
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/1129

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



The Dynamics of Open�Ocean

Plankton Ecosystem Models

Andrew Yool

Submitted for the degree of �

Doctor of Philosophy

Department of Biological Sciences

University of Warwick

Coventry CV� �AL

England� United Kingdom

September ����



For my parents�

i



Contents

Acknowledgements v

Declaration vii

Abbreviations viii

Unit conversion ix

Summary x

� Introduction �

��� Opening remarks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Rationale � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� What are plankton� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Plankton assemblages � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Classi
cation by size � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Classi
cation by trophic position � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Model biology � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Ocean physics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Irradiance and ocean heating � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Vertical structure and mixing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Large scale ocean circulation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Model physics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Studying plankton systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Plankton measurements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Shipboard� cruise and marine stations � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Remote sensing platforms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Why model� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Historical background � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	�� The Lotka�Volterra model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	�� Mathematical considerations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� The rise of computational power � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

ii



��	�� Plankton modelling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Introducing the Fasham ������ model ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Model equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Phytoplankton � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Zooplankton � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Bacteria � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Detritus �particulate organic nitrogen� � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Nitrate � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Ammonium � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Dissolved organic nitrogen �DON� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Forcing functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Solar irradiance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Mixed layer depth � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Comparison with other models � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Model structures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Phytoplankton limitation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Phytoplankton losses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Zooplankton losses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Model parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Reducing the Fasham ������ model 	


��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Methodology � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Reducing the Fasham ������ model � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Modelling nitrate implicitly � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Ammonium inhibition of nitrate uptake � � � � � � � � � � � � � � � � � � � � � � � � 

����� Model numerical solutions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� OWS �India� solutions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Bermuda Station �S� solutions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Mixed�layer depth solutions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Sub�thermocline nitrate solutions � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Annual nitrogen �ow results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Model �c� implicit nitrate solutions � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

����	 Ammonium inhibition of nitrate uptake � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

iii



��� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Oscillatory behaviour at OWS �India ��


��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Examination of the full model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Forcing functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Fixed forcing studies � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Examining a nitrate�unlimited case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Can the full model produce limit cycles� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Numerical approach � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Mixing rate and subthermocline nitrate � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� OWS �India� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Bermuda Station �S� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Bifurcations in other parameter ranges � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 E�ects of a reduced detrital sinking rate � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Seasonal forcing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Functional forms of higher predation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Four closure terms and a nutrient index � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Sensitivity analyses and stochastic parameterisation ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Model uncertainties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� A sensitivity analysis of the full model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Techniques for sensitivity analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Monte Carlo simulations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Stochastic parameter simulations � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Parameter sensitivity at OWS �India� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

����� Simulation methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Simulation results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Parameter sensitivity at Bermuda Station �S� � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	 Exploring stochastic approaches � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Distribution width � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

iv



��	�� Period of stochastic transformations � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	�� Transformation timing of stochastic parameters � � � � � � � � � � � � � � � � � � � � ���

��	�� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Multiple parameters and variability � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Variability and the reduced models � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Addendum � Response to Annan ����	� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	 Deep chlorophyll maxima� two layer plankton models and Fasham ������ �	�

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Model equations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Phytoplankton � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

����� Detritus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Nitrate � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Zooplankton � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Assigning parameter values between the layers � � � � � � � � � � � � � � � � � � � � �	�

��� Choosing a zooplankton model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Evolutionary considerations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Latitudinal variation in the importance of DCM � � � � � � � � � � � � � � � � � � � � � � � ��

����� Comparison with Taylor et al� ������ � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Patterns of biological production � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Taylor�s common model properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Testing the predicted properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Latitudinal di�erences � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Limit cycle behaviour of the two layer model � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Mixing rate and subthermocline nitrate � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Thermocline thickness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Mixing inputs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	 Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

�� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���


 Conclusions and future work ���

	�� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� Future work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	�� �Robust� models � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

v



	�� Closing remarks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Appendices ��


A�� Correction of the ��	� OWS �India� data � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� Program code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Main program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Runge�Kutta integrating engine � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Fasham ������ model function � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Forcing functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

A���� Miscellaneous mathematical functions � � � � � � � � � � � � � � � � � � � � � � � � � ���

A�� Software used � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

References ���

vi



List of Figures

��� Trade and westerly wind systems in the northern and southern hemispheres of the earth� � �

��� Diagrammatic representation of the processes of Ekman and Sverdrup transport� � � � � � ��

��� The major surface currents of the northern and southern Atlantic ocean� � � � � � � � � � � ��

��� Diagrammatic representation of the modelled physical and biological system� � � � � � � � ��

��� Sampling sites in the North Atlantic from the World Ocean Optics Database �WOOD�� � ��

��� A time series and phase portrait of a Lotka�Volterra model simulation� � � � � � � � � � � � ��

��� Diagrammatic representation of the Fasham ������ model� � � � � � � � � � � � � � � � � � � ��

��� Modelled attenuation of irradiance with depth for a water column at OWS �India� during

a simulated spring bloom �day ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The photosynthesis�irradiance �or P�I� curve used in this model� � � � � � � � � � � � � � � ��

��� The pattern of sea�surface irradiance calculated for day �	� �mid�summers day� of an

OWS �India� simulation� and that assumed by the analytical equation derived by Evans

� Parslow ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Michaelis�Menten curve for uptake of a nutrient� � � � � � � � � � � � � � � � � � � � � ��

��� Annual cycles of mean daily sea surface irradiance at OWS �India� and Bermuda Station

�S�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Annual cycles of mixed�layer depth at OWS �India� and Bermuda Station �S�� � � � � � � ��

��� Model �c� a two compartment PZ system� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c� a three compartment ZPN system� � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c�� a three compartment ZPD system� � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c� a four compartment ZPND system� � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c�� a four compartment ZPND system� � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c� a 
ve compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��	 Model �c�� a 
ve compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

�� Model �c�� a 
ve compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Model �c� a six compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Model �c�� a six compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Model �c�� a three compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Model �c�� a four compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Model �c�� a 
ve compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

vii



���� Model �c�� a six compartment system� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Annual mixed�layer depth pro
les generated from the OWS �India� data set but re�scaled

to new winter maximum depths� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� in each of

the models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���	 Simulated annual cycles of bacteria and ammonium at OWS �India� in each of the ap�

propriate models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Simulated annual cycles of detritus and DON at OWS �India� in each of the appropriate

models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Simulated annual cycles of nitrate�nutrient and total system nitrogen at OWS �India� in

each of the models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

���� Simulated annual cycles of maximum possible phytoplankton growth and nutrient limita�

tion at OWS �India� in each of the appropriate models� � � � � � � � � � � � � � � � � � � � �

���� Simulated annual cycles of zooplankton daily loss rate at OWS �India� in each of the

models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycle of the f�ratio at OWS �India� in each of the appropriate models� � ���

���� Simulated annual cycles of phytoplankton and zooplankton at Bermuda Station �S� in

each of the models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of bacteria and ammonium at Bermuda Station �S� in each of

the appropriate models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of detritus and DON at Bermuda Station �S� in each of the

appropriate models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Simulated annual cycles of nitrate�nutrient and total system nitrogen at Bermuda Station

�S� in each of the models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���	 Simulated annual cycles of maximum possible phytoplankton growth and nutrient limita�

tion at Bermuda Station �S� in each of the appropriate models� � � � � � � � � � � � � � � � ���

��� Simulated annual cycles of zooplankton daily loss rate at Bermuda Station �S� in each of

the models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycle of the f�ratio at Bermuda Station �S� in each of the appropriate

models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of mixed�layer depth regimes �models �c� �c� �c� and �c�� � � � � � � � � � � � � � � � � � � ��	

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of mixed�layer depth regimes �models �c�� �c� �c� and �c��� � � � � � � � � � � � � � � � � � ��

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of mixed�layer depth regimes �models �c and �c��� � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of mixed�layer depth regimes �models �c�� �c�� �c� and �c��� � � � � � � � � � � � � � � � � ���

viii



���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of subthermocline nitrate�nutrient concentrations �models �c� �c and �c��� � � � � � � � � � ���

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of subthermocline nitrate�nutrient concentrations �models �c� �c� and �c��� � � � � � � � � ���

���� Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of subthermocline nitrate�nutrient concentrations �models �c and �c��� � � � � � � � � � � � ���

���	 Simulated annual cycles of phytoplankton and zooplankton at OWS �India� under a range

of subthermocline nitrate�nutrient concentrations �models �c�� �c�� �c� and �c��� � � � � � ���

��� Annual nitrogen �ows at OWS �India� of the Fasham ������ model� � � � � � � � � � � � � ���

���� Annual nitrogen �ows at Bermuda Station �S� of the Fasham ������ model� � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c� � � � � � � � � � � � � � � � � � � � � � ��	

���� Annual nitrogen �ows at OWS �India� of model �c� � � � � � � � � � � � � � � � � � � � � � ��	

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ��

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���	 Annual nitrogen �ows at OWS �India� of model �c� � � � � � � � � � � � � � � � � � � � � � ���

��� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows at OWS �India� of model �c�� � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of phytoplankton for the full model and model �c� at OWS �India����	

���� Simulated annual cycles of phytoplankton for the full model and model �c� at Bermuda

Station �S�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Surfaces of phytoplankton growth limitation produced using di�erent models of nitrate

and ammonium uptake� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���	 Nitrate�Ammonium phase space portraits showing the trajectories of full model running

uptake model � and uptake model � at OWS �India� and Bermuda Station �S�� � � � � � ���

��� Simulated annual cycles of phytoplankton for the full model using uptake model � and

uptake model �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Annual nitrogen �ows of the NH� model at OWS �India�� � � � � � � � � � � � � � � � � � � ���

��� Depth�corrected measurements of chlorophyll in the mixed layer at OWS �India� during

��	�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Seasonal cycles of forcing functions and plankton for simulations in which the forcing

functions were locked at the labelled points in the annual cycle� � � � � � � � � � � � � � � � ���

ix



��� Seasonal cycles of forcing functions and plankton for simulations of model �c� in which

the forcing functions were locked at the labelled points in the annual cycle� � � � � � � � � ���

��� The results of numerical solutions performed at OWS �India� on day ��	 across a range

of cross�thermocline mixing rates �m� and subthermocline nitrate concentrations �N��� � � ���

��� Sample time series of phytoplankton and zooplankton for two pairs of m and N� values� � ���

��� The results of numerical solutions performed at Bermuda Station �S� on day ��� across

a range of cross�thermocline mixing rates �m� and subthermocline nitrate concentrations

�N��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	 Extent of limit cycle regions for 
xed forcing simulations at both stations on days ��	

and ��� respectively� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Limit cycle period versus phytoplankton maximum growth rate at OWS �India� on day

��	� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Phytoplankton� zooplankton and nitrate equilibria across ranges of parameters a� �� kw�

kc and Vp� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���� Phytoplankton� zooplankton and nitrate equilibria for parameters �� �� �� k� and k�� � � � �	�

���� Phytoplankton� zooplankton and nitrate equilibria for parameters k�� k�� k�� k� and ��� � �	�

���� Phytoplankton� zooplankton and nitrate equilibria for parameters ��� ��� ��� � and p�� � �	�

���� Phytoplankton� zooplankton and nitrate equilibria for parameters g� ��� 	�� Vb� 
 and V � �		

���� Bacterial equilibria for selected parameters� � � � � � � � � � � � � � � � � � � � � � � � � � � �	

���� Detritus equilibria for selected parameters� � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���� Variation in limit cycle period with parameter value for parameters k�� ��� ��� p� and V � ��

���	 The numerical solutions produced from runs performed at OWS �India� on day ��	 across

a range of cross�thermocline mixing rates �m� and subthermocline nitrate concentrations

�N��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The numerical solutions produced from runs performed at Bermuda Station �S� on day

��� across a range of cross�thermocline mixing rates �m� and subthermocline nitrate

concentrations �N��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Extent of limit cycle regions for 
xed forcing runs at both stations on days ��� and ���

respectively� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Normal dynamic forcing solution and daily 
xed forcing equilibria for OWS �India�� � � � ��

���� Normal dynamic forcing solution and daily 
xed forcing equilibria for OWS �India�� � � � �	

���� Zooplankton loss rate versus zooplankton concentration for four functional forms of higher

predation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� Phytoplankton� zooplankton and nitrate equilibria across ranges of maximumzooplankton

mortality rate� ��� for each of the four functional forms� � � � � � � � � � � � � � � � � � � � ���

���� Phytoplankton� zooplankton and nitrate equilibria across ranges of maximumzooplankton

mortality rate� ��� and mortality half�saturation constant� k�� for the hyperbolic and

sigmoid functional forms� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

x



���� Plots of the ratio of N�

n to k across a range of maximum zooplankton mortality rate for

each of the four functional forms� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated annual cycles of phytoplankton� zooplankton and nitrate at OWS �India� for

each of the four zooplankton mortality terms� � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Diagrammatic representation of the Monte Carlo and stochastic parameters techniques� � ���

��� The seasonal behaviour of phytoplankton coe�cient of variance for two stochastic param�

eters simulations which di�er in the number of transient years used prior to sampling� � � ���

��� The behaviour of annual NPP and f�ratio means and standard deviations as the number

of Monte Carlo simulations used to calculate them is increased� � � � � � � � � � � � � � � � ���

��� The behaviour of annual NPP and f�ratio means and standard deviations as the number

of stochastic parameter simulations used to calculate them is increased� � � � � � � � � � � ���

��� Frequency distributions of annual NPP for each model parameter produced by Monte

Carlo simulations at OWS �India�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Frequency distributions of annual NPP for each model parameter produced by stochastic

parameter simulations at OWS �India�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Frequency distributions of the annual f�ratio for each model parameter produced by Monte

Carlo simulations at OWS �India�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Frequency distributions of the annual f�ratio for each model parameter produced by

stochastic parameter simulations at OWS �India�� � � � � � � � � � � � � � � � � � � � � � � ���

��� Comparing the standardised deviation of stochastic means from the deterministic solution

with the standard deviation of the stochastic distributions� � � � � � � � � � � � � � � � � � ���

���� Variability in the seasonal cycle of phytoplankton concentration for Monte Carlo and

stochastic parameters techniques� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Frequency distribution of annual NPP for each model parameter produced by stochastic

parameter simulations at Bermuda Station �S�� � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Frequency distributions of the annual f�ratio for each model parameter produced by

stochastic parameter simulations at Bermuda Station �S�� � � � � � � � � � � � � � � � � � � ���

���� The behaviour of annual NPP and f�ratio means and standard deviations as the variability

about the parameter mean is increased �Monte Carlo�� � � � � � � � � � � � � � � � � � � � � ���

���� The behaviour of annual NPP and f�ratio means and standard deviations as the variability

about the parameter mean is increased �stochastic parameters�� � � � � � � � � � � � � � � � ���

���� The behaviour of annual NPP and f�ratio means and standard deviations as the period

of the parameter transformations in stochastic parameter simulations is increased� � � � � ���

���� Plots of the annual means of the daily standard deviations of each of the model compart�

ments as the period of the parameter transformations is increased� � � � � � � � � � � � � � ��	

���	 Frequency distributions of annual NPP for stochastic parameter simulations with increas�

ing transformation period� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

xi



��� Frequency distributions of the annual f�ratio for stochastic parameter simulations with

increasing transformation period� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Variation in the patterns of standard deviation with stochastic transformation period for

the phytoplankton� zooplankton and nitrate compartments� � � � � � � � � � � � � � � � � � ���

���� Diagrammatic representation of the 
xed period and stochastic period approaches to

stochastic parameter transformations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Frequency distributions of annual NPP produced by stochastic period stochastic param�

eters simulations as the number of daily model iterations is increased� � � � � � � � � � � � ���

���� The behaviour of annual NPP and f�ratio means and standard deviations as the period

of the parameter transformations in stochastic parameter simulations is increased� � � � � ���

���� The behaviour of the annual means of the daily standard deviations of the phytoplankton�

zooplankton and nitrate compartments as the period of the parameter transformations in

stochastic parameter simulations is increased� � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Variability in the seasonal cycle of phytoplankton concentration for 
xed period and

stochastic period approaches to the stochastic parameters technique� � � � � � � � � � � � � ���

���� The behaviour of annual NPP and f�ratio means and standard deviations as the number

of stochastic parameters in each simulation is increased� � � � � � � � � � � � � � � � � � � � ���

���� Frequency distributions of annual NPP for a series of simulations in which the ten param�

eters with the greatest e�ect on annual NPP are made stochastic one by one� � � � � � � � ��	

���	 The behaviour of annual NPP and f�ratio means and standard deviations as the number

of stochastic parameters in each simulation is increased� � � � � � � � � � � � � � � � � � � � ��

��� Frequency distributions of annual NPP for a series of simulations in which the ten param�

eters with the greatest e�ect on annual NPP are made stochastic one by one� � � � � � � � ���

���� Plots of the daily mean and range of phytoplankton concentrations produced by stochastic

parameter simulations of each of the reduced models� � � � � � � � � � � � � � � � � � � � � � ���

���� Plots of the daily standard deviation of phytoplankton concentrations produced by stochas�

tic parameter simulations of each of the reduced models� � � � � � � � � � � � � � � � � � � � ���

��� A vertical pro
le of chlorophyll concentration collected at OWS �India� on August the

�	th ��	�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Schematic diagram of the typical vertical pro
les of temperature� nitrate and chlorophyll

in the tropical latitudes� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Diagrammatic representation of the structure of the two layer model� � � � � � � � � � � � � ���

��� Simulated annual cycles of phytoplankton� zooplankton and nitrate concentration at OWS

�India� for each of the formulations of zooplankton two�layer behaviour� � � � � � � � � � � �	�

��� Simulated annual cycles of phytoplankton� zooplankton and nitrate concentration at

Bermuda Station �S� for each of the formulations of zooplankton two�layer behaviour� � � �	�

��� A detail showing the fraction of total mixed layer and thermocline zooplankton biomass

in the mixed layer during the shallowing of the mixed layer in springtime� � � � � � � � � � �	

xii



��	 A detail showing the balance of zooplankton �uxes coming from grazing and going to

predation during the spring bloom� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

�� Annual cycles of mean daily sea�surface irradiance and mixed�layer depth at each of the

four simulated latitudes� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Annual cycles of phytoplankton� zooplankton and nitrate concentration at each of the

simulated latitudes� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Annual cycles of net primary productivity� the f�ratio and the proportioning of net� depth�

integrated production in the two modelled layers at each of the simulated latitudes� � � � � ��

���� Simulated model equilibria of phytoplankton� nitrate and daily net primary productivity

across a range of subthermocline nitrate concentrations� � � � � � � � � � � � � � � � � � � � ��

���� Simulated model equilibria of phytoplankton� nitrate and phytoplankton nitrate uptake

limitation across a more extreme range of subthermocline nitrate concentrations� � � � � � ���

���� Simulated model equilibria of phytoplankton� nitrate and daily net primary productivity

across a range of recycling e�ciency� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated model equilibria of phytoplankton across ranges of nitrogen uptake and loss

parameters� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Time series showing the concentrations of phytoplankton and nitrate across a period

during which surface irradiance is increasing stepwise every ��� days� � � � � � � � � � � � � ���

���� As 
gure ���� except for stepwise decreasing surface irradiance� � � � � � � � � � � � � � � � ���

���	 Simulated model equilibria of phytoplankton across ranges of kw� Vp� �� kc� mixed�layer

depth and thermocline thickness� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Maximum light�limited growth rate and nutrient limitation for phytoplankton across a

range of thermocline thicknesses� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulated NPP mixed layer�thermocline layer ratio� �new���recycled� nutrient ratio and

the f�ratio across a range of subthermocline nitrate concentrations� � � � � � � � � � � � � � ��	

���� Simulated NPP mixed layer�thermocline layer ratio� �new���recycled� nutrient ratio and

the f�ratio across a range of recycling e�ciency� � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Latitudinal di�erences in the response of the two layer version of Fasham ������ to Taylor�s


ve properties� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� The results of simulations of the normal� 	 compartment version of Fasham ������ per�

formed at OWS �India� on day ��	 across a range of cross�thermocline mixing rates and

subthermocline nitrate concentrations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� The results of simulations of the normal� 	 compartment version of Fasham ������ per�

formed at Bermuda Station �S� on day ��� across a range of cross�thermocline mixing

rates and subthermocline nitrate concentrations� � � � � � � � � � � � � � � � � � � � � � � � ���

���� The results of simulations of the two layer version of Fasham ������ performed at OWS

�India� on day ��	 across a range of cross�thermocline mixing rates and subthermocline

nitrate concentrations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

xiii



���� The results of simulations of the two layer version of Fasham ������ performed at Bermuda

Station �S� on day ��� across a range of cross�thermocline mixing rates and subthermo�

cline nitrate concentrations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Time series results of a two layer model simulation performed at OWS �India� � � � � � � ��

���	 Time series results of two layer model simulations performed at Bermuda Station �S� for

three values of mixing rate� m� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� The results of simulations of the two layer version of Fasham ������ performed at OWS

�India� on day ��	 across a range of thermocline thickness and subthermocline nitrate

concentrations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� The results of simulations of the two layer version of Fasham ������ performed at OWS

�India� on day ��	 across a range of thermocline thickness and subthermocline nitrate

concentrations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� The results of simulations of the two layer version of Fasham ������ performed at OWS

�India� on day ��	 across a range of mixed layer�thermocline and thermocline�deep ocean����

���� The results of simulations of the two layer version of Fasham ������ performed at Bermuda

Station �S� on day ��� across a range of mixed layer�thermocline and thermocline�deep

ocean� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A�� Plots of the raw chlorophyll and nitrate samples� and the depth�integrated concentrations

after the data have been corrected for mixed�layer depth� � � � � � � � � � � � � � � � � � � ��

xiv



List of Tables

��� A grouping of planktonic organisms based on classi
cation by size� � � � � � � � � � � � � � 

��� Observed ranges of densities for several plankton groups from the literature� � � � � � � � � ��

��� Model functions� their de
nitions and a description of the ecological processes concerned� �

��� The model parameters and their values as used in Fasham ������� � � � � � � � � � � � � � ��

��� Monthly averages of mixed�layer depth determined by Levitus ����� for OWS �India�

and Bermuda Station �S�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Common functional forms used in plankton models� � � � � � � � � � � � � � � � � � � � � � ��

��� Model structures and phytoplankton growth limitation terms for a range of plankton

models from the literature� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Zooplankton grazing� phytoplankton loss and zooplankton loss terms for a range of plank�

ton models from the literature� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Baseline parameter values from Fasham ������ and ranges of values of the model param�

eters from a sample of the modelling literature� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� A summary table of the compartments present in each of the reduced models� � � � � � � � 	

��� Model statistics from OWS �India� solutions� � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Model statistics from Bermuda Station �S� solutions� � � � � � � � � � � � � � � � � � � � � � ���

��� Model statistics from nitrogen �ow data� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Zooplankton mortality terms used in the modelling literature� � � � � � � � � � � � � � � � � ��

��� Values of N��k for each mortality term� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Sensitivity of annual NPP at OWS �India� to model parameters for deterministic limits�

Monte Carlo and stochastic parameters techniques� � � � � � � � � � � � � � � � � � � � � � � ���

��� Sensitivity of the annual f�ratio at OWS �India� to model parameters for deterministic

limits� Monte Carlo and stochastic parameters techniques� � � � � � � � � � � � � � � � � � � ���

��� Sensitivity of annual NPP and the f�ratio to model parameters at OWS �India� � � � � � � ���

��� Sensitivity of each of the model compartments at OWS �India� to model parameters for

Monte Carlo simulations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Sensitivity of each of the model compartments to model parameters for stochastic param�

eter simulations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

xv



��� Sensitivity of annual NPP and the f�ratio to model parameters at Bermuda Station �S�� � ���

��	 The deterministic values� stochastic means and stochastic standard deviations of the an�

nual NPP and f�ratios of the full model and its reduced forms from Chapter � �with a

single model parameter behaving stochastically�� � � � � � � � � � � � � � � � � � � � � � � � ���

�� The deterministic values� stochastic means and stochastic standard deviations of the an�

nual NPP and f�ratios of the full model and its reduced forms from Chapter � �with the

top  model parameters behaving stochastically�� � � � � � � � � � � � � � � � � � � � � � � � ���

��� Model statistics from simulations performed at OWS �India� for the four zooplankton

models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

��� Model statistics from simulations performed at Bermuda Station �S� for the four zoo�

plankton models� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �		

��� Parameter value changes used for simulations performed at the four latitudes� � � � � � � � ��

��� Model statistics from simulations performed at the four latitudes� � � � � � � � � � � � � � � ��

xvi



Acknowledgements

Friends help you move� Real friends help you move bodies�

The very best friends help you bury them� then forget where�

� Anonymous

Although I would like to be able to claim the entire credit �or take the full blame� for this thesis� both

it� and the research described within it� could not have been completed without the help and support of

many friends and colleagues� I would like to thank them all for their assistance and patience with me

during my time at Warwick� However� I would like to give special mention to the following� all of whom

bore more than their fair share of my di�culties�

In the 
rst instance� I would like to be able to thank my supervisor� Professor Jacquie McGlade� I

cannot say enough good things about my time working under her� I was lucky to get her supervision

and am pleased to say that no one could have been a better supervisor�

I would also like to acknowledge the support of GrahamMedley� His generous proof�reading and discus�

sion of my research much improved its 
nal form in this thesis� and his morale�boosting proved crucial

to its completion�

The problems tackled and the approaches used during my research greatly bene
ted from discussions

with Matt Keeling� Martin Bees and� especially� Andy Edwards� As well as correcting the trajectory of

my work for �glaring� mathematical misunderstandings� their con
dence in my ability not to get things

completely wrong raised me up from several spiral sinks of despondency� Matt also served as the primary


lter for my raw and untreated 
rst drafts �give that man a medal��

The persuasions and prejudices of my plankton compatriots� Steve Emsley and Mahk Baird made for

many interesting �and several drunken� discussions� and were helpful on many occasions in guiding �or

sti�ing� my research� I have more than high hopes for their own research �although their results may

dash my own���

I would like to thank �Brother� John Edmunds for his interest in �i�e� �Have you 
nished yet���� and

support of my work� Additionally� I am very grateful to him for the opportunity to �try my hand� in

xvii



the 
eld of prion evolution �Lamarck lives��� My thanks also to Chris ��Butch�� O�Callaghan for his

sterling assistance with several of the more statistical aspects of my research �as well as his un�agging

support�opposition to all things empirical�theoretical��

During my spell as a microbiologist� the patience and assistance of Julie Scanlan and Synechococcus sp�

were invaluable� Anne Marie Gearhart� Minus van Baalen� Adam Ward� James Cole� Jack Cohen and

Esme Fryer also provided much�needed advice� ideas and moral support in more than generous amounts�

I am especially indebted to Anne for not murdering me �not a court in the land would convict her��

The help of Susan Taylor� though not obviously visible in this thesis� was considerable and very gratefully

received� In addition to assistance with all manner of administrative minutiae� I am indebted to her for

all of the morale�boosting� �attering and humour she injected into my time at Warwick �even if she did

name the pu�er 
sh after me��

In addition to those already mentioned� I am also grateful to many other EAMG denizens for making

my time� particularly that of my 
nal year� pass much more happily than it otherwise should have done�

I suppose it could be argued that they delayed my 
nal submission� Thank you Jo�el� Alan� Martin� E�J��

Bindi� Lisa� Sarah and Ben�

I would particularly like to acknowledge the contribution to my research made by the �Mathematical

Modelling of Plankton Population Dynamics� symposium� held at the Isaac Newton Institute in Cam�

bridge during the summer of ����� The running of the symposium by Dr� Mike Fasham� Professor

John Brindley and Dr� Trevor Platt �as well as the Institute�s sta�� made it a wholly bene
cial experi�

ence� During the symposium I was fortunate to receive advice and suggestions on my research from Dr�

Fasham �Chapters � and ��� Professor Brindley �Chapters � and ��� Dr� Ian Totterdell �Chapter ��� Dr�

Igor Mezi c �Chapter �� and Dr� Arnold Taylor �Chapter ���

Finally� I would like to single out Andrew Morris� Alex Mant and Ian Rose for their friendship and

encouragement �not to mention the loan of Alex�s bicycle� during my time at Warwick� I really don�t

know what I would have done without them�

This research was supported by a grant from the BBSRC �formerly SERC� and one other anonymous

government agency�

xviii



Declaration

This thesis is the result of original research conducted by myself unless stated in the text or acknowl�

edgements� The research was carried out under the supervision of Professor J� M� McGlade at the

University of Warwick� All sources of information used have been speci
cally acknowledged� Individuals

who provided data sets have been fully acknowledged�

No part of this thesis has been submitted for a degree at any other university�

xix



Abbreviations

CA Cellular Automata

CML Coupled Map Lattice

CPR Continuous Plankton Recorder

DCM Deep Chlorophyll Maximum

DIN Dissolved Inorganic Nitrogen

DOM Dissolved Organic Matter

DON Dissolved Organic Nitrogen

DVM Diel Vertical Migration

GCM General Circulation Model

HNLC High Nutrient� Low Chlorophyll �region�

IBM Individual Based Model

IPS Interacting Particle System

MC Monte Carlo �simulation�

M�M Michaelis�Menten �function�

NPP Net Primary Productivity

ODE Ordinary Di�erential Equation

OWS Ocean Weather Station�Ship

PAR Photosynthetically Active Radition

PDE Partial Di�erential Equation

P�I Photosynthesis�Irradiance �curve�

PN Phytoplankton�Nutrient �model�

PON Particulate Organic Nitrogen

PS Photosynthesis

PZ Phytoplankton�Zooplankton �model�

RDE Reaction�Di�usion Equation

ZPD Zooplankton�Phytoplankton�Detritus �model�

ZPN Zooplankton�Phytoplankton�Nutrient �model�

ZPND Zooplankton�Phytoplankton�Nutrient�Detritus �model�

xx



Unit conversion

Mass and moles

�mol C ! ���� g C

�mol N ! ���� g N

�mol chl� a ! ���� g chl� a

Standard biological conversions

�mol N � �����mol C

� g chl� � �� g C

�mol N � ���� g chl�

Standard oceanographic measures

� g C m�� ! ����	�mmol N m��

�mg chl� m�� ! �����mmol N m��

�mmol C m�� ! �����mmol N m��

�mM N m��
� �mmol N m��

�mg at� N m��
� �mmol N m��

xxi



Summary

In contributing around ��" of total annual primary productivity� the plankton ecosystems of the world

ocean play a signi
cant part in the global cycle of carbon� The formulation of dynamic models of plank�

ton ecology is one facet of the study of this cycle� and though much progress has been made� considerable

uncertainty still surrounds many aspects of their construction� This thesis focuses on one such plankton

model� the nitrogen mixed�layer ecosystem model of Fasham ������� and several investigations of its

structure and parameterisation have been undertaken�

In the 
rst of these the importance of the model�s structure has been studied by rationally reducing the

full seven compartment form of the model to a simple phytoplankton�zooplankton ecology� and then

gradually re�assembling it� This work found the presence of detritus key to the success of the reduced

models� while also 
nding bacteria to be a mostly redundant component of the full model�

A notable feature of modelled summers at OWS �India� in the North Atlantic �and tentatively in data

from this location� is the occurrence of predator�prey oscillations� Since such behaviour has consequences

for tests of the model� these oscillations were investigated numerically to establish their true nature� Al�

though it was found that they were really transients towards a stable 
xed point� further explorations

of the parameter space of the model located regions in which stable limit cycle behaviour occurred� and

these regions suggested situations under which oscillatory behaviour might be observed in the real world�

Of particular importance in the construction of models is the assignment of parameter values� As esti�

mating most of these requires di�cult or time�consuming experiments� knowing which parameters most

strongly in�uence model behaviour can optimise the development of a model� To this end� a sensitiv�

ity study of the model was performed� primarily using stochastic techniques� This study found that

phytoplankton photosynthesis and zooplankton grazing parameters topped the rankings of parameter

sensitivity� Further work explored the sensitivity technique known as stochastic parameters �Kremer�

�����

Finally� a variant of the Fasham ������ model in which vertical space was represented by two communi�

cating layers was constructed� and several facets of its behaviour explored� The importance of latitude

and zooplankton migration� as well as the properties of Taylor ���� were examined� with particular

emphasis on the signi
cance of any DCM that formed in the model solutions�

Throughout the thesis results are related to the literature and� where possible� to data� Most sections�

however� refer to comparisons between models or parts of models� but the analysis always aims to place

results in context within plankton modelling�
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Chapter �

Introduction

OCEAN� n� A body of water occupying about two�thirds of a world made for man � who

has no gills�

� Ambrose Bierce �����������

�



��� Opening remarks

This thesis is structured into seven chapters 	 two introductory chapters
 the �rst a general introduction


the second an introduction to the speci�c plankton model used� four chapters of research examining dis

tinct problems� and a �nal conclusions and discussion chapter� Each research chapter opens with a short

introduction to the appropriate subject matter
 and closes with a full discussion of the results� The �nal

chapter aims to both summarise the thesis and to place the work it contains into context within the �eld

of plankton modelling�

This general introduction is broken into a number of di�erent sections� The chapter begins with brief

rationale to outline the importance of plankton ecosystems to global biogeochemical cycles� This is

followed by a biological and physical introduction to plankton systems
 which includes a description the

types of organisms encountered in such systems and modelled in this thesis� The chapter is then con

cluded by an introduction to mathematical and ecological modelling in general
 and plankton modelling

in particular�

All abbreviations used in the text are listed in the preamble preceding this chapter� A table of the

model currency units and their standard conversions to other currencies is also included in this section�

Throughout almost all of the thesis a standard currency is used �mmol N m���
 but at several points

where research is compared with other work or measurements
 the currencies favoured by such work are

used and these conversion measures applied�

�



��� Rationale

The work contained within this thesis deals entirely with open�ocean plankton ecosystems� The world

ocean covers approximately ��� of the earth�s surface
 and the photosynthetic organisms within it

are responsible for ��� of the annual
 global total of net primary production �Raven
 ������ Conse

quently
 these ecosystems play an important role in regulating �uxes of key constituents in the biosphere�

Photosynthesis �PS� uses carbon dioxide �CO�� as its raw material� Over the past two decades
 the

scienti�c community has become concerned about the level of CO� in the atmosphere because of its rise

in concentration due to the actions of human civilisation �particularly the combustion of carbon�rich

fossil fuels and the concurrent clearance of large tracts of forested land�� This interest principally stems

from the activity of CO� in the atmosphere as a so�called �greenhouse gas��

Greenhouse gases �of which CO� is only one� others include methane
 ozone
 dinitrogen oxide
 chlo

ro�uorocarbons and water vapour� in�uence the thermal balance of the earth�s atmosphere by being

transparent to shorter wavelength
 visible electromagnetic radiation �like that from the sun�
 but opaque

to longer wavelength
 infra�red radiation �like that which is re�radiated by the earth�� This essentially

allows these gases to �trap� thermal energy in the atmosphere
 and to warm the surface of the earth�

This e�ect has been a feature of the atmosphere for billions of years
 and in the past the concentrations

of greenhouse gases have been considerably di�erent to those at present �both upwards and downwards��

Past variations in the CO� level of the atmosphere have been associated with climate change �Adams

et al�
 ����� and this
 plus the fact that the anthropogenic changes to the atmosphere at present are

occurring at rates considerably faster than the natural rates measured from ice�core records �Watson �

Maddock
 �����
 suggests to most researchers that increasing atmospheric CO� is likely to substantially

a�ect both the natural biosphere and human activity�

While there are many possible consequences that global warming through an enhanced greenhouse e�ect

may result in
 changes to sea�level
 weather patterns
 ocean circulation
 species distribution and the

geographical range of diseases such as malaria
 are perceived as being particularly important �McGlade


������ For example
 in the context of plankton systems
 Roemmich � McGowan ������ report that


concurrent with a ����C rise in surface water temperatures �probably caused by greenhouse warming�


zooplankton populations in the California Current have fallen by ��� over a period of �� years �they

suggest that the mechanism is a shallower mixed layer and reduced phytoplankton production�� Lashof

������ draws attention to several potential pathways of positive feedbacks which may occur as a result

of global warming �e�g� increases in atmospheric water vapour
 decreases in re�ective snow and ice


methane from wetlands
 et cetera�� Hardin ������ underlines the potential �if less likely� signi�cance of

such positive feedbacks by contrasting the relatively mild climate of the earth at present with that of its

�



sister planet
 Venus
 apparently a victim of an over�active greenhouse e�ect�

Given the potential for climate change to elicit large�scale changes in the biosphere
 researchers are

interested in mechanisms which control or a�ect the quantity of CO� in the atmosphere� For obvi

ous reasons
 mechanisms which promote �carbon burial� �the removal of CO� from the atmosphere to

long�term sinks� are of particular interest� A major carbon burial ����� of the total� route is via

the silicate�carbonate loop
 whereby weathering of silicate rocks results in the formation of carbonates

which are subsequently buried by natural geological processes �Worsley
 Nance � Moody
 ������ The

remaining carbon burial occurs via biological activity �i�e� organic material which is not oxidised and is

buried geologically��

In this context
 plankton systems are important
 since a fraction of their annual production is exported

to the deep ocean where it may ultimately be buried �Adams et al�
 ������ Raven ������ estimates

that ���� of annual marine production is preserved in deep ocean sediments by this mechanism� While

terrestrial production may also bury carbon
 the carbon it consumes comes mostly from the atmosphere�

