiles at different locations are also reported in the literature in the work of Yildiz (2005) for flashing R134A jets with high degrees of superheat. Although the velocities at the radial direction of flashing jets tend to follow the same trend as non-flashing jets (as illustrated in Abramovich (1963), the axial behaviour of velocity is expected to change regarding if flashing happens inside or outside the nozzle. Hervieu and Veneau (1996) provided some results for the jet shape of flashing jets for propane releases but did not include details for the spray angles. Park and Lee (1994) illustrated the spray angle and how it changes with respect to the initial flow conditions. They showed that the spray angle increased while increasing the initial temperature with values smaller to 90°C. Recently, Wang et al. (2017) studied the effect of the internal flow patterns in the spray dynamics. In their study for flashing R134A jets the flow was bubbly for relatively small storage pressure (p ≤ 15bar) with nucleation occurring at random locations and the spray angle increasing for higher pressure.

Empirical models for the spray properties of superheated consider the geometry and initial conditions jets in a zero-dimensional correlations (Johnson and Woodward, 1999; van den Bosch and Waterings, 2005; Witlox and Bowen, 2002). A common practice to tackle the varying thermodynamic effects which play a major role in the emerging jet is the use of reasonable assumptions for
the release process. The isenthalpic and isentropic assumptions are possible for the expansion region of the flashing jets. In the isenthalpic formulations the change in the kinetic energy is small compared with the enthalpy change. On the other hand, in case of isentropic conditions either the momentum equation is replaced with an entropy equation or the energy equation is substituted in favour of well-established isentropic relationships. The shortcomings of the isenthalpic and isentropic assumptions are not apparent and there is an ambiguity in the literature regarding the assumption to be made for flashing expansion.

The most recent state of the art three-dimensional CFD studies for flashing, including the HRM model, are implemented following Schmidt et al. (2010), Moulai et al. (2015) and Duke et al. (2015) used HRM and successfully calculated the mass flow rate and the liquid penetration. Price et al. (2016) used an evaporation model for simulating flashing jets using Lagrangian particle tracking with the droplet shape changing due to flashing providing validation for the liquid penetration. Characterisation of the spatial scale of the liquid blobs and ligaments is still an ongoing research topic and poses significant challenges due to the multi-scale nature of the process.

The complex interactions during the atomisation of superheated jets pose the biggest challenge for three-dimensional CFD models for calculating the size and velocity of the droplets. One of the major difficulties for modelling the atomisation of superheated jets regarding physics is the metastable two-phase mixture that occurs during depressurisation. This paper presents a numerical approach for simulating the atomisation of flashing liquids accounting for the distinct stages, from primary atomisation to secondary break-up to small droplets using the Eulerian-Lagrangian-Spray-Atomisation model coupled with the HRM. The \(\Sigma \)-equation is implemented and solved in a fully Eulerian approach for tracking liquid structures of any shape, and computes the spray characteristics. A modified version for the transport equation of the surface density is used and a new source term accounting for the changes in \(\Sigma \) due to evaporation in both dense and dilute spray regions is added. The HRM is a reliable model accounting for the non-equilibrium vapour generation and can
be easily implemented in an Eulerian framework taking advantage of the more
detailed representation of the primary atomisation region in such approaches.
An algorithm that links the standard pressure-velocity coupling algorithm to
the HRM and volume of fluid method is used as a basis to simulate cryogenic
and water jets (Lyra et al., 2018). The method has been previously derived for
examining the internal flow regimes of superheated liquids and is coupled here
with a spray model for modelling atomisation.

The proposed approach has the advantage of avoiding the unrealistic com-
mon assumption of pure liquid rather than a mixture at the nozzle exit. It
models the change in the regime inside the nozzle treating flashing in a unified
approach simulating the metastable jet both inside and outside the nozzle. Im-
portant mechanisms such as thermal non-equilibrium, aerodynamic break-up,
droplet collisions and evaporation are modelled in a novel atomisation model.
Results for turbulent flows for superheated liquids are presented showing that
the proposed approach can accurately simulate the primary atomisation.

2. Numerical modelling of flash boiling

2.1. Non-equilibrium vapour generation

The vapour mass fraction (denoted as x hereafter) is calculated for both the
internal flow and atomisation region. Introducing the transport equation in a
compressible framework with a mixture density ρ and a velocity field u_j it is
given as,

$$\frac{\partial \rho x}{\partial t} + \frac{\partial \rho u_j x}{\partial x_j} = \Gamma$$

(1)

The term Γ stands for the vapour generation rate. Vapour mass fraction is
changing through time and space and needs to be modelled for closure. Following [Downar-Zapolski et al. (1996)] as first approximation, x can be assumed
to relax towards an equilibrium value, x_{eq} at a time-scale Θ that is locally
dependent on pressure. The HRM is written in the following way,

$$\Gamma = -\rho \left(\frac{x - x_{eq}}{\Theta} \right)$$

(2)

This is first order approximation to Γ using Taylor series expansion. This formulation attains an exponential tendency for the system from an initial state x_0 to equilibrium through time,

$$x = x_{eq} \left(1 - e^{-\frac{t}{\Theta}} \right) + x_0 e^{-\frac{t}{\Theta}}$$

(3)

The equilibrium value for the vapour mass fraction can be calculated as,

$$x_{eq} = \frac{h - h_{l, sat}}{h_{v, sat} - h_{l, sat}}$$

(4)

In this formulation, $h_{l, sat}, h_{v, sat}$ are the saturated enthalpies of liquid and vapour state. The timescale for the model is calculated as,

$$\Theta = \Theta_0 \alpha e^{-0.257\psi - 2.24}$$

(5)

The non-dimensional pressure ψ is equal $(p_{sat} - p)/p_{sat}$. The timescale Θ is a function of the constant $\Theta_0 = 6.51 \times 10^{-4}$ and local densities. The void fraction is calculated from the liquid and vapour densities ρ_l, ρ_v as $\alpha = (\rho_l - \rho)/(\rho_l - \rho_v)$. The last two equations have been derived from Downar-Zapolski et al. (1996) for water jets at initial pressure up to 100 kPa. The low-pressure correlation for HRM has been used before for superheated R134A Lyras et al. (2017).