Since almost all ������� Sarmiento � Orr
 ����� of the global carbon pool exists in the ocean �partially

as dissolved CO�
 but mostly as bicarbonate
 HCO�

�
�
 any removal of CO� directly from the atmosphere

by
 for instance
 terrestrial primary production�
 may merely shift the ocean�atmosphere equilibrium

and lead to the replacement of the removed atmospheric CO� by oceanic CO�� Consequently
 the direct

removal of carbon from the oceans by plankton systems is of interest to researchers� Note though that

there is still uncertainty about the potential importance of this carbon sink �Fasham
 ����
 outlines

several of the major gaps in understanding��

An important issue here is whether or not an increase in atmospheric CO� would lead to an increase in

aquatic photosynthesis �as it appears to do for terrestrial photosynthesis� Wilsey
 ������ It is commonly

assumed that planktonic primary production is not limited by carbon availability �because of the high

concentration of HCO�

�
ions�
 and thus an increase in CO� would not lead to an increase in production�

While this does appear generally correct �Raven
 �����
 there is evidence �Riebesell
 Wolf�Gladrow �

Smetacek
 ����� Hein � Sand�Jensen
 ����� that in some cases primary production by plankton can

be limited by CO� availability and may rise with its increasing concentration �since HCO�

�
needs to be

converted to CO� before it can be used by the photosynthetic enzyme RuBisCO���

In relation to a limitation on primary production
 and of recent interest
 is the suggestion by Martin

� Fitzwater ������ that plankton in certain regions of the world ocean are growth�limited by the lack

of availability of iron �which is an important micro�nutrient in certain photosynthetic and nutrient re

�The planting of forests with the intention of removing CO� from the atmosphere is commonly proposed as a measure

to counter the greenhouse e�ect� As indicated here� this measure may be signi�cantly less e�ective than believed by its

proponents�
�Ribulose ����bisphosphate carboxylase�oxygenase 	 probably the most common enzyme on the face of the earth 
J�

A� Raven� University of Dundee� pers� comm��

�



ductive enzymes� Geider � LaRoche
 ������ While this suggestion has been vindicated by large scale

experiments in the Paci�c ocean �Behrenfeld et al�
 �����
 and modelling work has suggested iron�

fertilisation of the oceans may produce an impact on atmospheric CO� �Peng � Broecker
 �����
 other

researchers �Fuhrman � Capone
 ����� urge caution over such results because of the potential side�

e�ects of such �climate�engineering� �particularly the release of dinitrogen oxide
 a greenhouse gas ���

times as powerful as CO���

In summary
 given the potential signi�cance of global warming
 and the importance of plankton ecosys

tems in in�uencing the global carbon cycle
 understanding the physical and biological dynamics which

govern plankton communities is a key step towards improving our understanding of the processes which

may ultimately weigh heavily on the fate of human civilisation�

��� What are plankton�

Essentially
 plankton are communities or populations of organisms whose powers of locomotion are insuf

�cient to prevent them from being transported passively by their surrounding medium �Omori � Ikeda


������

Although the term is usually con�ned to microscopic organisms in open water �or pelagic� habitats
 it

applies additionally to both organisms of much greater size
 and to organisms that occupy quite di�er

ent habitats� Macroscopic coelenterates �such as jelly�sh or Physalia sp�
 the Portuguese man�of�war��

and algae �such as pelagic Sargassum sp�� provide examples of larger organisms whose movement is

largely determined by the water currents they �nd themselves in� And in terrestrial ecology
 certain

insects are occasionally referred to as aerial plankton� This term is arguably justi�ed since their rel

atively weak �ying leads to their dispersal being strongly governed by the wind �Russell � Wilson
 ������

However
 using the above de�nition of plankton
 and given strong enough movement of the medium

�e�g� rapid water currents or gale�force winds�
 almost anything will become plankton� For example


an early sequence in the �lm �The Wizard of Oz� illustrates vividly a Kansas farm building becoming

a temporary
 aerial plankter� The distinction between planktonic species and non�planktonic species is

further blurred by organisms
 such as �sh
 which graduate from the plankton to the nekton �organisms

whose locomotory abilities are su�cient to allow them to avoid being passively transported� as they

grow to adulthood�

In this thesis
 however
 the plankton under consideration are microscopic and aquatic� More speci�cally


they are con�ned to the pelagic environment of the open ocean� This environment can be a relatively

�Portuguese men�of�war provide a particularly interesting example of plankton since their dispersal is controlled both

by water currents and by wind 
through means of a gas��lled sac which protrudes from the water��

�



productive one
 and has the advantage of being comparatively isolated from the confounding in�uences

�e�g� rivers
 tides
 the sea �oor
 et cetera� of shallower coastal environments�

��� Plankton assemblages

The planktonic assemblages of aquatic systems contain representatives of every major living group�

Although phylogeny and traditional taxonomy �Hoek
 Mann � Jahns
 ����
 and Barnes
 ����
 provide

excellent botanical and zoological overviews respectively� are an important source of information about

individual plankton species
 the complex mix of species in plankton ecosystems is usually less �nely

treated in most matters of ecology� Species are typically grouped into classes based on their size
 trophic

position or coarse phylogenetic�functional group�

����� Classi�cation by size

Although there are few �rm gradations �the distinction between prokaryotic bacteria and more complex

eukaryotic cells provides a rare example�
 one of the principal characters used to classify members of the

plankton is their size� To some degree this has a historical basis
 since plankton groups have often only

been discovered and quanti�ed as more and more accurate techniques have become available� Table ���

presents an example of size�based classi�cation� Note that while the organisms at the top and bottom

of the table are separated by � orders of magnitude in diameter or length
 in volumetric terms they may

be separated by up to �� orders of magnitude�

In terrestrial ecosystems
 ecological pathways between organisms are often unrelated to their size� For

example
 dominant photosynthetic organisms such as trees are usually grazed by organisms across a wide

range of size
 from insects through to elephants� Similarly
 although usually not as starkly
 predatory

organisms often feed on sizes of prey above and below their own size� This is partially because gravity

dominates terrestrial systems and the medium �air� is relatively non�viscous� Phototrophs to be grazed


or felled prey to be consumed
 consequently remain broadly in one place
 allowing the consumer to ingest

them at leisure�

By contrast
 in an aquatic environment
 the viscosity of the medium makes it much more di�cult to

move through it
 and much easier for organisms to �nd themselves carried passively through it� This

is particularly true of smaller organisms
 and this physical phenomenon is often described by a ratio

known as the Reynolds number �see later�� As a result
 often neither predator nor prey are static
 and

�felled� prey are unlikely to remain long at a constant depth even in a still water column� Consequently


predators �or grazers� tend to only consume other organisms of smaller size
 since these organisms can

be ingested directly� This is sometimes referred to as gape�limitation
 since consumption of organisms

is restricted to those organisms that a consumer can �t into its mouth �Hairston � Hairston
 ������

This situation is further entrenched in pelagic situations by selective pressures on active consumers to

�



Group Diameter Major organisms

Ultrananoplankton � � �m Prokaryotic plankton

Nanoplankton � � �� �m Fungi
 small phytoplankton and protistan zooplankton

Microplankton �� � ��� �m Most phytoplankton and protistan microzooplankton
 ju

venile metazoan mesozooplankton

Mesoplankton ��� �m � � mm Metazoan zooplankton

�e�g� copepods
 appendicularians
 cladocerans�

Macroplankton � � �� mm Metazoan zooplankton

�e�g� copepods
 euphausiids
 pteropods�

Megaloplankton � �� mm Metazoan zooplankton

�e�g� euphausiids
 cephalopods
 scyphozoans
 thaliaceans�

Table ���	 A grouping of planktonic organisms based on classi�cation by size� Note that with

increasing size
 each group covers a range one order of magnitude greater than the previous

group� See later text for details about named example organisms� The latter three groups

are often referred to as net plankton since they can be accurately quanti�ed by sampling

with nets� The former three groups are usually sampled by means of water bottles� After

Omori � Ikeda �������

be streamlined so that locomotion �i�e� when chasing prey� through the medium may be more e�cient�

These pressures tend to prevent the evolution of grasping structures which could otherwise be used to

hold prey in one place while they were consumed�

Reynolds numbers �Re� are often used to quantify the importance of forces due to the viscosity in a

given medium� The number is a ratio of the inertial to viscous forces acting on an object� The inertial

force here is the force which was required to accelerate the object to the velocity at which it is travelling�

The ratio is calculated by dividing the velocity of the object
 u
 times its typical dimension
 d
 by the

kinematic viscosity of the medium
 � 	

Re �
ud

�
�����

The typical dimension here may be the width or length of an organism around which the �uid �ow is

occurring� Smaller organisms �those with a lower typical dimension� are more a�ected than larger ones

by the viscosity of the medium
 and are therefore more liable to have their movements disrupted by

movement of the medium �Mann � Lazier
 ������

The dominance of di�erent size and lifestyle �attached versus free� classes of photosynthetic organisms in

aquatic environments is reviewed by Raven ������� He concludes that microscopic organisms dominate

the pelagic environment through factors such as their smaller boundary layers �which a�ect nutrient

�



uptake� and their better performance at lower irradiances �since they have a higher relative photon

absorption than larger plants
 and have less non�photosynthetic tissues to �waste� energy on�� Further

more
 since the sea �oor in the open ocean is normally much deeper than ��� m �the deepest recorded

instance of net photosynthesis occurring is from a seamount at ��� m below the surface of the ocean�

Littler et al�
 �����
 attached macroscopic organisms �which can dominate shallower waters� are excluded

from the competition�

����� Classi�cation by trophic position

A common way in which planktonic species assemblages are studied is by grouping the various species

present into several groups of broadly similar functionality� This can simplify both the measurement and

analysis of ecosystems� It is also particularly appealing to modellers �e�g� see Totterdell et al�
 �����

since it allows them to represent the system in question by a relatively small number of variables� The

following sections aim to brie�y outline the major characteristics of the three broad ecological groups

distinguished in the models in later chapters�

Phytoplankton

Phytoplankton form the base of the majority of pelagic marine ecosystems� As photoautotrophs they

derive the energy they use from solar irradiation they absorb using their photosynthetic pigments �of

which there are many di�erent ones�� This energy is trapped in organic carbon compounds and then

used by the photoplankton cells for their various metabolic processes
 including cell reproduction� As

well as their requirements for irradiance and inorganic carbon �CO� or HCO�

�
�
 phytoplankton cells also

utilise a number of inorganic nutrients and trace substances which they usually uptake directly from the

surrounding medium� These nutrients are used for many cellular processes including DNA replication

�phosphates�
 amino acid synthesis �nitrogen nutrients�
 enzyme co�factors �iron
 zinc
 manganese�
 cell

walls�coverings �silicate
 calcium carbonate�
 et cetera�

Phytoplankton are often motile and may use this to position themselves more favourably within the

water column with respect to irradiance or nutrients� Alternatively
 they may use motility to �shear

o�� the boundary layer of �uid surrounding them to facilitate nutrient uptake� Since the turbulence of

the mixed layer environment restricts the control of cells over their position within it
 this latter role for

motility is likely to be the more signi�cant one
 at least while the water column is subject to vigorous

mixing�

As in terrestrial ecosystems
 photoautotrophs in the ocean also often attempt to protect themselves

from herbivorous grazers� Poulet et al� ������ and Haney
 Sasner � Ikawa ������ describe chemical

interference of zooplankton grazers by their phytoplankton prey� In the former case this occurs through

disruption of the developmental processes of the zooplankton grazer
 and in the latter case by interfer

ence with the feeding mechanisms of the grazers� Jurgens � Gude ������ describe the use of cell size

�



by bacterioplankton to evade their grazers� The formation of long chains or complexes of diatom cells

�e�g� Chaetoceros sp�
 Skeletonema costatum�
 as well as the long spines which are characteristic of many

diatom and dino�agellates may at least partially serve the same function �Newell � Newell
 ����� Hoek


Mann � Jahns
 ������

While the statements above are generally true across the species regarded as phytoplankton
 there are

several major groups of phytoplankton whose di�erences merit separate discussion� Although the mod

els considered in this thesis do not distinguish these groups
 it is not uncommon for models of speci�c

situations to do so
 and it may be inevitable for any model which aims to be �robust� across the world

ocean �see later�� This latter point is strengthened by the suggestion of Williams et al� ������ �based

on observations of the wide distribution of diatom species� that the probability of �nding any species

of phytoplankton anywhere in the world ocean is non�zero �i�e� unlike terrestrial plants
 phytoplankton

are not con�ned to speci�c geographical locales��

An initial distinction is between photosynthetic prokaryotes and eukaryotes� The former are bacteria

with relatively simpler cell structure and usually much smaller size� Eukaryotes are usually larger and

have a cell structure characterised by the possession of a cell nucleus and organelles �themselves for

merly symbiotic bacteria � or even other eukaryotes�� Until fairly recently
 prokaryotes in the oceans

were believed to be almost exclusively eubacteria ��modern� bacteria�� However
 a survey of the coastal

waters o� of Antarctica �DeLong et al�
 ����� revealed that up to ��� of the prokaryote biomass was

actually made up of archaebacteria�
 a group of bacteria hitherto believed to be of very limited impor

tance globally� While the full ecological importance of this discovery is yet unclear
 it does indicate that

knowledge of the ocean ecosystems is still very much incomplete�

Although the importance to primary production of the archaebacteria is uncertain
 the eubacteria known

as cyanobacteria �Kingdom Eubacteria
 Division Cyanophyta� are of well known importance globally

�Waterbury et al�
 ����
 provide a detailed overview of the distribution and importance of the genera

Synechococcus in the world ocean� Campbell
 Nolla � Vaulot
 ������ Around ���� species have been

described
 although on the whole they are a freshwater group �where they can be responsible for toxic

blooms�� In the oceans their principal importance lies with their fast growth rates and their trophic

position as members of the microbial loop �i�e� as prey for microzooplankton�� McManus � Dawson

������ additionally found that cyanobacterial assemblages consistently dominated subsurface communi

ties of phytoplankton in the tropical Atlantic�

One of the most important eukaryote groups are the diatoms �Kingdom Eukaryota
 Division Het�

�Although the division of living organisms into the �ve kingdoms 
bacteria� protozoa� animals� plants and fungi� is a

commonly used approach� the evolutionary distances involvedmake the division of all living organisms into archaebacteria�

eubacteria and eukaryotes a much more reasonable one� and this approach has been used here� Hoek� Mann � Jahns


��� use this scheme in their overview of the algae�

��



erokontophyta
 Class Bascillariophyceae�� These algae are distinguished primarily by their pos

session of a unique silica cell wall which takes the form of two overlapping valves
 or frustules� It is

estimated that there are more than ���
��� species in the class �Hoek
 Mann � Jahns
 ������ and that

together their marine planktonic representatives are responsible for around a half of the total amount

of marine primary productivity �i�e� ��� of the global annual primary production� Thain � Hickman


������ In work using mesocosms �large enclosed volumes of seawater situated in the �eld�
 Egge �

Aksnes ������ found that so long as the nutrient silicate �which diatoms use to build their �cheaper�

silica cell walls� remained above a certain concentration
 diatoms were always able to dominate the

phytoplankton assemblage� This would accord with their dominance in spring blooms of certain regions

when silicate is plentiful� However
 silicate �unlike nitrogen nutrients� is not regenerated e�ciently by

higher trophic levels
 and diatoms usually lose dominance relatively quickly as a consequence and have

to wait until mixing deepens su�ciently to re�introduce silicate to the photic zone �Dugdale
 Wilkerson

� Minas
 ������ This waiting may occur in deeper waters which are reached by the diatoms either as

fast sinking resting spores �Hoek
 Mann � Jahns
 ����� or as large aggregates of cells �e�g� Crocker �

Passow
 ������ Deep mixing prior to the spring bloom re�introduces both these sunken cells and silicate

to the mixed layer��

Another important group of eukaryotic phytoplankton are the coccolithophores �Kingdom Eukaryota


Division Prymnesiophyta�� They are distinguished by their production of organic scales covered in

a layer of calcite �CaCO��� These are important in the biogeochemical cycle of carbon
 since the pro

duction of the scales uses HCO�

�
and consequently increases the concentration of dissolved CO�� The

coccolithophores �of which the species Emiliania huxleyi is probably the most well�known� are also im

portant because of the changes they can induce in the local optical environment �Balch
 Kilpatrick �

Trees
 ����� Balch et al�
 ������ These changes a�ect both other phytoplankton and the heating of the

surface waters of the ocean�

The dino�agellates �KingdomEukaryota
 DivisionDinophyta� are an interesting and important group

with around ���� extant species �and a rich fossil record of extinct species�� They typically possess two

�agella �perpendicular to one another� and are often distinguished by the complex �armour� which covers

them� This may be very ornate and is believed to aid in either reducing their sinking rate or deterring

grazers �or both�� Although they have relatively slower growth rates �Tang
 �����
 they can form a

major component of the phytoplankton assemblage �Pierce � Turner
 ����a� Bralewska � Witek
 ������

Usually their dominance in assemblages occurs in the summer after that of the diatoms
 and some species

prefer the more stable vertical water column which occurs during these months �Thomas
 Vernet �

Gibson
 ����
 �nd that turbulence inhibits the division of certain species�� Additionally they can also be

a major component of the microzooplankton assemblage �Bralewska � Witek
 �����
 either as facultative

�Thain � Hickman 
��� cite a much lower estimate of around ������ species�
�Very recent work by Dugdale � Wilkerson 
��� has linked silicate limitation of diatoms to the phenomenon of High

Nutrient� Low Chlorophyll 
HNLC� in the eastern equatorial Paci�c Ocean�

��



or obligate heterotrophs �around ��� of dino�agellates have no photosynthetic apparatus� Hoek
 Mann

� Jahns
 ������ This �split personality� behaviour of dino�agellates illustrates the di�culty of modelling

large numbers of disparate species with a few functional groups� For instance
 in a particularly extreme

example
 the heterotrophic dino�agellate Protoperidinium divergens even consumes the juvenile stages

of copepods �Jeong
 ������ Raven ������ reviews the importance of such heterotrophy in phototrophs

�both for nutrient and autotrophic symbiont acquisition� see also Arenovski
 Lin Lim � Caron
 ������

Interestingly
 as well as indulging in the capture of other algae for their photosynthetic capability


dino�agellates themselves are often popular targets for symbiosis with larger organisms �e�g� corals�

where they are found in the tissues known as zooxanthellae�� They are additionally important because of

their role in toxic blooms �often referred to as red tides because of their colour� which may a�ect coastal

�sheries �Tilstone
 Figueiras � Fraga
 ����� Anderson
 ������

Zooplankton

Similarly to the phytoplankton
 the assemblage which makes up zooplankton is also a complex mixture

of di�erent and distinct species and phylogenetic groups� Unlike the phytoplankton though
 where al

most all of its members share a common trophic position as autotrophs
 zooplankton species include

herbivores
 bacterivores
 detritivores
 carnivores and even cannibals�

Most modelling e�orts ignore these subtleties and concentrate on the grazing of phytoplankton biomass�

Because of their smaller size
 microzooplankton �mostly protistan unicells� graze the smaller fraction of

the phytoplankton made up of autotrophic bacteria� They also feed on free�living heterotrophic bacteria�

In turn
 they are consumed by larger
 metazoan �multicellular� zooplankton
 which may consume them

along with the larger phytoplankton fractions �since their size range overlaps that of eukaryotic phyto

plankton�� These zooplankton may either be adults or the juveniles of still larger zooplankton fractions

�and can be modelled as such�� Some of these juveniles �or larval stages� are merely temporary members

of the plankton system �meroplankton� and graduate to benthic adult stages �e�g� many bivalve and

gastropod molluscs
 barnacles
 echinoderms
 corals
 et cetera�� These organisms utilise the plankton as

a means of dispersal and as a source of food �release of larvae may timed to coincide with events like

the spring phytoplankton bloom��

An important ecological consequence of zooplankton grazing of phytoplankton is the fate of the biomass

consumed� Phytoplankton are often limited by nutrient availability
 and if processes do not replace these

nutrients
 productivity will cease� As already noted
 diatoms su�er quite severely because one of their

key nutrients
 silicate
 is not regenerated e�ciently� However
 other nutrients
 including the nitrogen

ones considered by the models in this thesis
 are regenerated through the zooplankton or their predators

�and also heterotrophic bacteria� �Hutchins � Bruland
 ����
 examine the regeneration of trace met

als in plankton systems�� The production of fast sinking faecal pellets by larger organisms
 such as the

predators of zooplankton
 but also by zooplankton themselves
 does however act to remove biomass from

the mixed layer without giving it su�cient time to be regenerated� As already indicated
 such sinking
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�uxes of organic material to the deep ocean are of interest� These processes make higher predators �be

they larger zooplankton or nekton� an important component of plankton systems�

Microzooplankton are represented by several major protozoan groups� In addition to the dino�agellates

already met
 the foraminiferans �Kingdom Eukaryota
 Phylum Rhizopoda
 Class Granuloreticu�

losea
 Order Foraminifera�
 ciliates �Kingdom Eukaryota
 Phylum Ciliophora� and tintinnids �a

major subdivision of the ciliates� are important groups� The foraminiferans are amoeboids distinguished

by their possession of a shell �organic or calcareous� which is usually multichambered� They are en

tirely heterotrophic and consume their prey by contacting it
 then engul�ng it� The ciliates are one

of the largest groups of protozoans
 and have a relatively high degree of organelle development� Their

name is derived from the cilia they possess
 which are used for locomotion or for feeding� They are

heterotrophic
 like the foraminiferans
 but have a much more specialised feeding apparatus �which often

includes a mouth or cytostome�� Tintinnids are a widely distributed Order of ciliates distinguished by

a shell �or lorica� which is often composed partially of foreign material �Newell � Newell
 ����� Barnes


������ As well as often dominating the ciliate community �Omori � Ikeda
 �����
 they can be of signif

icant importance in the microzooplankton link of microbial food webs �Pierce � Turner
 ����b�� Note

that the juveniles of some of the larger metazoan zooplankton also constitute microzooplankton �e�g�

copepod nauplius larvae��

The meso� and macrozooplankton are represented by many �if not most� metazoan groups� Probably

the most important group are the copepods �Kingdom Eukaryota
 PhylumArthropoda
 Class Crus�

tacea
 Subclass Copepoda�� Omori � Ikeda ������ report that in samples of net plankton from most

waters
 commonly ��� or more of the individuals caught are copepods� Although clearly ecologically

important
 they are not commonly familiar since most species are less than � mm in length� As a group

they include herbivores
 omnivores
 detritivores and carnivores� While it was formerly thought that they

fed by simply sieving water that they were moving through
 more recently it has become apparent that

feeding is complicated by the viscous e�ects of water �or even
 as in the case of the cladoceran Daphnia


the charges on the particles to be consumed� Barnes
 �����
 and observations of tethered copepods show

that a degree of active capture of particles occurs �Barnes
 ����� Pa�enh�ofer et al�
 ������ Their relatively

large size has several important consequences for their life history
 some of which have been included in

ecological models of zooplankton� Smaller larval stages exist which may feed on di�erent prey �and
 in

turn
 be eaten by di�erent predators�� Their relatively larger size permits much greater mobility and this

is often manifested in diel vertical migration �DVM�
 where organisms spend di�erent parts of the day

at di�erent depths in the water column �there are several proposed reasons for this migration including

predator avoidance
 food abundance and metabolism control� Loose � Dawidowicz
 ����� DeMeester


Weider � Tollrian
 ����� Williamson et al�
 ������ DVM may have important consequences for sinking

�ux should zooplankton egest consumed material at depth �e�g� Atkinson
 Ward � Murphy
 ������ Also


some species enter phases of dormancy to tide them through unfavourable conditions �Dahms
 ������

��



There are several other important crustacean zooplankton groups
 including the cladocerans �e�g� Daph�

nia� and the euphausiids �e�g� krill�� These share many of the characteristics of copepods� Other

important groups include 	 the molluscan pteropods
 heteropods and cephalopods �mostly carnivo

rous�� scyphozoan coelenterates and ctenophores �mostly carnivorous�� and the appendicularians and

thaliaceans �herbivores
 detritivores and omnivores mostly�� These latter two groups are considered

important because of their production of fast�sinking faecal pellets �Totterdell et al�
 ������

An important issue in zooplankton grazing is how exactly the zooplankton graze� At the level of unicells


phagocytosis �where one cell entirely engulfs another� is one such procedure used� It requires direct

contact between the prey and the predator cells �see Davidson
 Cunningham � Flynn
 ����
 for a

detailed study of one such system�� As the ciliates illustrate though
 grazing even in unicells can be

more complicated than mere phagocytosis� Because of their size and �normally� more complex anatomy


multicellular metazoans have many more di�erent approaches to food acquisition� Some also rely on

passive contact �e�g� the coelenterates and ctenophores� the former use poisoned barbs to immobilise

prey
 the latter adhesive compounds�
 while some actively hunt �e�g� some euphausiids
 polychaete

annelids�� The appendicularians feed uniquely by using a gelatinous casing which is secreted around

their bodies� Water is pumped through this casing to a �lter where small plankton are trapped then

consumed �since the casing becomes clogged
 it is replaced regularly � sometimes as frequently as every

few hours�� The thaliaceans use a feeding technique not dissimilar to that used by benthic molluscs� A

continuously generated mucus net traps particles in the water and is drawn constantly into the organism�s

mouth� In a related issue
 Rothschild � Osborn ������ have suggested that the role of turbulence should

be considered in all feeding interactions� As well as directly a�ecting contact rates between organisms


they suggest that organisms may take advantage of turbulent energy rather than use their own metabolic

energy to capture prey�

Heterotrophic bacteria

In addition to the autotrophic bacteria already classi�ed here as phytoplankton
 large assemblages of

heterotrophic bacteria occur in the ocean� These are broadly classi�ed as either �free� or �attached�

bacteria �Totterdell et al�
 ������ The former are those bacteria which exist freely in the plankton and

derive energy from dissolved organic material �DOM� there �Zweifel
 Norrman � Hagstr�om
 ������ The

latter are those which associate with particulate detrital material in the water column and degrade this

to derive energy and material for growth� The majority of bacteria appear to be in the former group

�Azam et al�
 �����
 although as yet the precise ecological signi�cance of free bacteria is not entirely

understood �Fasham
 ������ However
 they do play an important role in the regeneration of nutrients

�Lee � Fisher
 ������ In addition to utilising DOM for its energy content
 heterotrophic bacteria also

utilise ammonium or other organic nitrogen sources to provide nitrogen for amino acid synthesis�

In addition to losses incurred due to grazing by microzooplankton
 heterotrophic �and autotrophic�

bacteria also su�er losses due to the activity of viruses �or phages�� Suttle ������ found that up to ���

��



of marine heterotrophic bacteria were infected at any given time and that this led to a comparable daily

loss rate of cells to lysis� Weinbauer � Peduzzi ������ found that loss to viruses could be more signi�cant

than loss to microzooplankton �nano�agellates� in certain situations� However
 as Murray ������ points

out
 bacteria can also destroy viruses which a�ect other organisms
 and suggests that the excretion of

DOM by phytoplankton may aim to support a virus�killing population of heterotrophic bacteria�

����� Model biology

The three trophic levels described here are those used in Fasham�s ������ model of the open�ocean

plankton ecosystem� This model forms the basis of this thesis� As the absence of familiar aquatic ani

mals such as �sh and whales implies
 the biology represented in the model is a �severe� truncation of real

biology in the world ocean� However
 although these macroscopic ocean inhabitants have a major role

in the economic use of the ocean
 their absence �at least in terms of explicit representation in models� is

of limited signi�cance to the problems �e�g� predicting biological production or carbon �ux to the deep

ocean� addressed by such models�

As is discussed more fully in Chapter �
 there is some variety in the level of detail in biological models

of the ocean� Although reducing the entirety of ocean biology to three compartments �or state vari�

ables� may appear extreme
 many models use even fewer� Kremer ������
 Taylor ������ and Taylor et

al� ������
 for instance
 all use models in which the biology is reduced to only a phytoplankton com

partment� Phytoplankton�Zooplankton �PZ� and Zooplankton�Phytoplankton�Nutrient �ZPN� models


which expand upon the earlier models by modelling both phytoplankton and their grazers
 are also a

common choice� Beyond the likes of the Fasham ������ model
 several models include multiple types

of phytoplankton and zooplankton to model situations in which appropriate data are available �e�g�

Kremer � Nixon
 ����� Andersen
 Nival � Harris
 ������

Ultimately
 extreme biological detail may be required in a model if it is to accurately capture the

behaviour of plankton ecosystems �e�g� in the �globally robust� models imagined by Fasham
 ������

However
 as Totterdell et al� ������ discuss
 increasing model complexity quickly leads to trade�o�s

against model tractability �e�g� determining analytical solutions� simulation in General Circulation

Models
 GCMs� and ease of understanding� Chapter � explores some issues of model complexity during

the deconstruction then reconstruction of the Fasham ������ model�

��� Ocean physics

In addition to purely biological interactions
 most organisms in the ocean are also profoundly in�uenced

by the physics of the medium they inhabit� This in�uence operates on many di�erent scales
 from the

forces and factors a�ecting a single cell up to those which control the biological productivity of ocean

basins�

��



����� Irradiance and ocean heating

The upper ocean is warmed by radiation from the sun� This takes the form of mostly shorter wavelength

radiation in the visible and infra�red regions of the electromagnetic spectrum� The quantity of radiation

reaching the top of the earth�s atmosphere varies predictably with both latitude and season since both

of these parameters a�ect the angle of a given position on earth relative to the incident solar radiation

�Brock
 ����
 presents a series of standard astronomical formulae which can calculate the spatial and

temporal patterns of irradiance across the earth� see also Chapter ��� Correcting this radiation �ux to

account for the e�ects of the atmosphere is considerably more complicated �Chapter � describes the em

pirical correction algorithm used in this thesis�� Even after penetrating the earth�s atmosphere
 some of

the radiation which reaches the surface is lost by re�ection at the surface of the ocean �this is obviously

particularly high when the ocean surface is covered in sea ice and this is especially signi�cant seasonally

in the Southern Ocean around Antarctica��

Once radiation has penetrated the ocean�s surface it is attenuated down the water column as it is absorbed

by both the water itself
 and by material within the water column �including the organisms there�� The

rate of attenuation is variable with the wavelength of the radiation
 and for a given wavelength
 �
 can

be described by the following equation 	

Iz � I� expf���zg� �����

where Iz is the intensity of irradiance of at depth z
 given the intensity of irradiance just below the

water�s surface
 I�
 and the attenuation coe�cient for irradiance of wavelength �
 �� �assuming that

�� is constant down the water column� �Mann � Lazier
 ������ The attenuation coe�cient is variable

between di�erent wavelengths� For longer wavelength radiation such as infra�red
 the coe�cient can be

as high as �� m�� �i�e� by a depth of only � m
 � ��� of the radiation has already been absorbed��

The action spectrum of chlorophyll a �the major photosynthetic pigment used by most photoautotrophs�

shows that shorter wavelengths of radiation are favoured
 and the attenuation coe�cients of water at

these wavelengths are considerably smaller �visible red and blue wavelengths have coe�cients of around

��� and ����� m�� respectively�� However
 even with these lower attenuation coe�cients
 the majority

of radiation which enters the water column is absorbed within the �rst �� m�

����� Vertical structure and mixing

One might expect that this pattern of absorption would lead to a similar thermal pro�le in the water

column
 as the energy of the absorbed photons is transformed to thermal energy� However
 as mea

surements of the vertical pro�le of temperature reveal
 processes which mix the water column normally

disrupt the pattern of energy dissipation� These processes include stirring by the wind and convection

generated by the loss of heat at the surface of the water� This leads to the generation of a so�called

mixed layer at the surface of the ocean with a relatively homogeneous thermal structure� This layer

overlies cooler water
 and between the two layers there is a region known as the thermocline across which

��



the temperature changes from the relatively higher surface temperatures to the lower deeper ones�

The thermal di�erence between the mixed layer and the deeper ocean leads directly to di�erences in

the density of the layers� Deeper water is cooler and denser
 while mixed layer water is warmer and

lighter� The layers are then also separated by a region across which density changes
 the so�called py�

cnocline� This tends to reduce interchange between the layers since when denser parcels of water from

below the pycnocline try to mix into the mixed layer
 they tend to sink out
 while the reverse happens

when lighter parcels of water from the mixed layer try to mix into the deep ocean� Consequently the

layers become relatively isolated
 with the isolation increasing with the density di�erence between the

two layers� Since the irradiance used by phytoplankton is mostly con�ned to the mixed layer �the region

in which irradiance is su�cient to promote net phytoplankton growth is sometimes known as the photic

zone�
 but their nutrients are replenished from the deep ocean
 the reduced communication between the

surface and deeper ocean layers has interesting biological consequences�

The depth of the mixed layer �and thus the extent of the thermocline� varies with wind and solar forc

ing� The more energy transferred to the ocean by winds
 the greater the turbulence and the deeper the

resulting mixed layer� However
 the e�ects of wind mixing can be countered by the increased buoyancy

caused by solar heating of the surface waters �although this is obviously a�ected by the diel nature of

the solar forcing�� Taylor � Stephens ������ examine the in�uence of mixing and the stabilisation of a

shallow mixed layer on the timing of the spring phytoplankton bloom�

The mixing described above takes place mostly as a result of the turbulence introduced into the ocean

system by instability mechanisms which a�ect large scale water motions �of which the breaking of the

surface waves generated by wind action across the ocean surface is an example�� Turbulence itself
 de

spite its appearance as random water movement
 is a complex phenomenon produced by the dissipation

of kinetic energy to smaller and smaller scales� This process is known as the energy cascade �Henderson�

Sellers � Robinson
 ������ The kinetic energy is continually transferred to smaller scales until the

viscosity of the water itself interferes with the process by resisting the shear caused by the smallest

eddies� This restricts eddies to minimum sizes of just a few millimetres� As a consequence
 organisms

with a typical dimension of less than � mm are forced to rely on molecular di�usion to supply them with

nutrients or rid them of their waste products� Unless
 that is
 they resort to strategies such as sinking

�potentially dangerous for a phytoplankton cell wishing to remain in the photic zone� or swimming to

�shear away� the boundary layer of stationary medium which surrounds them�

In addition to mixing via the turbulent dissipation of kinetic energy
 the mixed layer is also a�ected

by a process known as Langmuir circulation� Above a wind speed of around � m s��
 this produces

coherent horizontal �rolls� which line up in the same direction as the wind� The rolls can be up to ���

m in diameter
 and are often identi�ed from the debris which occurs on the sea surface where two rolls

converge �pairs of neighbouring rolls rotate in opposite directions� �Barstow
 ������ As well as providing

��



another mechanism to mix the surface waters
 work has found that cross�sectional heterogeneity in the

rolls occurs
 causing certain regions to disperse plankton rapidly
 and other regions to hold them for long

periods of time �Bees
 Mezi�c � McGlade
 ������

Mann � Lazier ������ provide a more thorough treatment of the issues sketched above�

����� Large scale ocean circulation

The previous section brie�y described some of the physical phenomena which a�ect plankton systems

at the small �individual organism� and medium �mixed layer� scale� The models used in this thesis are

applied at the medium scale
 but are often applied �e�g� Fasham et al�
 ����� Sarmiento et al�
 ����� at

a larger scale �e�g� ocean basin�� To put such related work in context
 this short section outlines some

of the physical processes in operation at such scales�

The earth�s atmosphere receives energy from direct
 re�ected and re�emitted irradiance� This energy

manifests itself in the movement of air in response to its thermal state� Since the earth does not receive

irradiance evenly over its surface �the poles receive considerably less irradiance per unit surface area

than the equatorial region�
 the heating of the atmosphere is similarly uneven� Since warm air rises


one might expect that this skewed distribution of solar heating would be resolved simply by the move

ment of warmer
 lighter equatorial air over cooler
 denser polar air� However
 the rotation of the earth
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Figure ���	 Trade and westerly wind systems in the northern and southern hemispheres of

the earth� The jagged appearance of the westerlies represents their meanderings which lead

to the formation of Rossby waves �see text�� After Mann � Lazier �������
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complicates the picture
 leading to the formation of two major wind systems 	 the trade winds and the

westerlies �see �gure �����

Ekman
Transport

Trade winds
Winds

Westerlies
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Sverdrup transport

Pycnocline
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Ekman pumping

Figure ���	 Diagrammatic representation of the processes of Ekman and Sverdrup transport

�in the northern hemisphere�� Ekman transport of surface water �� ��� m� north and south

towards ��� is caused by the action of the trade and westerly winds �out of and into the

page respectively� on the surface of the ocean� This water movement causes water to be