2.2. Pressure calculation

The concept of the pressure equation is to create an equation that encapsulates all the processes involved in the fluid flow motion. The algorithm of Lee et al. (2009) and Schmidt et al. (2010) has been used as a basis. Since density is a function of pressure, temperature and quality, $\rho = \rho(p, h, x)$. Following Bilicki and Kestin (1990), the material derivative of density becomes

$$\frac{D\rho}{Dt} = \left(\frac{\partial \rho}{\partial p} \right)_{h,x} \frac{Dp}{Dt} + \left(\frac{\partial \rho}{\partial h} \right)_{p,x} \frac{Dh}{Dt} + \left(\frac{\partial \rho}{\partial x} \right)_{p,h} \frac{Dx}{Dt}$$

(6)
Combining with the continuity equation
\[-\rho \frac{\partial u_i}{\partial x_i} \frac{D\rho}{Dt} = \left(\frac{\partial \rho}{\partial p} \right)_{h,x} \frac{Dp}{Dt} + \left(\frac{\partial \rho}{\partial h} \right)_{p,x} \frac{Dh}{Dt} + \left(\frac{\partial \rho}{\partial x} \right)_{p,h} \frac{Dx}{Dt} \] (7)

The momentum equation in a matrix notation following Jasak (1996) is
\[a_P u_P = H(u_j) - \frac{\partial p}{\partial x_i} + F_\sigma \] (8)

In this formulation, \(a_P \) is the diagonal coefficients tensor for a cell \(P \) and \(H(u_j) \) is the coefficient matrix for all the neighbours of \(P \) including other source terms except for the pressure gradient. Solving for \(u_P \) (denoted with \(u \) hereafter) and substituting to Eq. (7), a matrix equation for pressure is obtained
\[\rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} H(u_j) \right)_f - \rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} \frac{\partial p}{\partial x_i} \right) + \rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} F_\sigma \right) + \left(\frac{\partial \rho}{\partial p} \right)_{h,x} \frac{Dp}{Dt} + \left(\frac{\partial \rho}{\partial h} \right)_{p,x} \frac{Dh}{Dt} + \left(\frac{\partial \rho}{\partial x} \right)_{p,h} (x - x_{eq}) + \left(\frac{\partial \rho}{\partial \gamma} \right)_{p,h} \frac{D\gamma}{Dt} = 0 \] (9)

The operator \((\cdot)_f\) stands for the interpolation to the cell faces. In cases of air entrainment to the mixture another term can be added to this last equation. Introducing an indicator function \(\gamma \) for the mixture (liquid and its vapour) \((\gamma = 1 \text{ for no air and } \gamma = 0 \text{ in case of no mixture})\) and substituting the HRM expression the pressure equation becomes
\[\rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} H(u_j) \right)_f - \rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} \frac{\partial p}{\partial x_i} \right) + \rho \frac{\partial}{\partial x_j} \left(\frac{1}{a_p} F_\sigma \right) + \left(\frac{\partial \rho}{\partial p} \right)_{h,x} \frac{Dp}{Dt} + \left(\frac{\partial \rho}{\partial h} \right)_{p,x} \frac{Dh}{Dt} + \left(\frac{\partial \rho}{\partial x} \right)_{p,h} (x - x_{eq}) + \left(\frac{\partial \rho}{\partial \gamma} \right) \frac{D\gamma}{Dt} = 0 \] (10)

This equation is used for the pressure update (without the pressure gradient correction) and includes the effects of the surface tension, thermal non-equilibrium and multiphase mixing (Lyras et al. 2018). In this paper an additional term for thermal expansion is incorporated. The densities of each phase \(k \) with compressibility \(\Psi_k \) are calculated using a linear approximation from a reference state (saturation conditions) of the following form
\[\rho_k = \rho_{ref} + \Psi_k (p - p_{ref}) \] (11)

The rest of the mixture properties are calculated as in Lyras et al. (2018).
2.3. Interface tracking

The volume of fluid (VOF) approach is used here to capture the interface between the liquid and gaseous phases. VOF method is a distinct interface capturing method for resolving the inter-phase dynamics (Prosperetti and Tryggvason, 2009). Surface forces due to liquid-gas interfacial instabilities can be significant for the spray dynamics (Crowe, 2005). VOF has been employed before for cavitating flows by Ishimoto et al. (2008), Edelbauer (2017) and Srinivasan et al. (2010), and for non-evaporating sprays by Tomar et al. (2010) and Ling et al. (2015). In cases of mass transfer due to phase change, the interface changes through time and space at any direction. This is included in the continuity equation and consequently in the pressure equation. The liquid mass fraction is updated first for the VOF term in the momentum equation in favour of the volume fraction which is generally recommended in incompressible flows (Jiang et al., 2010). The continuum surface force (CSF) of Brackbill et al. (1992) is used to calculate the surface tension force in the momentum equation. This force is acting on the liquid-gas interface and is explicitly calculated as

\[F_\sigma = \sigma \kappa \nabla \phi_l \]

The liquid volume fraction \(\phi_l \) is calculated from the mass fraction of the liquid according to Lyras et al. (2018). The surface tension is denoted with \(\sigma \) and the curvature of the interface with \(\kappa \) and is given by

\[\kappa = -\nabla \cdot \left(\frac{\nabla \phi_l}{|\nabla \phi_l|} \right) \]

This expression is added to the pressure equation. The HRM and VOF are naturally coupled together addressing different inherent physical phenomena. This is a volume conservative formulation and is adopted for both the flow inside the channel and the primary and secondary break-up.

3. Liquid atomisation

The characterisation of liquid atomisation can be considered as a problem of describing the small liquid volumes of arbitrary shape in the three-dimensional
space. In two phase flows (liquid and gas) the two fluids are separated by an interface. The presented method in this paper considers liquid/gas cases, although the same method applies to two immiscible fluids e.g. two liquids [Lhuilière 2003]. The interface is a two-dimensional surface in the three-dimensional space. The representation in space $x = (x, y, z)$ and time t of this surface S can be done through a geometrical constraint $F(x, t) = 0$ [Aris 1962]. The phase indicator function can be defined via a Heaviside function $H()$ [Prosperetti and Tryggvason 2009] as

$$\phi_l(x) = 1 - \phi_g(x) = H(F(x), t)$$

(14)

For each phase k, liquid (l) or gas (g), $\phi_k = 1$ if and only if x lies inside phase k. The velocity at the surface S is then $u_c = (\partial x/\partial t)_S$. Since the function F becomes zero at the interface, its material derivative is zero

$$\frac{\partial F}{\partial t} + u_c \cdot \frac{\partial F}{\partial x_j} = 0$$

(15)

From the last two equations it is clear that every velocity field with the same normal component will produce the same same motion of the interface. Since the normal unit vectors are $n_l = -n_g = \nabla F / |\nabla F|$, this normal velocity is equal to $u_c \cdot n_l = -u_c \cdot n_g = (\partial F/\partial t) / |\nabla F|$. Recalling the definition of the phase indicator ϕ_k, for each phase k, $\nabla \phi_l = -\nabla \phi_g = \delta(F)\nabla F$ where $\delta()$ is the Dirac function.

The local instantaneous interfacial area concentration (fine-grained surface density) δ_I can be defined as $\delta_I = -\nabla \phi_k = \delta(F)|\nabla F|$. This definition is employed from [Marle 1982], Kataoka et al. 1986, Lhuillier 2003 and Morel 2007. Using the microscopic velocity u_c, Lhuillier 2003 has demonstrated an equation for the evolution of δ_I using the following transport equation

$$\frac{\partial \delta_I}{\partial t} + u_c \cdot \frac{\partial \delta_I}{\partial x_j} = -\delta_I n_i n_j \cdot \frac{\partial u_c}{\partial x_j}$$

(16)

Following Ishii 1975 and Delhaye 1976 the ensemble average of δ_I is equal to the integral of the fine-grained surface density over a volume V with surface S which is equal to the surface density $\Sigma(x, t) = \delta_I = \frac{V}{V} \int_V \delta_I dV = \frac{S(x, t)}{V}$. In cases of zero mass flux at the interface (zero reaction rate) the velocity u_c
is equal to the fluid velocity \(u_j \). Integration of Eq.16 over \(V \) and using the definition of \(\Sigma \) leads to an equation for the surface density

\[
\frac{\partial \Sigma}{\partial t} + u_j \cdot \nabla \Sigma = -\Sigma n_i n_j : \frac{\partial u_i}{\partial x_j} \tag{17}
\]

Because of the complex motion of the interface, the associated quantities responsible for the description of \(\Sigma \) such as the interfacial stress or the interfacial orientation tensors need to be averaged. Hence the average \(\Sigma \) in space is used hereafter.

3.1. An equation for surface density

The equation for the evolution of the surface density in time and space Eq.17 contains in the RHS all factors that cause changes in a macroscopic level. The surface can be produced and destroyed by different dynamic processes happening during the atomisation. Vallet and Borghi (1999) illustrated a model for the including the effect of these processes in \(\Sigma \). This approach, the so-called \(\Sigma - Y \) model was established in an Eulerian framework and gave rise to the Eulerian-Lagrangian-Spray-Atomisation (ELSA) method (Vallet et al., 2001). In this paper the model proposed by Menard et al. (2006) and modified by Lebas et al. (2009) is used as basis. The model defines different source terms which describe the surface change due to turbulence, aerodynamic break-up and evaporation.

Here, the model is written splitting the evaporation term into a dense and dilute part \((S_{vap,den}, S_{vap,dil})\) as

\[
\frac{\partial \bar{\Sigma}}{\partial t} + \bar{u}_j \frac{\partial \bar{\Sigma}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu_t \frac{\partial \bar{\Sigma}}{\partial x_j} \right) + \Psi \left(S_{init} + S_{turb} + S_{vap,den} \right) + (1 - \Psi) \left(S_{coll} + S_{2ndBU} + S_{vap,dil} \right) \tag{18}
\]

The Reynolds average, \(\bar{\Sigma} \) is used and \(\bar{u}_j \) is the mass weighted Favre average of velocity. The model consists of several source terms on the RHS, which are associated with different processes that might have an impact on the atomisation. This approach extends the original model of Vallet and Borghi (1999) considering different and more mechanisms which can potentially alter the interface evolution. The source terms can be calculated via different approaches.
Here, they are split for the dense and dilute part of the spray using an indicator function \(\Psi \) which is equal to one if the liquid mass fraction, \(\tilde{Y}_l \) is between 1 and 0.5 and is zero for cells with a liquid mass fraction less than 0.1. The indicator function can be written as a function of the liquid volume fraction, \(\phi_l \), where \(\phi_l = \tilde{\rho}_l \tilde{Y}_l / \tilde{\rho}_l \) as,

\[
\Psi(\phi_l) = H(\phi_l - 0.1)H(\phi_l - 0.5) + (H(\phi_l - 0.1) - H(\phi_l - 0.5))(2.5\phi_l - 0.25) \tag{19}
\]

where \(H() \) is the Heaviside step function. In an analogy of the \(\Sigma \)-equation of Vallet and Borghi (1999) a primer approximation for the terms on the RHS is to write them in the form

\[
S = \frac{\bar{\Sigma}}{\tau_\Sigma} \left(1 - \frac{\bar{\Sigma}}{\Sigma_{eq}}\right) \tag{20}
\]

where \(\Sigma_{eq}, \tau_\Sigma \) are an equilibrium value for the interface and the time-scale of the corresponding process. A shortcoming of this restoration equilibrium model is that it is not well defined when no perturbations are present since at rest \(\bar{\Sigma}_{eq} = 0 \) which implies that for a finite time-scale \(\tau_\Sigma \) the surface will be destroyed infinitely fast. The term \(S_{init} \) corresponds to the minimum liquid-gas surface produced in the atomisation process and is larger where the gradient of liquid mass fraction is higher. By the definition of \(\bar{\Sigma} \), this minimum interface has to be proportional to the inverse of the integration kernel which can be also associated to the characteristic turbulent spatial scales. Following Menard et al. (2006) and assuming that the first blobs that form will be approximately of the scale of \(\ell_t \), it is \(S_{init} = Y_l(1 - Y_l)/\ell_t \) with the limiting case where liquid mass fraction becomes small where the minimum production of interface is a function of the liquid mass fraction gradient, \(S_{init} = 2 \frac{\mu_s}{\rho_l k} \frac{\delta Y_l}{\delta x_i} \frac{\delta Y_l}{\delta x_i} \). \(S_{turb} \) is the term responsible for the production or destruction of the interface density due to stretching caused by turbulence and collisions/coalescences in the dense part of the spray and is calculated using a formulation similar to Eq.20. It is assumed that interface will be created or destroyed due to turbulence until \(\Sigma \) reaches an equilibrium value, \(\Sigma_{turb}^* \) which is defined from an equilibrium Weber number \(We^* \), \(We^* = \rho_l k/\sigma \Sigma_{turb}^* \) which is set to be equal to 1.0. The
turbulent time-scale τ_t for this process, in case of Reynolds-Averaged-Navier-Stokes (RANS), is equal to k/ϵ for the $k-\epsilon$ turbulence models and for the $k-\omega$ models it is $\tau_t = 1/\omega$, where k, ϵ, ω are the turbulent kinetic energy, turbulent kinetic energy dissipation and the specific turbulence dissipation respectively. In Large-Eddy-Simulations (LES) the turbulent time-scale is $\tau_t = ||S_{ij}||^{-1}$, where S_{ij} is the strain rate tensor. The source terms S_{coll} and S_{2ndBU} for the surface creation/destruction due to collisions and the surface production due to secondary break-up in the dilute spray region are updated using the restoration equilibrium equation with different time-scales, $\tau_{coll}, \tau_{2ndBU}$ respectively. The equilibrium time-scales for S_{coll} is $\tau_{coll} = 1/\bar{\Sigma}^{2/3} \sqrt{2k}$ and the equilibrium Σ_{coll}^* for the collision-coalescence source term is calculated according to Lebas et al. (2009). The equilibrium timescale for S_{2ndBU} is done using the experimental work of Pilch and Erdman (1987) in case of the secondary break-up and the equilibrium Σ_{2ndBU}^* is calculated for a Weber number equal to 12 at the limit of Ohnesorge number equal to zero (Pilch and Erdman, 1987; Lebas et al., 2009). More details for the source terms $S_{init}, S_{turb}, S_{coll}$ and S_{2ndBU} are provided from Lebas et al. (2009).

Evaporating sprays

Finally, the last term in Eq.(18) are $S_{vap,den}, S_{vap,dil}$, which are responsible for the change in interface density due to evaporation. These terms are usually omitted in the literature since there is no available model valid for all the spray regions. In cryogenic superheated liquids such as R134A, evaporation could be important and can be influenced by mechanical effects. The distinction to dense and dilute contribution for the evaporation source term is proposed here for the first time since different conditions for the dense and dilute regions are acknowledged (Faeth, 2002). Accepting the classical view, drop evaporation dominates dilute sprays in the same way break-up dominates dense sprays. Hence, $S_{vap,dil}$ might have a contribution to the equation for Σ comparable to the other terms on the RHS of Eq.(18). In the dilute region, the liquid
structures that occur in the flow can be considered to be spherical droplets. Then it is

\[S_{\text{vap,dil}} = f_{v,s} \frac{\Sigma^2}{\rho} \tag{21} \]

The logic behind this formulation is that the term \(f_{v,s} \) is the mass transfer due to vaporisation per surface and is multiplied with the surface per area and surface per volume. The mass flux at the surface of a droplet of radius \(r_s \) is \(f_{v,s} = m_v / 4\pi r_s^2 \), where \(m_v \) is the mass vaporisation rate typically taken from a droplet evaporation model. From Abramzon and Sirignano (1989) one gets \(m_v = 2\pi \rho g D_{32} \Delta \ln(1 + B_M) Sh^* \), where \(B_M = Y_l / (1 - Y_l) \) is the mass transfer number (Spalding number). The modified Sherwood number, \(Sh^* \) depends on the flow characteristics, \(Sh^* = Sh^*(Re, Sc) \) and is a function of Sherwood, Reynolds and Schmidt numbers. The modified \(Sh^* \) is calculated as in Abramzon and Sirignano (1989). Substituting the expression of \(D_{32} \) one gets

\[S_{\text{vap,dil}} = -\frac{\Delta Sh^* \ln(1 + B_M)}{6Y_l} \left(\frac{\rho_0 \rho_g}{\rho^2} \right) \Sigma^3 \tag{22} \]

The above expression has units \([1/\text{ms}]\). It is important to mention that this formulation depends on the drop evaporation model expression that is used in each case. Ignoring the vapour film around the droplet, we can assume \(Sh = Sh^* \) and the vaporisation model of Spalding (1953) can be retrieved. In the dilute region of the spray, we expect that evaporation on the drop surface leads to surface reduction alongside with the droplet radius decrease justified by the \(D^2 \)-law. Consequently, a minus sign is included on the RHS of the above formula. The terms containing \(Y_l \) in Eq. 22 form a function of \(Y_l \) that tends to 1 for \(Y_l \to 0 \) and the source term scales to \(K \Sigma^3 \), where \(K = \Delta Sh^* / 6 \). Regarding the dense part, \(S_{\text{vap,den}} \), a simple correlation is introduced here, originally proposed in Lyras et al. (2017),

\[S_{\text{vap,den}} = \frac{\Sigma}{\Theta} \left(\frac{x_{eq} \rho_{eq}}{\rho} - x \right) \tag{23} \]

where the \(\rho_{eq} \) is the density at the thermodynamic equilibrium. Since in the primary atomisation region the liquid core is likely to remain in a metastable condition it is postulated that the relaxation time-scale might be appropriate
in Eq (23). The time-scale Θ can be used regardless the boiling mechanism one might assume for the numerical simulation, e.g. homogeneous or surface boiling. The evaporation source term contribution in the surface density equation is then summarised as

$$S_{vap} = \Psi \left[\frac{\Sigma}{\Theta} \left(\frac{x_{eq\rho_{eq}}}{\rho} - x \right) \right] + (1 - \Psi) \left[\frac{-Kl(1 + B_M)}{Y_l} \left(\frac{\rho_l \rho_g}{\rho^2} \right) \Sigma^3 \right]$$

(24)

The Σ-equation can now be written in its full form as

$$\frac{\partial \Sigma}{\partial t} + \frac{\partial (\bar{u}_j \Sigma)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu_t \frac{\partial \Sigma}{\partial x_j} \right) + \Psi \left[\frac{Y_l (1 - Y_l)}{l_t} + \frac{\Sigma}{\tau_t} \left(1 - \frac{\Sigma}{\Sigma_{turb}} \right) + \frac{\Sigma}{\Theta} \left(\frac{x_{eq\rho_{eq}}}{\rho} - x \right) \right] + (1 - \Psi) \left[\frac{\Sigma}{\tau_{coll}} \left(1 - \frac{\Sigma}{\Sigma_{coll}} \right) + \frac{\Sigma}{\tau_{2ndBU}} \left(1 - \frac{\Sigma}{\Sigma_{2ndBU}} \right) - \frac{Kl(1 + B_M)}{Y_l} \left(\frac{\rho_l \rho_g}{\rho^2} \right) \Sigma^3 \right]$$

(25)

The developed method is implemented within the open source CFD code OpenFOAM (Weller et al., 1998). Typically a second order bounded scheme is used to solve this equation together with a van Leer limiter. The method presented in the previous chapter for calculating the pressure is naturally coupled with the modified version of ELSA model proposed here. The vapour mass fraction equation is solved prior to the surface density equation calculating the mass fractions and the related source terms in Eq.(18). The HRM and modified ELSA are coupled for the first time with interface tracking to simulate superheated liquid jet atomisation. The PIMPLE algorithm, combination of the PISO and SIMPLE algorithms, (Ferziger and Peric, 2001) is used to couple pressure and velocity in a segregated manner. After calculating x with Eq.(1) the matrix $H(u_j)$ which contains all the terms the momentum equation, except for the gradient of pressure, is updated and is used to calculate the fluxes without the contribution of ∇p. The pressure equation is solved including the contributions of surface tension, thermal non-equilibrium e.t.c. and a new velocity field is obtained which will be relaxed (under-relaxation factors for pressure, velocity and surface density were within the range of 0.3 to 0.7). In most of the simulations 5 to 8 PISO loops were used with 1 to 3 outer loops for updating the $H(u_j)$ matrix using Courant numbers up to 2.2. Fixed values for pressure and velocity were imposed at the inlet flow with a boundary condition developed by Poinsot and...
Lelef [1992] for \(p \) and zero gradient for \(u \) at the low-pressure farfield (two-phase jet outlet). For LES velocity and viscosity boundary conditions are set following Montorfano et al. [2013]. A second-order bounded scheme (Jasak et al., 1999) for the convective terms was used for the calculations. The scheme is a blend of upwind and central scheme using a smooth transition between the low order to the second order scheme offering a good trade-off of accuracy and stability. Second order schemes with a linear correction were used for the gradient terms. The variables are stored in the cell centres in a co-located arrangement and they are interpolated at the cell faces.

4. Results and discussion

Results from numerical simulations regarding flashing R134A (1,1,1,2-Tetrafluoroethane: \(CF_3-CH_2F \)) are presented first. The experimental domain consists of a high-pressure region where R134A is stored at a pressure above its vapour pressure at ambient conditions (663 kPa at 293.15 K). The liquid passes through a nozzle of diameter \(D \) and length \(L \) and is released into a low-pressure region which is equal to the atmospheric pressure.

Previous experimental studies describe that flashing might start either inside or outside the channel it emerges from, depending on the channel geometry and superheat conditions. Yildiz [2005] observed that for small \(L/D \) the axial velocity does not change in the vicinity of the nozzle exit. The reported large values of droplet Sauter mean diameter (SMD) might be an indication that the jet flashed outside the nozzle. On the other hand, internal flashing with forming bubble nuclei might lead to more catastrophic flow patterns that influence the jet dynamics. It is of major importance to investigate these changes in the spray patterns with respect to macroscopic changes. For this reason, the experimental work of Zhou et al. [2012] is studied here. In this experiment, R134A flows through a long nozzle with \(L/D = 78.4 \) and diameter equal to \(D = 0.81\text{mm} \).
The domain used for simulations is shown in Fig. 1. The spray characteristics, the velocity and the Sauter mean diameter at various positions were measured. The flow patterns inside the nozzle were not studied in the experiment. Both RANS and LES framework were used. In Fig. 2 an example of small-scale LES simulations is shown for the experiment. The iso-contours of $\tilde{Y}_l = 0.28$ are included to illustrate the very first stages of the liquid jet atomisation. The outlet patches of the simulated domain were far enough, typically in more than $50D$ distance from the jet axis in the radial direction, and at $193D$ from the nozzle exit. RANS results are presented here for validation. The results were taken until steady state reached and any boundary effect at the far-field, downstream the nozzle has negligible impact. All the physical parameters of the experiment are listed in Table 1. The axial velocity profiles are shown in Fig. 3 as a function of the radial distance at two different positions. The axial velocity takes its maximum at the jet centreline in all cases. This is in accordance to the experimental and theoretical studies (Abramovich, 1963). An obvious differentiation occurs for the rate of the velocity decrease moving towards the jet periphery. The results indicate that the distance from the nozzle exit plays a role in the jet dispersion. Axial velocity decreases faster closer to the release point $x = 50 \text{mm}$ ($x/D = 61.7$), compared to the position $x = 90 \text{mm}$ ($x/D = 111$) where velocity changes in a smoother manner. This smaller gradient in the largest distance results indicates a more uniform jet morphology in the droplet cloud. The maximum predicted axial velocity at the $x = 50 \text{mm}$ position is around 35 m/s. The spray velocity starts to increase fast (in the so-called expansion zone) and becomes maximum and then decreases again (entrainment zone). The maximum at the numerical results occurs at approximately $x=60 \text{mm}$ ($x/D = 60$) whereas in experiments the peak value was observed for a small number of particles in $x=40 \text{mm}$ ($x/D = 49$). This increase in the axial velocity of the spray was not observed in Allen (1998) and a small increase in Yildiz (2005) was reported. The axial velocity is shown in Fig. 4. The jet, after emerging at the low-pressure region, is a dense spray consisting of droplets moving through a vapour cloud, which is a direct consequence of the evaporation
mechanism. The acceleration of the droplets is attributed by the authors of the experiment, to the explosive character of the atomisation of the cryogen. Up to the maximum velocity point, the liquid core might be considered to be practically intact. The velocity starts to decrease due to drag forces which prevail over the inertia forces and govern the droplets’ kinematics. From a numerical point of view, this acceleration imposes some major challenges in terms of stability and an under-relaxation procedure is recommended. The rapid increase and decrease in the axial velocity might cause weakness to the pressure-velocity coupling, and a good choice of turbulence model from the $k-\omega$ family with near-wall treatment is required. Here the SST-$k - \omega$ model of Menter [1993] is employed.

Figure 1: Schematic of the domain used in simulations. The superheated liquid flows through the channel and exits at the low-pressure region as a two-phase jet.

Figure 2: Snapshot of iso-contour \tilde{Y}_l for LES simulations at the first 5mm of spray motion downstream the nozzle exit. A mean cell size equal to $4\mu m$ was used close to the nozzle exit.

Regarding the spatial scale of the liquid structures, results for the D_{32} are
Table 1: Physical properties for simulations.

<table>
<thead>
<tr>
<th>Physical parameters for simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure</td>
</tr>
<tr>
<td>Inlet temperature</td>
</tr>
<tr>
<td>Outlet pressure</td>
</tr>
<tr>
<td>Outlet temperature</td>
</tr>
<tr>
<td>L/D</td>
</tr>
<tr>
<td>Nozzle diameter</td>
</tr>
<tr>
<td>Thermodynamic conditions</td>
</tr>
</tbody>
</table>

Quantifying the size of ligaments and blobs that form within the jet is not a trivial task. The limited visibility of the moving particles and the need for non-intrusive measurement techniques makes the experimental characterisation of the mean droplet size extremely difficult. Statistical analysis of the Phase Doppler Particle Analyzer (PDPA) results gave the SMD which is used for comparison here. Fig. 5 shows the radial variations of SMD for $x/D = 61.7$ and $x/D = 111$. The model overestimated the D_{32} closer to the jet centreline and showed good agreement after $1.5D$ distance in the radial direction. This behaviour is reasonable and appears in other numerical studies [Vallet et al., 2001]. This can be caused due to the numerical parameters used in the Σ-equation and the source terms in particular. The equilibrium values are also subject to numerical tuning. The difference might also be an indication for changing the HRM constants for R134A. The HRM contribution is both in the pressure update and equation Eq.(18). A slightly increasing trend in the D_{32} observed in the experiments is also captured from the atomisation model. Fig. 5 illustrates the multi-scale character of flash-boiling atomisation. The nozzle length of the experiment was $L = 63 \text{ mm}$. Moving along the nozzle, the flashing inception begins in the internal flow, and one might reasonably assume that at some point the regime transition from pure liquid to a dispersed flow happens. The size of the droplets can be comparable to the nozzle diameter, $O(10^{-3}) \text{ m}$ initially,
and drops due to mechanical and thermodynamic effects becoming $O(10^{-6})m$ at the measured axial positions and at the radial direction. Hence, the average particle size can be reduced to one thousand times its original size.

The reason for this reduction in spatial scale of the blobs and droplets can be attributed to the explosive character of the atomisation. This character is fundamentally associated with the flashing mechanism which starts inside the nozzle. Results in Fig. 5 for D_{32} simulating the same experiment but without considering the internal flow reveal a higher deviation with experiments at $x = 50mm$ but smaller in the $x = 90mm$ position. Exclusion of the internal flow simulation tends to under-predict the SMD at $r/D = 3$ and afterwards for both positions. The droplets emerge to the atmosphere at a temperature higher than the saturation temperature and become locally superheated. This metastable state follows a violent liquid fragmentation (explosive atomisation) with new smaller droplets. Moving further away from the nozzle exit, the flow is expected to become more uniform, with droplet evaporation becoming more important. Droplet evaporation manifests that the smaller droplets moving at the periphery
Figure 4: Distribution of dimensionless axial velocity along the jet centreline, u_x/u_{max}.

of the jet become smaller until they are practically negligible. Under these conditions, the mean surface density decreases (Fig. 6) which

![Dimensionless axial velocity](image)

$$D_{32} = \frac{6\rho \bar{Y}_d}{\rho_f \Sigma}$$

Figure 5: Sauter mean diameter (SMD) at x=50, 90mm. Comparison with Zhou et al. (2012).
Figure 6: Distribution of dimensionless liquid and vapour mass fraction, y and surface density, Σ/Σ_0 along the jet centreline.

means that the SMD becomes bigger ($D_{32} \propto 1/\bar{\Sigma}$), hence the increasing trend in Fig. 5. In Fig. 6 the surface density is shown normalised with a theoretical initial value $\Sigma_0 = 1/\Delta^3$ where Δ is the LES filter used in the simulations. This is the value that Σ will scale with a very fine mesh, [Navarro-Martinez (2014)]. This value is expected to be the upper limit for Σ in dilute regions where only small blobs and droplets exist (sub-grid scale). Comparing the results in D_{32} with the experimental findings of [Yildiz (2005)] one might elucidate the impact of the nozzle length-to-orifice ratio on the spray dynamics. The average D_{32} in the experiment considered here ($L/D = 78.4$) for a long nozzle was less than $15\mu m$ whereas for an inlet pressure approximately 8bar and a short nozzle with $L/D = 2$ the measured average droplet sizes were much higher and remained always greater than $50\mu m$. The nature of the relationship between L/D and SMD was studied by [Yildiz (2005)]. In particular, at $x/D = 110$ the higher values of D_{32} for the longer nozzle were justified from the incomplete atomisation that occurred inside the nozzle for the case of nozzles with larger L/D. Nevertheless, the L/D used in [Zhou et al. (2012)] was much larger, and
the internal flashing is expected to cause bubble nucleation and bursting earlier, giving in general smaller droplet sizes. A three-dimensional caption of the liquid jet atomisation for shorter $L/D = 4$ using LES is presented in Fig. 7.

Figure 7: Iso-contour for $y=0.47$ with the magnitude of vorticity using LES for the first 10mm of the spray. The physical parameters are the same as in Zhou et al. (2012) but for shorter nozzle $L/D = 4$.

4.2. Water experiments: Park and Lee (1994)

The next flashing scenario examined was for water jets flowing through sharp nozzles. The classic experiments of Park and Lee (1994) are considered here. The test cases were for small pressures up to 4bar and initial temperatures up to 125°C. A long nozzle was used which offers an opportunity to study the internal flashing mechanism. All the major physical properties for the simulations are listed in Table 2. LES was tested for simulating the internal flow and the primary atomisation region up to a distance 7D. The Smagorinsky model was used and the sub-grid-scale Reynolds stress, τ_{s}^{sgs}, is modelled as $\tau_{ij}^{sgs} = \frac{1}{3}\tau_{kk}^{sgs} \delta_{ij} = 2\mu_{t} \bar{S}_{ij}$. The sub-grid-scale eddy viscosity can be derived by dimensional arguments to be equal to $\mu_{t} = C_{S}^{2} \rho \Delta^{2} \parallel \bar{S} \parallel$, where $\parallel \bar{S} \parallel = (S_{ij}S_{ij})^{1/2}$. Here, a low value of the constant $C_{S} = 0.065$ is used, recommended for channel flows. Results shown in Fig. 8 for the liquid-gas interface show the gradual liquid fragmentation though time. The long channel and the low inlet pressure resulted in an increased residence giving time for bubbles to form, burst and collapse signalling a regime change. The growing waves acting on the jet start to influence the jet and the result of these perturbations is evident after some reasonable time, which is excepted according to
Rayleigh’s theory (is more clear here after $t=0.0006s$). Moving further downstream the nozzle exit, the liquid surface decreases due to large ligaments and blobs shedding to smaller structures. The authors of the experiment investigated a thorough analysis for determining primarily the relationship between the superheat degree and the spray characteristics in low pressure flashing jets. In their study they concluded that for long nozzles bubble nucleation starts at the walls region. They distinguished three regimes for the internal flow: bubbly, annular and slug. They observed that for low superheat degrees the bubbly regime is sustained across the nozzle with bubble formation and growth moving towards the nozzle exit. The bubbles burst outside the nozzle fragmenting the liquid core into ligaments. The intact liquid core becomes shorter with increasing the superheat degree. In this case the bubble nucleation inside the nozzle was reported to be more extensive, predating a slug or annular regime for the channel flow. During the primary atomisation process in slug regime, the slug bubbles that form from smaller bubbles that collide and coalesce, burst into ligaments. On the other hand, in the annular regime the liquid phase was moved towards the walls and then an enhanced disintegration downstream the nozzle exit due to the interactions with the vapour core gave generally smaller SMD values for the droplets. The numerical results in Fig. 9 seem to agree with the observations of Park and Lee (1994) that increasing the degree of superheat, the SMD decreases, at least for a constant pressure. Fig. 9 illustrates the mean SMD value at the radial direction at distance $x = 50mm$ ($x/D=33.3$). Results are plotted using the normalised superheat degree ΔT_{sh} with respect to the ambient conditions (out)

$$
\Delta T_{sh} = \frac{T_{in} - T_{sat}(p_{out})}{T_{sat}(p_{in}) - T_{sat}(p_{out})}
$$

Small values of ΔT_{sh} indicate a non-superheated state of the liquid jet and for $\Delta T_{sh} = 1$ the liquid boils inside the storage vessel. The results show good agreement for higher superheat degrees. The deviation for $\Delta T_{sh} = 0.2$ could be associated to the higher residence time inside the channel and the Σ-equation constants. The impact of the initial storage pressure is illustrated in the exper-
imental and numerical results. Bubble nucleation appears to attain a random occurrence pattern. Pressure change might also alter the jet stability, with higher pressures leading to a more stable regime [Wang et al., 2017]. For the same pressure (p=3bar) increasing ΔT_{sh} reduces the SMD. This could be connected to the number of bubbles inside the nozzle which is expected to increase with increasing the superheat degree since the surface tension of the vapour decreases with a consequent decreasing for the departure diameter for the bubble [Hutcherson et al., 1983]. Hence, the internal flow becomes more bubbly. In the numerical results, the mean SMD reduces approximately 43 percent of the value for $\Delta T_{sh} = 0.3$ and in the experiments the mean Sauter mean diameter is 33 percent of the former. On the contrary, keeping the temperature constant, $T_{in} = 110$ and decreasing the pressure from 4bar ($\Delta T_{sh} = 0.2$) to 3bar ($\Delta T_{sh} = 0.5$) the mean D_{32} decreased approximately 20 μm in the experiment but slightly increases a few microns in the CFD results. The effect of the pressure on the droplet SMD was also studied by Cleary [2008] who suggested that $D_{32} \propto p^{-0.54}$. This suggests that increasing the pressure D_{32} decreases, at least within the limits of the proposed correlation ($L/D < 50$). Fig. 10 shows

<table>
<thead>
<tr>
<th>Table 2: Physical properties for simulations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure</td>
</tr>
<tr>
<td>Inlet temperature</td>
</tr>
<tr>
<td>Outlet pressure</td>
</tr>
<tr>
<td>Outlet temperature</td>
</tr>
<tr>
<td>L/D</td>
</tr>
<tr>
<td>Nozzle diameter</td>
</tr>
<tr>
<td>Thermodynamic state</td>
</tr>
</tbody>
</table>

the dimensionless spray angle which is the calculated spray angle divided by its maximum value. Both in experiments and CFD the angle is defined as the included angle between the lines connecting the nozzle exit and the points at
the spray edge at 20mm (x/D=13.3) downstream the nozzle exit. The angle shows initially an increasing trend increasing the superheat for both cases of 2bar and 3bar. Higher values of superheat correspond to an increment in the number of critical vapour nuclei that form per unit volume and time, J. For higher temperatures, the waiting time for the critical nuclei to form decreases ($\tau \sim 1/J$) giving rise in nucleation rate (Avedisian, 1985) and consequently more vapour appears in jet (see Fig. 11). The jet dispersion in the radial direction is wider which indicates that the spray angle is larger. As Park and Lee (1994) point out, the bubbles that form burst and increase the velocity in the radial direction. The spray angle increases until it reaches a maximum and decreases rapidly after. The maximum angle location is not the same for each case. For inlet pressure equal to 2bar it occurs at approximately in $\Delta T_{sh} \simeq 0.9$ ($T_{in} = 122.5^\circ C$) whereas for the case of 3bar, it occurs at approximately in $\Delta T_{sh} \simeq 0.65$ ($T_{in} = 120^\circ C$). The spray angle after reaching its maximum starts to decrease due to entrainment effects (see Fig. 12). The enhanced atomisation results in a finer spray and the smaller droplets, which are influenced more by drag forces, vaporise until they become negligible or return back to the dense region of the spray.
Figure 8: Evolution of Σ with respect to time from 3D LES.
Figure 9: Cross-sectional averaged SMD versus the dimensionless superheat $\frac{T_s}{\Delta T_{sh}}$ at 50mm ($x/D=33.3$) distance downstream the nozzle exit. Comparison with Park and Lee (1994).

Figure 10: Normalised spray angle with respect to the dimensionless superheat $\frac{T_s}{\Delta T_{sh}}$ at 50mm ($x/D=33.3$) distance downstream the nozzle exit. Comparison with Park and Lee (1994).
Figure 11: Liquid volume fraction at the radial direction for two different initial temperatures at x=20mm.

Figure 12: Velocity profile at the radial direction, u_x/u_{max} for two different initial temperatures at x=20mm.
5. Conclusion

A novel method for modelling the atomisation of flashing jets is presented in this paper. The method is coupled with a newly developed pressure equation for flash boiling constructing a unified approach for modelling superheated jets primary atomisation and secondary break-up considering the flow inside the channel they emerge from. This is an Eulerian approach for modelling the spray motion and employs the liquid-gas interface density concept. Based on the existing ELSA models, a new extension is proposed for the Σ-equation which is appropriate for the evaporation contribution in Σ in the dense and dilute spray regions. This new Σ-Y model has the capability to simulate all the stages of flashing jets atomisation. A validation series is presented for some important spray characteristics such as the Sauter mean diameter of the droplets, the velocity and spray angle. Different flashing jets scenarios are demonstrated for flashing water and R134A for validation and predictions for the droplet characterisation of superheated jets. The model can be easily implemented in pressure-based CFD codes for turbulent reactive flows allowing the description of the jet disintegration into liquid ligaments and droplets. The modified Σ equation employs constants for the surface creation and destruction from previous DNS simulations and experiments for specific liquids. This induces uncertainties especially for the evaporation source terms. Hence, parametric studies for model calibration for realistic flashing releases would give insights regarding the optimum selection of the numerical constants. Further research should be made for the implicit/explicit treatment of the source terms in the Σ-Y model and the impact of the turbulence modelling approach on the primary atomisation.

Acknowledgements

The authors would like to thank Prof. David P. Schmidt from the University of Massachusetts, Amherst and the Marie Curie Action of the 7th Framework Program of the European Union. The current work is part of the SafeLNG
project (Project ID: 606754) regarding the numerical characterisation and sim-
ulation of the complex physics underpinning the Safe Handling of Liquefied

References

M.I.T. Press.

Abramzon, B., Sirignano, W., 1989. Droplet vaporization model for spray com-
bustion calculations. International Journal of Heat and Mass Transfer 32,
1605–1618.

part one: velocity profiles1some aspects of the work described in this paper
were presented at the ukala symposium on laser anemometry and computa-
tional solutions, university of loughborough, 2nd-3rd july, 19971. Jour-
nal of Loss Prevention in the Process Industries 11, 291–297. doi:
https://doi.org/10.1016/S0950-4230(98)00015-1

diesel nozzle geometry in the injection rate characteristic. Journal of Fluids
Engineering 126, 63–71.

Bilicki, Z., Kestin, J., 1990. Physical aspects of the relaxation model in two-

van den Bosch, C.J.H., Waterings, R., 2005. Methods for the calculation of
physical effects. TNO yellow book, second edition.

Hervieu, E., Veneau, T., 1996. Experimental determination of the droplet size and velocity distributions at the exit of the bottom discharge pipe of a liquefied propane storage tank during a sudden blowdown. Journal of Loss

doi:10.1063/1.168744

Witlox, H.W.M., Bowen, P.J., 2002. Flashing liquid jets and two-phase dispersion A review. HSE.