�pumped� downwards where Ekman transport converges� This in turn leads to the process

of Sverdrup transport of deeper water �up to ���� m� towards the equator �see text for more

details�� After Mann � Lazier �������

The trade winds arise in the manner already suggested
 namely warmer
 equatorial air rises up and

moves polewards
 and is replaced by cooler
 denser air from the subtropics� Because of the Coriolis

e�ect�
 the �ows of air from the subtropics to the equator are de�ected to the west
 generating the

northeast and southeast trade winds �these are named after the direction from which they come�� The

rising equatorial air cools as it moves towards the poles and descends in the subtropics �� ��� N�S�� This

circular pattern of air �ow
 where equatorial air is replaced by subtropical air
 which it then replaces

itself
 creates convection cells which are known as Hadley cells� Since these cells essentially retain the

thermal energy supplied to the tropics within the tropics and subtropics
 this creates a thermal �and

thus pressure� gradient between latitude ��� and the poles� This gradient gives rise to strong westerly

�The Coriolis e�ect is a consequence of the earth�s rotation on its axis� and a�ects the movement of bodies of air and

water over the earth�s surface� In the context of the oceans� it is responsible for why� relative to the surface of the earth�

a moving body of water veers to the right in the northern hemisphere� and to the left in the southern hemisphere�
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winds which are perpendicular the pressure gradient
 and �ow continuously around the earth� These

winds vary in strength with altitude �the jet�stream marks their maximum� and also meander north and

south� This meandering produces waves �around ����� km long� known as Rossby waves� These have

periods of around a month and are responsible for shifting weather patterns in the mid�latitudes�
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Figure ���	 The major surface currents of the northern and southern Atlantic ocean� Western

boundary currents �the Gulf Stream and the Brazil current� are emphasised� Note the

circular pattern of �ows in the northern and southern regions� After Mann � Lazier �������

The trade winds and the westerlies play an important role in the generation of surface and deeper layer

�ows within the ocean� Moving in opposite directions at lower and higher latitudes respectively
 they

generate stress on the ocean�s surface which
 in combinationwith the Coriolis force
 leads to the transport

of water in the upper layer of the ocean� The interaction between the wind stress and the Coriolis force

acts to produce water movement to the right of the wind� Consequently
 surface water on the poleward

side of the subtropics �� ���� moves towards the equator
 while water on the equatorial side of the sub

tropics �� ���� moves towards the poles� These water movements are known as Ekman transport� Since

��



these movements are opposite to one another
 the moving water has to go somewhere
 leading to a region

of downwelling water at the subtropics �this downwelling is known as Ekman pumping�� The ocean layer

beneath the surface wind�driven layer compensates for the downward Ekman pumping with a horizontal

�ow towards the equator �see �gure ����� Although the surface �ows are in opposite directions and head

towards the subtropics
 this deeper �ow
 known as Sverdrup transport
 is equatorial� The net e�ect

of this wind�driven circulation is an equatorial pattern of water circulation� The Californian
 Canary


Peruvian
 and Benguelan currents are examples of this circulation pattern� However
 these currents only

complete half the full circulation required� The patterns are completed by �ow parallel to the equator

and by relatively stronger �ow at the westward boundaries of the ocean basins �the Gulf stream and the

Brazil current are these western �ows in the northern and southern Atlantic ocean respectively�� These

currents close the circular patterns of surface �ow in the main ocean basins �see �gure ���	�� These

patterns are known as gyres
 and play signi�cant roles in dissipating inertia and thermal energy through

the oceans� In the case of the Gulf Stream
 some of this energy is dissipated by occasional meanderings

which break o� into separate rings �the Ring Group
 ����
 followed the evolution of ring �Bob� across

the course of its seven month life��

Again
 the processes outlined here are comprehensively discussed by Mann � Lazier ������ and Henderson�

Sellers � Robinson �������

����� Model physics

The models considered in this thesis take a considerably simpler view of the structure of the ocean� In

the �rst instance
 horizontal space is not considered at all �although many other models do treat its

importance at di�erent scales�� Vertical space is represented
 but in an implicit manner� Most of the

models consider only the region of the ocean from the surface of the ocean to the top of the thermocline�

Below this is the so�called deep ocean which is assumed to play a relatively minor role in the biological

dynamics of the ocean
 and acts only to re�mineralise organic material back to inorganic nutrient� Figure

��� shows a diagrammatic representation of the system�

The actions of the sun and wind on the modelled vertical section are assumed to mix it homogeneously

down its entire depth� The components of the biological model are thus represented by an average

concentration within the layer� Since neither the patterns of wind or solar forcing are constant across

the year
 neither is the depth of mixing� In the models here
 the seasonal pattern of mixing is �again�

represented implicitly using measurements from geographical locations of interest�

Some models �e�g� Taylor
 ����� Taylor et al�
 ����� Ross
 Gurney � Heath
 ����� assume a slightly

more realistic representation of the water column in which the thermocline layer �i�e� the region be

tween the mixed layer and the deep ocean across which the temperature changes between that of its

�The coastline map of �gure ��� was created using the web utility �Online Map Creation�� This utility was written by

Martin Weinelt� and is available at http���www�aquarius�geomar�de�omc�
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Figure ���	 Diagrammatic representation of the modelled physical and biological system�

two sandwiching layers� is represented explicitly� Chapter � uses this approach as well and some of the

advantages and problems associated with this approach are discussed there�

��� Studying plankton systems

A crucial aspect in the study of plankton systems which has been neglected so far is the way in which the

systems are actually studied� While this thesis is a modelling one and uses no methods or techniques to

obtain measurements from the real world
 it does use data which has been collected from there
 and that

data has been collected in a number of di�erent ways� This brief section introduces some of the ways in

which data are gathered� Newell � Newell ������
 Stein ������ and Omori � Ikeda ������ provide more

detailed accounts of some of the techniques outlined here�

In addition to the actual techniques and mechanisms used to sample the ocean
 there is a large body

of information regarding appropriate spatial and temporal scales at which sampling should occur �see

Omori � Ikeda
 ������ For example
 if zooplankton under study undergo DVM
 any sampling of their

biomass needs to account for this if it is to be accurate� Similarly
 in coastal regions the timing of tidal

��



events may strongly a�ect sampling results and care should be taken to ensure that sampling does not

falsely report the true distribution and abundance of organisms� There is also a considerable body of

taxonomic information which identi�es and describes biological species� Again
 after Williams et al�

������
 as plankton species can potentially be found in any part of the world ocean
 this can be an

important consideration�

����� Plankton measurements

There are a number of di�erent ways to quantify plankton densities in the ocean� For medium to large

species or groups �e�g� mesozooplankton�
 it is common to sample with netting� In addition to mesh size

di�erences
 there are several di�erent shapes of nets
 and there are several di�erent patterns by which the

nets can be towed through the water �see Omori � Ikeda
 ������ Nets have the advantage of sampling

a large volume of water �which may be necessary if the plankton fraction of interest is comparatively

rare�
 but only allow an average density to be obtained �which may even be an underestimate if net

avoidance by the organisms in question is an issue�� In trophic level studies
 where trapped zooplankton

are examined for the contents of their digestive tracts
 the phenomenon of net feeding �where trapped

zooplankton ingest unrepresentative prey that happen to coincide in the net� may also complicate mea

surements�

Microzooplankton and smaller fractions
 are generally sampled using bottles� These avoid the problem

of net clogging
 and may be used to sample only at speci�c depths� After the sample is taken
 biomass

or identi�cation of di�erent fractions may be made following �ltration to separate di�erent size classes�

There are many di�erent techniques for quantifying biomass� Flow cytometry
 for instance
 allows the

determination of both cell numbers and cell volumes from very small sample volumes �and
 potentially


some degree of taxonomic distinction� C� S� Dow
 University of Warwick
 pers� comm��� Alternatively


samples may be used in experiments to measure properties such as photosynthesis
 grazing
 or the uptake

or production of substances of interest� In the case of bacteria
 epi�uorescent microscopy can be used

to distinguish di�erent types of bacteria �e�g� autotrophic versus heterotrophic��

Another commonly used sampling mechanism is the so�called continuous plankton recorder �CPR��

These devices are generally used to sample phytoplankton across large transects� They are towed behind

vessels either at a �xed depth
 or across a vertical range as they are towed� Often a silk screen is used

to trap planktonic organisms as the device is towed� The screen is slowly wound and stored so that

organisms caught at di�erent times are trapped on a di�erent section of the silk� The silk may then

be rolled up in a bath of preservative and examined later
 usually for chlorophyll content� If the rate

of the screen movement is tied to the rate of passage through the water
 comparable lengths of the

screen will allow comparison of comparable volumes of water
 and a spatial transect of chlorophyll can

be constructed� Variants of such devices can be used to measure di�erent fractions of the plankton�

Hays
 Warner � LeFevre ������
 for instance
 examined CPR data for � copepod taxa to determine

their long�term patterns of DVM�
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Figure ���	 Sampling sites in the North Atlantic from the World Ocean Optics Database

�WOOD�� Black circles represent sampled locations� Map courtesy of the WOOD�

����� Shipboard	 cruise and marine stations

Traditionally
 research cruises
 ships�of�fortune and marine stations have provided data� Research cruises

typically visit an ocean region of interest
 then over a period of time and�or space sample the region

in question� Measurements or observations made will depend on the �mission� at hand
 but generally

cruises provide a body of detailed data� The recent ����������� Biogeochemical Ocean Flux Study

�BOFS� cruises
 for instance
 collected data which included 	 Conductivity�Temperature�Depth �CTD�

data of temperature
 attenuation
 salinity
 irradiance
 and chlorophyll� nutrient concentrations� zoo

plankton biomass� phytoplankton species� primary productivity� and sinking �ux measurements from
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sediment traps �Lowry
 Machin � Cramer
 ������

So�called ships�of�fortune are usually commercial vessels to which scienti�c instruments �e�g� the CPR�

are attached� Although there is no opportunity to control the transect sampled
 the frequency of such

vessels
 as well as their consistency of route
 makes them a valuable source of data�

Marine stations share the sampling bandwidth capabilities of research cruises
 but con�ne themselves to

measurements in their immediate vicinity� While this does allow the generation of large
 temporal data

sets from particular locations �e�g� OWS �India��
 stations cannot easily provide information about

spatial components to their data�

Figure ��� shows the locations of cruises and ocean stations in the North Atlantic Ocean �dating from

the early ����s�� The map originates from the World Ocean Optics Database
 which contains data from

cruises or stations where measurements related to ocean optics were made� As is clear from the �gure


sampling is heterogeneous and predominantly coastal or near�coastal �particularly the eastern seaboard

o� the U�S�A� and the North Sea�
 although there are several obvious transect studies� The southern


central region of the North Atlantic is more sparsely sampled
 partially re�ecting the lower biological

productivity �and hence reduced research interest� of this region� Although not shown here
 the seasonal

pattern of sampling is also heterogeneous
 with the majority of cruises occurring during the period from

the late spring to the early autumn� This temporal window is not �yet� wide enough to provide much

information on the over�wintering behaviour of phytoplankton and zooplankton �Totterdell et al�
 ������

����� Remote sensing platforms

With the advent of earth�orbiting satellites
 the opportunity has arisen to collect synoptic data from

the oceans with superb spatial and temporal coverage� Depending upon the orbital parameters of the

satellite �altitude� polar versus equatorial orbit�
 coverage can vary from a constant �eld of view of a

given area �geostationary satellites�
 to periodic views of much greater areas �polar orbiting satellites��

In addition to the spatial and temporal aspects to the coverage provided by a satellite
 the information

produced also depends on the region of the electromagnetic spectrum measured� Cole ������ summarises

the uses of di�erent regions of the spectrum 	

� Visible sensor

Produces colour maps which may be used to derive chlorophyll concentration or water turbid

ity� These may then be used to calculate photosynthesis
 sediment load
 track pollution
 classify

habitats or study ocean circulation patterns�

	The WOOD is administered by Je�rey Smart and is available at http���wood�jhuapl�edu�� The WOOD is funded by

the O�ce of Naval Research�s Ocean Optics Programme�
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� Infra�red sensor

Produces sea�surface temperature �SST� maps� These may be used again to study ocean circulation

or to classify habitats� They may also be used �e�g� Cole
 ����� as an indicator for upwelling

activity�

� Microwave sensor

Produces maps of sea ice distribution� These may be used in climate change studies or to warn

shipping�

� Radar altimetry

May be used to produce maps of sea level
 wave height or sea roughness� These may be used to

identify ocean currents and eddies
 or again for shipping�

Visible sensors usually make use of re�ected solar radiation� With respect to the oceans
 this may either

be re�ected from the ocean�s surface or from deeper horizons within the water column� Infra�red and

microwave sensors normally make use of radiation re�emitted from the earth
 and radar sensors detect

the backscatter of radiation emitted usually by the satellite itself� In the context of plankton studies


most interest lies in using visible radiation sensors which can detect ocean colour �although information

from other wavebands often helps in the processing of ocean colour results�� These sensors are used to

estimate the concentration of phytoplankton pigments
 and ultimately these estimates may be used to

calculate primary productivity� Platt
 Sathyendranath � Longhurst ������ provide an overview of the

methods used to estimate productivity from ocean colour�

In spite of the advantages satellites o�er in terms of spatio�temporal coverage
 they have a number of

limitations� An obvious one of these is the confounding in�uence of cloud cover
 which a�ects both vis

ible and infra�red radiation� With respect to using ocean colour as a proxy for phytoplankton pigment

concentration
 there are also problems associated with the vertical distribution of phytoplankton in the

water column �i�e� is surface chlorophyll representative of its vertical distribution �� Platt
 Sathyen

dranath � Longhurst ������ and Hoep�ner
 Barker
 Nykjaer
 Estrada � Schlittenhardt ������ describe

techniques for accounting for such problems �e�g� the division of the ocean into provinces which show

common seasonal patterns of vertical phytoplankton distribution��

��	 Why model�

I am never content until I have constructed a mechanical model of the subject I am studying�

If I succeed in making one� I understand� otherwise I do not�

� Lord Kelvin

Although often not stated explicitly �for instance
 as in the �eld of molecular biology�
 the principle aim

of science is to construct models of the world� By incorporating and summarising our knowledge
 mod
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els are built to capture the essence of particular systems� Ideally
 these models allow us to understand

what we can observe of the system
 and occasionally can be used to predict what the system may do

in the future� The former feature of models is particularly valuable in directing research agendas and

highlighting areas of relative ignorance�

Models may take many forms
 from simple
 qualitative descriptions of a system
 through to complex


quantitative forms� In the quantitative sciences
 where models are normally veri�ed against measure

ments of the real world
 it is essential for models to be quantitative� Mathematics has thus become a

powerful tool
 both in formulatingmodels from knowledge about a system
 and exploring the constructed

model to determine if it has any features which make it either testable or unrealistic�

In the case of physics
 mathematics has been applied to problems for centuries
 and has been remark

ably successful in both describing and predicting systems �e�g� Newtonian mechanics
 thermodynamics��

Indeed
 until the advent of quantum mechanics
 viewing the world as an elaborate machine governed

entirely by deterministic mathematical laws was commonplace� Note though
 that even if the universe

were entirely deterministic
 the existence of chaotic systems would render it di�cult to make reliable

predictions in practice� Nonetheless
 even with the apparent stochasticity introduced into the universe

by quantum mechanics
 physics has been very successful in describing and predicting the behaviour of

phenomena�

However
 the application of mathematics to biological systems has
 historically
 been considerably less

successful �at least in terms of producing a theoretical backbone to the subject�� Systems which bi

ologists study are usually considerably more complex �e�g� because of their heterogeneity� than those

studied by physicists
 and not obviously amenable to being reduced to a small number of important

components� In sub�organism level systems
 the objects under study �even the smallest of them� are

usually highly complex
 being made of thousands of parts �molecular and multi�molecular�
 and mixing

matter
 energy and information in ways which make it di�cult to tease out exactly what is going on� In

multi�organism systems �such as the plankton ones in this thesis� additional complexity enters through

variety in the individual organisms
 in their interactions with their physical environment and in their

interactions with one another�

Partially because of this
 biologists have traditionally studied nature in a mostly qualitative way� For

instance
 a substantial fraction of ecological research has involved determining detailed food webs to de

scribe the trophic relationships between species in particular ecosystems �see Begon
 Harper � Townsend


����
 for examples�� Where numerical approaches have been used
 they have been typically statistical

or have ignored the dynamics of interacting organisms� Such studies
 while useful in their own right

and providing foundations for other research
 do not usually lend themselves to the kinds of predictions

which ecologists are increasingly asked to make� Forecasting the consequences of many of the impacts

of human civilisation on the earth�s ecology requires ecologists to extrapolate to situations outside of
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their empirical data� This forces ecologists to develop more accurate theoretical models
 and necessitates

confronting the complexity of biological systems�

Biological modellers are usually forced to handle this complexity by stripping the system to be modelled

down to its bare essentials��
 making many empirical assumptions about how these essential components

interact and then extensively modifying the model ad hoc to �t with observations made of the real system�

There are notable exceptions to this broad categorisation
 where the systems studied are su�ciently

simple that the base physics underlying them can be incorporated into the models �Alexander
 �����

Murray
 ����� Bees � Hill
 �����
 but as yet these approaches are con�ned to relatively narrow areas of

biology�

��
�� Historical background

The clergyman Thomas Malthus was one of the �rst�� people to frame a biological problem in terms of

mathematics� His ���� work
 An Essay on the Principle of Population
 described how human population

growth beyond the limit of sustenance is checked by famine
 disease and warfare� Although his public

policy suggestions based on these observations were �and still are� widely misunderstood and attacked


his in�uence on biology continues to this day �Hardin
 ����
 ����� Yool
 ����� Mogie
 ������

During the nineteenth century there were further attempts to applymathematical techniques to biological

problems �including the development of statistics
 a discipline with �rm roots in biology�
 but it was not

really until the twentieth century that major e�orts were expended�

��
�� The Lotka�Volterra model

One of the earliest
 and most well�known
 ecological models is the predator�prey model of Lotka ������

and Volterra ������� Vito Volterra originally built the model to describe the predator�prey interactions

of �sh species� He had been asked to do so by his prospective son�in�law
 Humberto D�Ancona
 who

was a biologist studying �sh populations in the Adriatic Sea� Fishing activity in the sea was �under

standably� curtailed by the First World War
 and �sh populations had been able to return to a more

natural
 but counter�intuitive
 equilibrium where the proportion of predators �sharks� to prey was much

greater��� Alfred Lotka
 who was a biologist and an actuary
 independently produced the same model�

The model takes the form of a pair of coupled ordinary di�erential equations �ODEs� with four simple

terms representing intra� and inter�speci�c processes�

dN

dt
� N �a� bP � �����

�
Or� more accurately� what are perceived as the system�s bare essentials� Frequently� the �bare essentials� are those

parts of a system which are most easily measured or which have the greatest practical value�
��Daniel Bernoulli�s mathematical evaluation of the treatment of smallpox by vaccination predates Malthus� work by

almost �� years 
Anderson � May� ���� However� his e�orts are largely over�shadowed by those of Malthus probably

because of the controversy 
and resultant persistence� of Malthus� work�
��As Sigmund 
��� amusingly remarked� �Why should the war favour sharks� It couldn�t just be the Zeitgeist� surely��
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dP

dt
� P �cbN � d� �����

Prey �N �
 are born at a constant rate
 a
 and are consumed by predators �P � at rate b
 which is modi�ed

by the predator density� Predators increase in number through consuming prey
 where the constant c

either relates to transfer e�ciency �i�e� how much of a prey�s biomass�energy can be used by the preda

tor� or some other conversion measure �i�e� how many prey need to be eaten to make a new predator��

And they die �i�e� through natural mortality or predation� at a constant rate
 d�
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Figure ���	 A time series �left� and phase portrait �right� of a Lotka�Volterra model sim

ulation� Prey are represented by the solid line in the time series
 predators by the dashed

line� Motion around the orbit shown in the phase portrait is anti�clockwise
 with predator

density rising after that of the prey�

Figure ��� shows a typical result from the Lotka�Volterra model� Predator populations �chase� prey

ones through time
 creating oscillations in both populations� These oscillations trace an egg�shaped

cycle in predator�prey space
 with each orbit of the cycle taking the populations of both species back

through their initial conditions� The position and shape of this cycle �assuming constant parameter

values� depends critically on the initial populations of both modelled species� This is because the model

is neutrally stable
 with each combination of initial conditions producing a slightly di�erent cycle� This

is quite unlike most cyclic systems
 including those described later in this thesis
 where the same cycle

is produced irrespective of the initial conditions �i�e� globally attracting cycles��

As such though
 the Lotka�Volterra model contains several assumptions which are unrealistic for most

natural populations� Amongst these are the assumptions that both the prey growth and predator death

terms are density independent� Since in most real�life situations
 prey population growth is likely to be

limited by food availability
 and predator mortality is liable to vary with the density of higher predators


both prey food availability and higher predator density are likely to be strongly dependent on the density

of prey and predators respectively� Modifying the equations to those below
 where prey growth is now

density dependent �with K as the maximum possible prey density
 or carrying capacity�
 changes the

model system so that instead of neutrally�stable cycles
 only a stable �xed point exists� This stable

��



�xed point attracts trajectories from all initial conditions to its location in model phase space�

dN

dt
� N �a���

N

K
� � bP � �����

dP

dt
� P �cbN � d� �����

Despite the simplicity of the Lotka�Volterra model
 it is still a popular one amongst modellers� The

particular Lotka�Volterra model detailed here is by no means the only one
 and the term �Lotka�Volterra

model� is applied across a wide range of simple predator�prey or two species competition models� May

������ and Begon
 Harper � Townsend ������ review the model and some of its variants
 and discuss

modi�cations to the basic form
 as well as their outcomes �e�g� the construction of n species versions of

the Lotka�Volterra model��

��
�� Mathematical considerations

Again despite its relative simplicity
 the Lotka�Volterra model illustrates several major
 and often un

stated
 assumptions of many ecological models� Since some of these bear on the plankton models in this

thesis they are discussed below�

� Discrete versus continuous populations

Both predator and prey populations are described by continuous state variables
 while in reality

biological populations consist of discrete individuals� This discreteness problem is overcome by

essentially assuming that the populations of predators and prey are su�ciently large that a contin

uous variable can adequately describe them 	 the so�called continuity assumption� The assumption

breaks down where the populations to be modelled are low
 or where the continuously modelled

population tends to vanishingly small values� This latter feature of continuous models can create

so�called nanopeople �D� A� Rand
 University of Warwick
 pers� comm��
 model populations so

small that when considered in terms of the numbers of individuals they represent
 they actually

constitute fractions of individuals� When this occurs
 the problem is not so much in the low

densities per se
 but rather in ignoring the stochastic e�ects which become important when densi

ties are low �i�e� populations at extremely low densities risk extinction by minor events a�ecting

individuals��

� Determinism

It is assumed that the system under study can be modelled by deterministic rules� While individual

events may occur stochastically
 models can assume that large enough numbers of events can be

described by deterministic statements based on average behaviour �this is related to the issue of

discrete versus continuous populations���� Researchers have found that certain situations �e�g�

Hendry � McGlade
 ����� Keeling
 ����� are best described by models which incorporate some

degree of stochasticity�

��In a directly physical example� while the behaviour of an individual electron in the famous double�slit experimentmay

be stochastic and entirely unpredictable� the behaviour of large numbers of them may be described almost perfectly by

the deterministic theories of quantum mechanics�

��



� Homogeneous mixing

Populations are assumed to be su�ciently well mixed �e�g� either by physical processes or by the

active movement of individuals within the population� that they can be adequately represented by

a single population at an average density� So�called �patch� models or models in which space �or

some other dimension over which populations are heterogeneous� e�g� age
 size
 disease susceptibil

ity� is explicitly included provide alternatives �Keeling
 ����
 and Morris
 ����
 provide multiple

examples of spatial cellular automata
 coupled map lattices and reaction�di�usion systems��

� Averaged rate processes

Processes �such as birth
 death or decay� are assumed to be adequately described by an average

rate� A process
 for example
 which is known to take an average of �� days to occur
 is commonly

modelled as a constant rate of ��� d�� �Keeling � Grenfell
 ������ This approach is again strongly

tied to the continuity assumption�

� Closed system

The modelled system is assumed to represent the �entire world�� Factors in the real world whose

e�ects are believed to be insigni�cant compared to the e�ects of the modelled components upon

one another are entirely ignored� The model is therefore a truncation of the real world�

� Identical inhabitants

In addition to assuming that populations can be described by a continuous variable
 ecological

models usually assume that all individuals in those populations are identical
 or at least have no

di�erences of any consequence to the situation under consideration� Evolutionary models
 where

populations may be broken into multiple sub�populations based on their genetics �or rather the

phenotypic e�ects of their genetics�
 are an alternative �Keeling � Rand
 ������

In the case of the plankton systems studied in this thesis
 good cases can be made for assuming each

of these in models� Table ���
 for instance
 summarises literature data collected on the densities of

several major plankton groups from various locations and at various times of the year� Densities of bac

terioplankton �table entries ����
 protistan phyto� and zooplankton �table entries ����� and metazoan

mesozooplankton �table entries ������ are listed� Although mesozooplankton can often fall to winter

densities as low as tens of individuals per cubic metre or less
 in the plankton models considered in this

thesis
 mesozooplankton are only the largest organisms represented by the zooplankton compartment�

These population sizes are su�ciently high for the continuity assumption to apply�

The physical environment in which open�ocean plankton systems exist is one in which the surface wa

ters are mixed both by currents within the water itself
 and by the action of wind over the surface of

the ocean� Wind mixing can be particularly strong
 often mixing up to depths of hundreds of metres�

Although mixing can create vertical structures
 such as Langmuir cells �Bees
 Mezi�c � McGlade
 �����


which may partition plankton
 mixing generally acts to homogenise the surface waters to the top of the

��



Source Region Group Details Density

� Eastern S� Paci�c Synechococcus sp� Bloom maximum �� � ��


� Central N� Atlantic Synechococcus sp� Summer depth range ��� � �� � ��


� Sargasso Sea Synechococcus sp� Autumn depth range ��� � �� � ��


� Equatorial Paci�c Synechococcus sp� HNLC surface waters �� � ��


� Baltic Sea Bacterioplankton Spring�autumn range ��� � ��� � ����

� Buzzards Bay
 USA Bacterioplankton Annual range ��� � ���� � ����

� Western S� Atlantic E� huxleyi Spring bloom range ��� � ��� � ���

� Central N� Atlantic E� huxleyi Early summer range ���� � �� � ��


� Buzzards Bay
 USA Dino�agellates Annual range ��� � ��� � ���

� Buzzards Bay
 USA Tintinnids Mean annual range ��� � ��� � ���

� Suruga Bay
 Japan Mesozooplankton Annual range ���� � � � ���

�� California Current Mesozooplankton Early summer range � � � � ���

Table ���	 Observed ranges of densities for several plankton groups from the literature�

Densities measured in cells m��� Mesozooplankton densities in individuals m��� Sources

	 �� Waterbury et al� ������� �� Wells
 Price � Bruland ������� �� Zweifel
 Norrman �

Hagstr�om ������� �� Turner � Borkman ������� �� Gayoso ������� �� Balch et al� �������

�� Pierce � Turner �����a�� �� Pierce � Turner �����b�� �� Omori � Ikeda ������� ���

Huntley et al� ������� See text for further details�

seasonal thermocline� As such
 the assumption of plankton as evenly mixed through the surface mixed

layer is not unreasonable�

The biological processes considered by most plankton models usually occur over time scales ranging

from hours up to days� While seasonal cycles and certain biological phenomena occur over obviously

longer periods �e�g� the duration of the planktivorous Blue Whale�s gestation is approximately one

year�
 processes key to the models used in this thesis �cell division
 nutrient uptake
 grazing
 excretion


decomposition
 sinking� occur over relatively short periods of time �minutes to hours� and are usually

assumed to be adequately represented by exponential rates�

The assumption of identical inhabitants is perhaps the least defensible in the case of the models used

in this thesis� The three biological state variables �phytoplankton
 zooplankton and bacteria� used by

Fasham ������
 are intended to cover a size spectrum of organisms from prokaryotes up to metazoans

�approximately � �m � � mm�
 and a trophic spectrum which includes photosynthetic autotrophs


detritivores
 grazers
 cannibals
 and predators �and frequently organisms which indulge in more than

one of these lifestyles�� The continuous range of size �which encompasses di�erences in uptake rates


locomotory ability
 vulnerability
 et cetera� and the variety in life history
 nutrient requirement
 prey

��



preference
 and behaviour further complicates attempts to describe plankton systems with a small num

ber of functional groups� However
 modellers have found that even simple models
 which parameterise

only the most important ecological processes �e�g� photosynthesis
 nutrient limitation
 grazing
 regener

ation�
 can relatively successfully predict certain key features of plankton dynamics �e�g� spring blooms

� Taylor et al�
 ����� recurrent red tide events � Truscott � Brindley
 ������ Some researchers have

found the creation of multiple nutrient
 phytoplankton or zooplankton compartments necessary to more

accurately capture certain features of data �Kremer � Nixon
 ����� Andersen
 Nival � Harris
 �����


but the success of simpler models suggests that they still have a role to play in plankton modelling�

��
�� The rise of computational power

As already stated
 the Lotka�Volterra model introduced earlier is somewhat unrealistic because of several

of the assumptions made in its formulation� Although such assumptions may be made where knowledge

of the system in question is poor
 the avoidance of more realistic �and complicated� forms does allow

the model to be rigorously analysed by mathematical techniques�

In the time of Lotka and Volterra
 this was an important consideration
 since understanding a model

depended on being able to deduce its behaviour through analysis� In the latter half of this century


however
 the appearance of digital computers
 as well as their �so far� relentless rise in processing power


has permitted researchers to formulate models without regard for their analytical solubility� Numerical

simulation of these models to examine their behaviour has become commonplace� While simulation is

less powerful than rigorous analysis in terms of understanding model behaviour
 it does permit the ex

amination of systems which were hitherto intractable for all practical purposes �e�g� complex ordinary or

partial di�erential equations
 individual based models
 spatially�extended systems�� The work contained

in this thesis
 for instance
 has relied almost entirely upon numerical solutions of ODE models of the

plankton ecosystem�

��
�� Plankton modelling

The modelling of plankton populations has a history stretching back to the work of Gordon Riley in the

����s� Riley
 in common with many of his contemporaries in biological oceanography
 was interested in

the phenomenon of the spring phytoplankton bloom� Using the ideas of Gran about the stabilisation of

the surface waters in spring
 he produced a quantitative model of the phytoplankton dynamics in the

North Atlantic �Riley
 Stommel � Bumpus
 ������ This work was expanded later by Sverdrup ������


but remains the basis of models of the spring phytoplankton bloom �including those in this thesis��

Mann � Lazier ������ and Fasham ������ provide some further background to the origins of plankton

modelling�

Latter�day modelling e�orts address plankton behaviour across the full range of space and�or time�

There is also a substantial body of more abstract theoretical work �e�g� Bascompte
 Sol�e � Valls
 �����

��



Malchow
 ����� Truscott � Brindley
 ����� Rose
 �����
 which explores processes from a mathematical

perspective� The work in this thesis focuses on non�spatial models
 and their behaviour across annual

cycles of physical forcing� In contrast
 other work �e�g� Davidson
 Cunningham � Flynn
 ����� David

son � Cunningham
 ����� has focussed on resolving behaviour at the shorter time scales of hours to days�

As indicated
 there is also work which additionally focuses on spatial elements of plankton dynamics�

Again
 such work covers a wide range of scales
 from metres to kilometres �e�g� Pascual
 ����� Malchow


����� Bees
 Mezi�c � McGlade
 �����
 all the way to full ocean basin simulations in general circulation

models �GCMs� �e�g� Wroblewski
 ����� Sarmiento et al�
 ������ Recently there has been the appearance

of models in which the life histories of individual plankters are followed in both space and time �Woods

� Barkmann
 ������

The di�erent models outlined above are often used to answer research questions which cannot be set

tled
 or reasonably addressed
 from observations� For instance
 large scale GCM simulations are normally

concerned with estimating total oceanic productivity over the ocean basin in question� Models at the

smaller end of the spatial scale are often used to predict the consequences to plankton population dynam

ics of small to medium scale physical processes such as di�usion��
 advection or Langmuir circulation�

Models �usually non�spatial ones similar to those in this thesis� are also commonly used to examine

speci�c ecological questions� For example
 several researchers have investigated the occurrence of so�

called �High Nutrient
 Low Chlorophyll� �HNLC� regions� Since nutrients normally limit phytoplankton

growth
 these regions �where nutrients
 for no obvious reason
 go unused by phytoplankton� have long

been considered anomalous
 and have attracted several modelling studies �Evans � Parslow
 ����� Frost


����� Steele � Henderson
 ����� Fasham
 ����� which attempt to explicate them�

The research in this thesis centres around the nitrogen ecosystem model of the oceanic mixed layer

described by Fasham ������ � This model is described
 mathematically and ecologically
 in Chapter ��

The chapter also aims to place this model into context within plankton modelling by comparing it with

several other plankton models�

��
 Summary

This chapter has attempted to lay a foundation for the biology and physics which underlie the models

that form the basis of this thesis� Additionally
 sections have aimed to explain �and defend� the simpli

�cations of this foundation by models� Models are
 by de�nition
 abstractions of reality�

��The term �di�usion� is often used to describe processes such as active swimming� advection and wind�mixing which�

as far as modelling is concerned� are analogous to true molecular di�usion�

��



Chapter �

Introducing the Fasham ������

model

Give me four parameters and I�ll draw you an elephant� Give me �ve� and I�ll waggle its

trunk�

� Linus Pauling �����������

�	



��� Introduction

The Fasham ������ model of the marine ecosystem is one of several which aim to describe the seasonal

dynamics of the open�ocean planktonic ecosystem of the North Atlantic �Wroblewski
 ����� Taylor et

al�
 ����� Bauer et al�
 ����� Taylor et al�
 ����� Dadou et al�
 ����� Although originally proposed in

Fasham
 Ducklow � McKelvie ������
 several re�nements �primarily changes to the functional responses

of plankton mortality and predation� have subsequently been made
 leading to the choice of Fasham

������ as the model upon which the research detailed in this thesis is based�

Although the model has several failings
 some of which have been addressed in subsequent papers

�Fasham
 ���	� Fasham � Evans
 ���	�
 it has several features which recommend it �

�i� It is a relatively detailed model of the ecosystem
 incorporating the most important biotic com�

partments plus several abiotic and detritus compartments�

�ii� It takes account of two of the more signi�cant physical aspects of the ocean
 vertical mixing and

solar irradiance�

�iii� Despite having seven compartments and around thirty parameters �many of which have not been

evaluated in the �eld or by experimental work
 and some of which cannot reasonably be estimated

at all�
 it is still simpler than some of the more detailed ecosystem models �Kremer � Nixon
 �����

Taylor et al�
 ������

In this chapter
 the Fasham ������ model is introduced� Each of the model�s seven equations and their

derivations are detailed� The model is also compared with several other popular plankton models� This

comparison is important because the paucity of data and the lack of any mechanistic theories underlying

the ecological interactions under study
 often makes the choice of model appear more a case of personal

preference than objective merit� Steele and Henderson ������ recently underlined this in a review of the

various predation terms used by modellers to �close� models�

�



��� Model equations

The Fasham ������ model describes the open�ocean plankton ecosystem with seven coupled ordinary

di�erential equations �ODEs�� These describe the time�evolution of mixed layer concentrations of phy�

toplankton �P �
 zooplankton �Z�
 bacteria �B�
 detritus or particulate organic nitrogen �D�
 nitrate

�Nn�
 ammonium �Nr�
 and dissolved organic nitrogen �Nd�� The mixed layer has a depth of M �

dP

dt
� ��� ����t�M� P�Nn� Nr�P �G� �

��P
�

k� � P
�
�m � h��t��P

M

� growth � grazing loss � natural mortality � mixing and dilution

dZ

dt
� ��G� � ��G� � ��G� �

��Z
�

k� � Z
�
h�t�Z

M

� grazedP � grazedB � grazedD � predation � dilution and concentration

dB

dt
� U� � U� � G� � ��B �

�m� h��t��B

M

� DON uptake � ammoniumuptake � grazing loss � excretion � mixing and dilution

dD

dt
� ��� ���G� � ��� ���G� � ��G� � ��D �

��P
�

k� � P
�
�m � V � h��t��D

M

� lost grazedP � lost grazedB � grazing loss � breakdown � P mortality

�mixing� dilution and sinking

dNn

dt
� �J�t�M� P �Q��Nn� Nr�P �

�m� h��t��

M
�N� � Nn�

� � loss to P growth � entrainment from the deep ocean

dNr

dt
� �J�t�M� P �Q��Nr�P � U� � ��B �

���Z
�

k� � Z
�
�m � h��t��Nr

M

� � loss to P growth � loss toB growth � B excretion � Z mortality

�mixing and dilution

dNd

dt
� ���t�M� P�Nn� Nr�P � ��D �

���Z
�

k� � Z
� U� �

�m � h��t��Nd

M

� exuded photosynthate � D breakdown � Z mortality � loss toB growth

�mixing and dilution

The coupling between the equations takes the form of �ows of the model currency
 nitrogen
 between

the compartments �currency is expressed here in volumetric terms
 mmol N m���� These �ows represent

biological and physical processes such as grazing
 nutrient uptake and mixing� Table ��� lists the de�ni�

��



Function Ecological process De�nition

� Phytoplankton growth J�t�M� P �Q�Nn� Nr�

J�t�M� P � Light�limited phytoplankton growth �
M

RM
� F �I��t� expf��kw � kcP �zg� dz

F �I� Photosynthesis�irradiance curve
Vp	Iq

�Vp
� � 	�I��

Q�Nn� Nr� Nutrient�limited phytoplankton growth Q��Nn� Nr� � Q��Nr�

Q��Nn� Nr� Nitrate limitation
Nn expf�
Nrg

k� � Nn

Q��Nr� Ammonium limitation Nr

k� �Nr

G� Zooplankton grazing on phytoplankton gp�P
�Z

k��p�P � p�B � p�D� � p�P
� � p�B

� � p�D
�

G� Zooplankton grazing on bacteria gp�B
�Z

k��p�P � p�B � p�D� � p�P
� � p�B

� � p�D
�

G� Zooplankton grazing on detritus gp�D
�Z

k��p�P � p�B � p�D� � p�P
� � p�B

� � p�D
�

S Most limiting bacterial growth substrate min�Nr � �Nd�

U� Bacterial uptake of DON VbBNd

k� � S � Nd

U� Bacterial uptake of ammonium VbBS
k� � S � Nd

Table ���� Model functions
 their de�nitions and a description of the ecological processes

concerned�

tions and decriptions of the ecological processes not de�ned explicitly in the equations given previously�

Table ��� lists all of the model parameters
 their de�nitions and units
 and their baseline values from

Fasham ������� Two of the model parameters
 Vp and N�
 are given two values in the table� These refer

to two geographical locations in the North Atlantic ocean at which the model was simulated by Fasham

������ � Ocean Weather Station �OWS� �India� �	�� N
 ��� W� and Bermuda Station �S� ���� ��� N


�� ��� W�� Parameters marked with an asterisk are those which were either used to ��ne�tune� the

model
 or for which there were no good estimates �or even both��

Often a series of essentially similar processes are summed into a single term to reduce model complexity�

For example
 the natural mortality term for phytoplankton represents a series of loss processes including

viral mortality
 cell starvation and natural cell death�

The choice of nitrogen as model currency re�ects its position as the most limitingmajor nutrient� Whilst

��



this is not beyond dispute
 especially with respect to recent interest in micronutrients such as iron �Mar�

tin � Fitzwater
 ����� Fasham
 ���	� Behrenfeld et al�
 ����
 it is generally accepted
 at least within

the context of the North Atlantic�

The mixed layer is assumed to be su�ciently well mixed that the model components can be represented

by a constant
 homogeneous concentration throughout it �i�e� that physical mixing processes occur at

rates which are fast when compared to the growth rates of the biological components of the model��

Consequently
 vertical space is represented only implicitly in the phytoplankton light�limited growth

term and in the loss of material through mixing with the deep ocean� Although entirely ignored here


horizontal space has been introduced into the Fasham ������ model in more recent work �Fasham et al�


����� Sarmiento et al�
 ������

In addition to the interactions between the equations
 all of the compartments are forced by one or

both of the two forcing functions � the annual cycles of mixed�layer depth and solar irradiance� Val�

ues of these are interpolated from data and calculated using standard astronomical formulae respectively�

ZBNd

Nr

Nn P D

Figure ���� Diagrammatic representation of the Fasham ������ model� All pathways between

compartments have been shown� Empty arrow�headed �ows represent �ows into or out of

the modelled mixed�layer system

Figure ��� illustrates the basic structure of the full ecosystem model� The seven compartments are linked

by various ecological and chemical pathways� The model is non�conservative �unlike the ZPN model

��



Symbol Parameter Value Units

C Cloudiness � oktas

a Air�water albedo ���	

� Ratio of PAR to total irradiance ����

kw Attenuation coe�cient of downwelling irradiance ���� m��

kc Phytoplankton self�shading coe�cient ���� m� �mmol N���

Vp Phytoplankton maximum growth rate �India� ���	 d��

Vp Phytoplankton maximum growth rate �Bermuda� ���� d��

	 Initial slope of P�I curve ����	 �W m����� d��

� Phytoplankton exudation fraction ���	


 Nitrate uptake ammonium inhibition parameter ��	 �mmol N m�����

k� Nitrate uptake half�saturation constant ��	 mmol N m��

k� Ammonium uptake half�saturation constant ��	 mmol N m��

k� Zooplankton feeding half�saturation constant ��� mmol N m��

k� Bacterial half�saturation uptake constant ��	 mmol N m��

k�
� Phytoplankton mortality half�saturation constant ��� mmol N m��

k�
� Zooplankton loss rate half�saturation constant ��� mmol N m��

��
� Phytoplankton maximum mortality ���	 d��

��
� Zooplankton maximum loss rate ����	 d��

��
� Bacterial excretion rate ���	 d��

�� Detrital breakdown rate ���	 d��

������ Zooplankton feeding e�ciencies ���	

p�����
� Zooplankton feeding preferences ��	�
 ���	
 ���	

g Zooplankton maximum ingestion rate ��� d��

� � Fraction of zooplankton losses going to ammonium ����

� � Fraction of zooplankton losses going to DON ����

Vb Bacterial maximum uptake rate ��� d��

� Ratio of ammonium�DON uptake for bacteria ��

V � Detrital sinking rate �� m d��

N� Subthermocline nitrate concentration �India� �� mmol N m��

N� Subthermocline nitrate concentration �Bermuda� � mmol N m��

m � Cross�thermocline mixing rate ���� m d��

Table ���� The model parameters and their values as used in Fasham ������� Parameters

which were used to ��ne�tune� the model and�or there are no good estimates for are marked

with an asterisk�

��



of Wroblewski
 �����
 and nitrogen can enter or leave the modelled mixed layer via a number of �ow

routes� These are indicated on the �ow diagram by empty arrow�headed �ows�

The following sections describe the seven equations and the two forcing functions used in the model�

����� Phytoplankton

The terms in this equation encompass
 respectively
 phytoplankton growth
 phytoplankton loss to grazing

zooplankton
 natural mortality and a mixing�dilution loss� Terminology follows that set in Fasham

������ and summarised in tables ��� and ����

dP

dt
� ��� ����t�M� P�Nn� Nr�P �G� �

��P
�

k� � P
�
�m � h��t��P

M
�����

where


� � J�t�M� P �Q�Nn� Nr� �����

Phytoplankton growth
 �
 is limited by both irradiance
 I
 and nutrient availability� It is described

by a multiplicative relationship between the maximum possible growth in the given depth�integrated

irradiance �eld
 J 
 and the limitation imposed by the ambient nutrient concentrations
 Q�

J�t�M� P � � �
�

M

Z �

�

Z M

�

F �I��t� expf��kw � kcP �zg� dz dt �����

where


F �I� �
Vp	Iq

�Vp
� � 	�I��

�����

Maximum possible irradiance�limited growth
 J 
 is calculated by integrating surface irradiance both

down through the water column �dz� to the top of the thermocline
 and through the day �dt� where 

takes the value half of the day length�� I��t� is the quantity of irradiance just below the surface of the

ocean�

Depth�integration attenuates the irradiance exponentially due to absorption by the photosynthetic pig�

ments of the phytoplankton
 kc
 and by the sea water itself
 kw� Although ignored in this model


particulate material present in sea water �including particulate organic material� plays a signi�cant role

in the submarine absorption of radiation �Garver et al�
 ������ Both kw and kc were assigned average

values inside the ranges measured in the �eld� Note that irradiance is not spectrally resolved here
 and is

essentially treated as if it consists only of photons which are attenuatated at some average rate down the

water column �i�e� kw is assigned a value of ���� m
�� which falls between the comparable values of ���

and ����� m�� for red and blue light respectively�� Since vertical space is not represented explicitly in

this model
 the mixed layer is assumed to be su�ciently homogeneous for the phytoplankton �as well as

the other model compartments� to have a uniform vertical distribution� Figure ��� shows the modelled

decline of irradiance with depth for a water column at OWS �India� during the spring bloom� By a

depth of �� m
 irradiance has already fallen to less than 	�� of that at the surface�

��
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Figure ���� Modelled attenuation of irradiance with depth for a water column at OWS

�India� during a simulated spring bloom �day ����� The top of the thermocline �and bot�

tom of the mixed layer� on this day is marked� Above this
 attenuation of irradiance is a

combination of absorption by sea water itself and by the photosynthetic pigments of the

phytoplankton�

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Irradiance

M
ax

im
um

 p
hy

to
pl

an
kt

on
 g

ro
w

th
 r

at
e

Vp

α

Figure ���� The photosynthesis�irradiance �or P�I� curve used in this model� The shape

of the curve is controlled here by two parameters� Vp
 the maximum phytoplankton growth

rate
 and 	
 the initial slope of the curve� Irradiance in W m��
 growth rate in d���

Given the submarine irradiance �eld
 a standard empirical function
 F �I�
 is used to describe the

photosynthesis�irradiance �P�I� curve� This uses the maximum phytoplankton growth rate
 Vp
 and

the initial slope of the P�I curve
 	
 together with irradiance to calculate growth� Figure ��� illustrates

��



this relationship of maximum phytoplankton growth to irradiance for OWS �India� parameter values�
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Figure ���� The pattern of sea�surface irradiance calculated for day ��� �mid�summers day�

of an OWS �India� simulation �solid�
 and that assumed by the analytical equation derived

by Evans � Parslow ����	� �dotted�� Irradiance in W m���

Drawing on a large number of studies
 Eppley ������ derived the following empirical relationship between

maximum phytoplankton growth and temperature


Vp � �� �����
T ���	�

where T is the temperature in degrees Celsius� This equation was used by Fasham ������ to determine

average values of Vp across the year for both OWS �India� and Bermuda Station �S�� The parameter 	

was assigned the average of measurements made by Trevor Platt�s group �Bedford Institute of Oceanog�

raphy
 Dartmouth
 Nova Scotia
 Canada� in the Sargasso Sea �Bermuda Station �S� shares the physical

and biological characteristics found in the Sargasso Sea��

In Fasham ������
 light�limited growth is integrated analytically
 both down the water column and

through the day
 using a formulation derived by Evans � Parslow ����	�� This formulation assumes

that irradiance
 I��t�
 forms a triangular shape
 rising linearly from � at dawn to a maximum at noon

and then declining to � at dusk� It also assumes that
 through a given day
 the phytoplankton population

remains constant� Figure ��� illustrates a single day�s approximated pattern of sea�surface irradiance

and the irradiance assumption used in the analytical form� �The work in this thesis makes use of a

slightly modi�ed version of this integral� Full details of the approach used are described in Chapter ���

Nitrogenous nutrients are represented in this model by both nitrate �NO�� � and ammonium �NH
�
� �� In

both cases the basic Michaelis�Menten functional form is adopted for uptake kinetics� This form is hy�

��



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Nutrient concentration

N
ut

ri
en

t-
lim

ite
d 

up
ta

ke

k

Figure ��	� The Michaelis�Menten curve for uptake of a nutrient with a half�saturation

constant
 k
 of ��	 mmol N m�� �solid�� The dotted lines mark uptake of half the maximum

rate at the speci�ed value of k� Concentration in mmol N m���

perbolic and requires a half�saturation term �k� and k� for nitrate and ammonium respectively� which

speci�es the concentration of nutrient at which uptake is half the maximum rate� Figure ��	 illustrates

a standard Michaelis�Menten curve�

However
 for energetic reasons related to the charge of these ionic species
 ammonium is taken up

preferrentially by phytoplankton
 and a phenomenon of ammonium inhibition of nitrate uptake has been

observed �Dortch
 ����
 provides an exhaustive review of the phenomenon
 although she concludes that

it is a much smaller e�ect than is commonly believed�� This e�ect is taken account of by limiting nitrate

uptake with a negative exponential of ammonium concentration �modi�ed by the coe�cient
 
�� The

nutrient�limitation part of phytoplankton growth then looks as follows


Q�Nn� Nr� � Q��Nn� Nr� �Q��Nr� �
Nn expf�
Nrg

k� �Nn

�
Nr

k� �Nr

����

The half�saturation constants assigned by Fasham ������ fall within the observed range
 although re�

cent work by Harrison
 Harris � Irwin ����� measured half�saturation constants an order of magnitude

smaller than had previously been calculated �k� � �����
 k� � ������� The parameter 
 was assigned a

value based on the estimates of Wroblewski �������

Fasham ����	� examined this choice of formulation
 and found that it could be more adequately re�

placed by an uptake model in which ammonium inhibition is only implicitly parameterised �by means

of a considerably lower k� value�� This form is not reproduced here
 but the signi�cance of this choice

is examined in Chapter �� More recent work by Flynn
 Fasham � Hipkin ������ includes an explicit

compartment for intracellular glutamine �an early product of nitrogen after its assimilation into a cell�


��



and uses this compartment in modelling the interaction between nitrate and ammonium uptake�

The two nutrient limitation terms in equation �� are added together to give total nutrient limitation�

A popular alternative to this
 is to set total nutrient limitation to that of the most limiting nutrient

�Kremer � Nixon
 ����� Andersen et al�
 ������ O�Neill et al� ������ provide an overview of the issue

of multiple nutrient limitation in ecological models�

Phytoplankton exude a fraction of their net production as dissolved organic material� The amount varies

in space and time and by species
 and estimates of the percentage of primary production exuded range

up to ��� �Moloney � Field
 ������ However
 despite the potential signi�cance of exudation
 the rea�

sons for it are not entirely clear� Several suggestions have been made including exudation as a means to

regulate cell osmotic potential
 to ensure the correct stoichiometric ratios of di�erent elements without

�switching o�� the photosynthetic apparatus
 and to establish a local bacterial community� This last

hypothesis suggests that a local bacterial population may aid phytoplankton growth by regenerating

trace elements
 or reducing phytoplankton viral mortality by acting as an alternative adsorbing surface

for viral particles �Murray
 ���	�� In this model
 a constant fraction of DON exudation
 �
 is assumed

to be exuded� Fasham ������ assigned � a conservative estimate of 	� based partially on the measured

values of ��

As stated previously
 the phytoplankton natural mortality term is really a hybrid of several loss pro�

cesses� These include viral mortality
 cell death due to an imbalance in respiration and photosynthesis

and general cell death due to senescence and accidents� In Fasham
 Ducklow � McKelvie ������ �and

many other models�
 this term is assigned a linear form� However
 the term has been made non�linear

here since disease mortality is likely to be density dependent
 and because the corresponding zooplank�

ton mortality term is similarly of Michaelis�Menten type �it includes predation losses
 also likely to be

density dependent�� Since estimates of natural phytoplankton mortality are exceedingly rare
 the values

of the parameters �� and k� used here were tuned by Fasham ������ to better estimate annual net

primary production�

As described in the later section on the mixed layer dynamics
 the �nal term controls phytoplankton

losses due to mixing out of the upper mixed layer and dilution by entrainment of formerly subthermocline

waters when the mixed layer deepens�

����� Zooplankton

The terms in this equation encompass
 respectively
 grazing on phytoplankton
 grazing on bacteria


grazing on detritus
 predation�excretion losses and a dilution�concentration term�

dZ

dt
� ��G� � ��G� � ��G� �

��Z
�

k� � Z
�
h�t�Z

M
�����

�	



where


G� �
gp�P

�Z

k��p�P � p�B � p�D� � p�P � � p�B� � p�D�
�����

�there are analogous expressions for G� and G�� see table ����

As with the phytoplankton compartment
 the zooplankton compartment attempts to model a diverse

range of species �from many di�erent phyla� with a single ODE� The equation above describes an or�

ganism which is a combination of herbivore
 bacteriovore and detritivore� Although there is evidence

that protistan microzooplankton can be of considerable importance �Burkill et al�
����
 found that mi�

crozooplankton grazing of phytoplankton was more than an order of magnitude higher than that of

copepod mesozooplankton�
 Fasham ������ assumed a more copepod�like herbivorous zooplankter and

based parameter values appropriately �Evans � Parslow
 ���	� and references therein��

The grazing terms used here �G�
 G� and G�� are an adapted form of the Michaelis�Menten equation�

The derivation below shows how this form was arrived at and how
 in principle
 it can be extended for

n prey species�

Grazed �
gZF

k� � F

F � p��X� � p��X� � � � �� p�nXn

then


Grazed �
gZ�p��X� � p��X� � � � �� p�nXn�

k� � p��X� � p��X� � � � �� p�nXn

Grazed �
gZp��X�

k� � p��X� � p��X� � � � �� p�nXn

�
gZp��X�

k� � p��X� � p��X� � � � �� p�nXn

� � � ��

gZp�nXn

k� � p��X� � p��X� � � � �� p�nXn

At this point then
 from an initial Michaelis�Menten form
 for each prey species �Xx� there is a term

to describe the grazing pressure exerted on it� This term is related to the feeding preference �p�x� the

zooplankton �Z� have for the item
 and the quantities of alternate prey �F is total available food
 scaled

with feeding preferences�� The g and k� terms de�ne the maximum grazing rate and the half�saturation

constant of grazing respectively�

As already pointed out
 the zooplankton compartment was created to encompass a wide variety of zoo�

plankton species� In order to parameterise the changing composition of the zooplankton compartment


and consequently its changing feeding preferences
 the feeding preferences were allowed to vary with food

availability�

p�� �
p�X�

p�X� � p�X� � � � �� pnXn

Where px is a nominal preference value �i�e� the parameter listed in the parameter values table��

Substituting this into the Grazed equation above yields the �nal form used in the models�

Grazed �
gZ
�

p�X�
p�X� � p�X� � � � �� pnXn

X� � � � �� pnXn

p�X� � p�X� � � � �� pnXn
Xn

�

k� �
p�X�

p�X� � p�X� � � � �� pnXn
X� � � � �� pnXn

p�X� � p�X� � � � �� pnXn
Xn

�



Grazed �
gZp�X

�
�

k��p�X� � p�X� � � � �� pnXn� � p�X
�
� � p�X

�
� � � � �� pnX�

n

� � � ��

gZpnX
�
n

k��p�X� � p�X� � � � �� pnXn� � p�X
�
� � p�X

�
� � � � �� pnX�

n

Such a form �switches� the zooplankton compartment between prey types and attempts to mimic the

seasonally changing nature of the zooplankton species assemblage�

To account for zooplankton assimilation�feeding ine�ciency
 constant fractions ���
 �� and ��� of ma�

terial ingested were assimilated
 with the remainder lost to the detritus compartment� The assimilation

e�ciency was assumed constant between the three prey types and assigned a value from measurements�

Excretion and predation are combined here in a single loss term� This term is also of Michaelis�Menten

form and it acts partly as a closure term for the system since predation exports nitrogen to unmodelled

higher predators� A fraction of this �ow into predators �nds itself ultimately in faecal pellets or dead

organisms which sink out of the mixed layer� The remainder is returned to the modelled system as

ammonium and DON� The allocation between these compartments is dictated by the constant fractions

� and � respectively�

The form of system closure has attracted considerable attention in recent years �Steele � Henderson


����� Fasham
 ���	� Edwards
 �����
 but observationally and experimentally the best choice of term is


at this time
 unclear� For this reason
 the zooplankton loss parameters
 �� and k�
 were used by Fasham

������ to ��ne�tune� the model so that summer nitrate levels fell within the observed range�

Finally
 as described more fully later
 zooplankton are assumed here to be capable of migrating and

remaining in the mixed layer even during its shallowing and deepening� The �nal term ensures this by

concentrating and diluting them appropriately�

����� Bacteria

The terms in this equation encompass
 respectively
 DON uptake
 ammoniumuptake
 loss to zooplankton

grazing
 excretion and a mixing�dilution loss�

dB

dt
� U� � U� � G� � ��B �

�m� h��t��B

M
�����

where


U� �
VbBNd

k� � S �Nd

������

and


U� �
VbBS

k� � S �Nd

������

where


S � min�Nr � �Nd� ������

��



Bacteria here utilise both DON and ammonium as growth substrates� As mentioned in Chapter �
 het�

erotrophic bacteria are also involved in the decay of detritus� However
 the bacteria considered here are

free bacteria and are not associated with detritus
 hence the assignment of growth substrates here �the

breakdown term in the detritus equation may be seen as an implicit representation of attached bacteria��

The uptake of DON and ammoniumhere is controlled again by Michaelis�Menten terms� However
 these

terms are somewhat di�erent here since bacterial growth requires both substrates for di�erent metabolic

purposes� While dissolved organic material contains nitrogen
 heterotrophic bacteria �which this com�

partment represents� utilise DON as a source of carbon �for their energetic requirements�� Ammonium

is thought to be mostly used as a source of nitrogen for protein synthesis� Consequently
 both have to

be acquired for normal bacterial growth�

To account for this
 the uptake of both substrates is related to the concentration of the most�limiting

substrate
 S� This is quite di�erent to the situation in the phytoplankton compartment where uptake

rates of nitrate and ammoniumare �mostly� independent
 since both substrates are used interchangeably

for similar metabolic purposes�

The concentration of DON is modi�ed by the coe�cient � to ensure that a constant bacterial C�N ratio

is maintained
 and to account for the e�ciencies of carbon and nitrogen metabolism� Fasham ������

assumed that the gross growth e�ciencies were the same for carbon and nitrogen
 and used estimates of

the C�N ratios of DON and bacteria to determine a value for �� The maximum rate of bacterial growth


Vb
 was chosen as typical of oceanic bacteria�

Unlike the comparable terms in the phytoplankton and zooplankton equations
 bacterial excretion and

loss is modelled here as a constant
 linear rate
 ��� Since bacteria are subject to similar loss and mor�

tality processes
 it is arguable that their loss terms should be modelled similarly� Bacterial viruses �also

known as phages�
 for instance
 are known to often play an important role in these dynamics �Suttle


����� Weinbauer � Peduzzi
 ���	�� However
 for simplicity a linear rate was chosen and this has been

retained here� Since reliable estimates of �� were unavailable
 Fasham ������ varied �� until simulated

bacterial growth e�ciencies were obtained that were comparable with measurements�

As in the phytoplankton equation
 bacteria are assumed to be unable to prevent their loss from the

mixed layer and the �nal term accounts for detrainment losses
 mixing out and dilution�

����� Detritus �particulate organic nitrogen�

The terms in this equation encompass
 respectively
 inputs from the ine�ciency of zooplankton grazing

on phytoplankton and bacteria
 loss to zooplankton grazing
 breakdown to soluble compounds
 inputs

��



of dead phytoplankton cells and mixing�dilution�sinking�

dD

dt
� ��� ���G� � ��� ���G� � ��G� � ��D �

��P
�

k� � P
�
�m� V � h��t��D

M
������

The majority of these terms have been de�ned in previous equations and the reader is directed back to

earlier sections for their derivation and biological meaning�

Zooplankton feeding ine�ciency ��sloppy feeding� and digestive ine�ciencies� account for the majority

of sources for detritus� The zooplankton graze detritus as well
 and this ine�ciency extends here �hence

why zooplankton only graze ��G���

Detritus breaks down to DON at a constant rate
 ��� The linear form of this rate is less objectionable

here since detritus is not subject to the density dependent e�ects �viral infection
 predation� which a�ict

the previous three compartments� The rate was chosen within the range of observations
 and gives a

reasonable estimate of bacterial production�

The nature of the inputs to the detrital compartment mean that it consists of relatively large particles of

material �aggregated cells
 faecal pellets
 et cetera�� These larger particles are assumed to sink out of the

mixed layer
 and the �nal sinking�mixing�dilution loss term is modi�ed to incorporate a sinking velocity


V � Choosing a value for this process is complicated by di�erently�sized particles sinking at di�erent

velocities
 and by the di�culty in separating living particles from detrital ones when measurements are

made� Using a regression of particle �ux against particle density data �i�e� how much sinks out versus

how much there is in the water column�
 Fasham estimated a sinking velocity of � m d��� This estimate

was used to suggest an appropriate magnitude for the parameter
 and then a value was chosen on the

basis of model performance�

As indicated in Chapter �
 sinking �uxes out of the mixed layer are of interest biogeochemically since

some of the material lost in this way is ultimately buried geologically�

����� Nitrate

The terms in this equation encompass
 respectively
 losses due to phytoplankton uptake and entrain�

ment�mixing gains�

dNn

dt
� �J�t�M� P �Q��Nn� Nr�P �

�m � h��t��

M
�N� �Nn� ������

Nitrate is assumed in the model to be at non�zero concentrations below the thermocline� All other

model state variables are assumed to return to nitrate through chemical and biological degradation and

are set to zero concentration below the mixed layer� The actual value of deep nitrate is strongly related

to latitude �Strass � Woods
 ������

��



Although in Fasham ������ and in this work
 the subthermocline concentration
 N�
 has been assumed to

be constant with time and mixed�layer depth
 other authors �Frost
 ����� Fasham
 ���	� have considered

more realistic formulations�

����	 Ammonium

The terms in this equation encompass
 respectively
 losses due to phytoplankton uptake
 losses due to

bacterial uptake
 bacterial excretion
 zooplankton inputs and a mixing�dilution loss�

dNr

dt
� �J�t�M� P �Q��Nr�P � U� � ��B �

���Z
�

k� � Z
�
�m� h��t��Nr

M
����	�

As such
 the terms here represent the origins or end points of �ows of nitrogen described in previous

equations�

����
 Dissolved organic nitrogen �DON�

The terms in this equation encompass
 respectively
 phytoplankton exudation
 detrital breakdown
 zoo�

plankton inputs
 losses due to bacterial uptake and a mixing�dilution loss�

dNd

dt
� ���t�M� P�Nn� Nr�P � ��D �

���Z
�

k� � Z
� U� �

�m � h��t��Nd

M
�����

Similarly to the ammonium equation
 the terms here refer to �ows described in previous equations�

��� Forcing functions

In addition to the dynamical behaviour of the model
 Fasham ������ uses two forcing functions to drive

the system� Both represent physical processes which are
 it is assumed
 una�ected by the biological dy�

namics of the upper mixed layer� Lovelock ������ suggests a mechanism whereby marine phytoplankton

may in�uence cloud seeding patterns �and thus sea surface irradiance� through the release of dimethyl

sulphide �DMS� �see also Liss et al�
 ������ Sathyendranath et al� ������ and Kahru
 Leppanen � Rud

������ discuss how the absorption of solar radiation by phytoplankton pigments can in�uence sea surface

temperatures �and thus the water column stability to mixing�� However
 processes such as these are

ignored here �though both relate to the forcing processes used in the model�� All models in the thesis

use both forcing functions as described below�

����� Solar irradiance

The following astronomical formulae �Brock
 ����� calculate irradiance at the top of the atmosphere for

any given time and latitude�

declination of Earth
 D�

D� � �������� sin

�
������ � day�

�	

�
������

	�



radius vector of Earth
 R�

R� �
�q

�� � ����� cos���day��� ��
������

hour angle
 W�

W� � �hour � ���
�

��
������

zenith angle
 Z

Z � arccos �sin�D�� sin�latitude� � cos�D�� cos�latitude� cos�W��� ������

irradiance at the top of the atmosphere
 Itop

Itop �
I 

R��
cos�Z� ������

The solar constant
 I 
 has a value of ��	� W m��� All angles
 including latitude
 are in radians� Time

enters as both days after January the �st
 day
 and hours after midnight
 hour�

Once irradiance at the top of the atmosphere has been calculated it is then necessary to determine the

atmospheric transmittance in order to calculate sea surface irradiance� This procedure is complicated

considerably by the properties of the atmosphere �e�g� clouds
 aerosols
 gaseous composition�� Several

formulae have been derived to perform this �Reed
 ����� Smith � Dobson
 ����� Evans � Parslow
 ���	�

Dobson � Smith
 ����� Bauer et al�
 �����
 but following Fasham ������
 Smith � Dobson ������ was

used� Although not used in the work detailed in this thesis
 these other cloud algorithms �except Bauer

et al�
 ����� were written into the programs used to simulate the model and can be found in Appendix

A����� The di�erent cloud algorithms �again
 except Bauer et al�
 ����� use the standard ground�based

meteorological unit
 the okta
 to quantify cloud cover� This unit is a somewhat qualitative unit which

divides cloud cover into eighths of the sky� An entirely cloud�free sky rates � oktas
 whilst total cloud

cover rates � oktas� The actual density of the cloud cover �i�e� are the clouds thick! is there more than

one layer of cloud!� is not considered�

Given cloud cover in oktas�
 the algorithm devised by Smith and Dobson ������ uses one of two empirical

formulae to determine the fraction of incoming irradiance
 which reaches the sea surface�

If cloud cover
 C
 is greater than 	 oktas


CF � S�cld	��C
 � �cld	��C
S�� ������

Otherwise
 where cloud cover
 C
 is less than or equal to 	 oktas


CF �

�
�cld	��C
 � S exp

�cld	���

S

�
�C

�
exp

�cld	��C


S � ����
C

�

�
A
�
A ������

where


S � sin�
�

�
� Z� ������

�All of the work presented in this thesis assumes an average cloud cover of � oktas�

	�



and


Array i Array j

cld	i��
 cld	i��
 cld	i��
 cld	i��
 cld	i��
 cld	i��
 cld	i��
 cld	i��
 cld	i��


cld	��j
 ����� ����� ������ ���		 ����� ����� ����� ����	 �����

cld	��j
 ���	�� ���	�	 ������ �����	 �����	 �����	 ����� ����� ����

Substitution of the relevant values from the array into the algorithm produces an estimate of the fraction

of the irradiance incident at the top of the atmosphere which makes it to the sea surface�

Iss � CF Itop ����	�

More recent work by Bauer et al� ������
 compared data from remotely�sensed satellite images with

ship�based readings
 to determine a robust empirical algorithm for determining sea surface irradiance

given cloud cover� Although this algorithm is not used here
 it allows the calculation of spatio�temporal

maps of estimated sea surface irradiance which may be used in more detailed spatial simulations�

Irradiance reaching the sea surface
 Iss
 is then further corrected to account for air�surface albedo
 a


and the ratio of photosynthetically active radiation �PAR� to total radiation
 �
 such that irradiance

just below the surface of the water
 I�
 can be given as �

I� � ���� a�Iss �����
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Figure ��� Annual cycles of mean daily sea surface irradiance at OWS �India� �solid line�

and Bermuda Station �S� �dashed line�� The Smith � Dobson ������ atmospheric trans�

mittance model is used
 with a cloud cover of � oktas� Irradiance in W m���
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Figure �� shows simulated annual cycles of mean daily sea surface irradiance at OWS �India� and at

Bermuda Station �S�� While both show the same sinusoidal curve across the year
 the predicted irradi�

ance at OWS �India� during the winter falls to extremely low daily averages� �The consequences of this

for the modelled biology become clear in Chapter ���

����� Mixed layer depth

Unlike the solar forcing detailed above
 the dynamics of the mixed layer are modelled entirely empirically�

Table ��� lists the monthly averages of mixed�layer depth compiled by Levitus ������ for the locations

of OWS �India� and Bermuda Station �S��

Day OWS �India� Bermuda Station
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� �� ���

Table ���� Monthly averages of mixed�layer depth determined by Levitus ������ for OWS

�India� and Bermuda Station �S�� Day � �and day �� is January the �st� Mixed�layer

depth is in metres� �Data courtesy of Dr� Mike Fasham��

These data were linearly interpolated to generate values of mixed�layer depth on intermediate days


and �gure ��� shows the resulting seasonal cycles of mixed�layer depth at OWS �India� and Bermuda

Station �S�� Daily values of mixed layer depth are then used to specify the rate of change
 h�t�
 in depth�

dM

dt
� h�t� ������

Since a linear interpolation was used
 the annual cycle of h�t� assumes a stepwise shape� Non�motile

entities �phytoplankton
 bacteria
 detritus
 DON
 and inorganic nitrogen here� are detrained from the
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Figure ���� Annual cycles of mixed�layer depth at OWS �India� �solid line� and Bermuda

Station �S� �dashed line��

mixed layer when it shallows
 and diluted with sub�thermocline waters when it deepens� As a volumetric

model
 this can be described by de�ning a second rate variable �

h��t� � max�h�t�� �� ������

For example
 when the mixed layer is shallowing
 h�t� is negative and h��t� is zero� By substituting this

into the phytoplankton equation
 the concentration of phytoplankton remains constant since detrain�

ment
 whilst reducing total phytoplankton biomass in the mixed layer
 does not alter its concentration�

By contrast
 in the case of a deepening mixed layer
 h��t� � h�t�
 and the concentration of phytoplank�

ton falls� Here
 subthermocline water �which is assumed to contain no phytoplankton cells� is introduced

into the mixed layer
 increasing the volume of the mixed layer and consequently reducing phytoplankton

concentration
 although not reducing their total biomass�

Motile entities on the other hand �zooplankton here�
 may be assumed to be capable of tracking these

depth changes
 and consequently
 whilst still diluted by a deepening mixed layer
 actively concentrate in

a shallowing one� As such
 the original h�t� formulation is suitable�
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��� Comparison with other models

As previously indicated
 the Fasham ������ model is only one of many which aim to capture the dynam�

ics of plankton ecosystems� The various attempts fall across a continuum whose extremes can be broadly

described by two approaches� At one extreme there are models
 usually very complex models
 which

aim to faithfully �and quantitatively� represent the measured biological and physical processes occur�

ring in the speci�c ecosystem in question� At the other extreme
 there are models
 usually much simpler

models
 which instead try to capture or explore the dynamics of key ecological pathways or relationships�

Models at the former extreme tend to contain considerable biological and physical detail
 are often built

by ecologists familiar with the system
 and usually are examined solely through numerical methods�

While such models often compare favourably with particular data
 it is usually very di�cult to derive

any general understanding of the model�s behaviour which could aid its application in a di�erent situ�

ation �i�e� the model begins to become as complicated as the situation under study�� One of the best

examples of this is the Narragansett Bay model from the monograph by Kremer � Nixon ������� Woods

� Barkmann�s ����	� individual�based model �IBM� of zooplankton production in the North Atlantic

�which uses the Lagrangian Ensemble method to track discrete plankton particles in a ��dimensional

volume� provides another example�

Models at the latter extreme usually focus on a subset of the ecological processes perceived to be the

most important
 and use the resulting model to establish the range of qualitative behaviour it can pro�

duce� This simplicity may allow analytical solutions to be derived
 which may lead consequently to

the generality of results across new or speci�c situations� There are many examples of such models

�Bascompte
 Sol"e � Valls
 ����� Beltrami � Carroll
 ����� Malchow
 ����� Truscott � Brindley
 ������

However
 because they normally ignore
 or at best only implicitly include many biological and physical

aspects of plankton systems
 they are usually less useful for making quantitative predictions to compare

with data�

The Fasham ������ model falls between the two extremes of models� Although it does model seven state

variables
 much of the complexity of the real ecosystem �e�g� di�erent phytoplankton and zooplankton

sizes and classes
 non�nitrogenous nutrient limitation� has been sacri�ced to study key processes such as

phytoplankton production and the sinking �ux from the mixed layer� Equally
 it introduces a relatively

complex representation of the regeneration pathways in the ocean ecosystem�

Although the two extremes of approach create a continuum of models with di�erent structures and

di�erent aims
 the models are all intended to represent the same systems and share key biological and

physical processes� As such
 certain pathways can be compared and contrasted between models� In

		



Mortality term Function

Constant dX
dt

� � � �� ���X

Linear dX
dt

� � � �� ��X�X

Rectilinear dX
dt

� � � �� ��X�X or dX
dt
� � � �� ���X

Michaelis�Menten dX
dt

� � � ��

�
�X

�k �X�

�
X

Sigmoid dX
dt

� � � ��

�
�X�

�k� �X��

�
X

Ivlev dX
dt

� � � �� ����� expf�IvXg��X

Ivlev with refuge dX
dt

� � � �� ����� expf�Iv�X �Xmin�g��X

Table ���� Common functional forms used in plankton models� All are presented here as

loss processes for the state variable X� The parameters are � �
 loss rate� k
 loss rate

half�saturation constant� Iv
 Ivlev constant� Xmin
 �refuge� concentration�

this section
 the modelling approaches used in Fasham ������ are compared with those taken by other

modellers� The section aims to underline that the formulation of the plankton ecosystem used in the

Fasham ������ model is by no means the only one� In later chapters the functional forms of some of the

processes discussed here are examined to assess their signi�cance�

The full list of models examined is as follows �

�� Fasham ����	
� �� Kremer � Nixon ������� �� Steele � Henderson ������� �� Kremer �������

	� Evans � Parslow ����	�� � Andersen
 Nival � Harris ������� �� Frost ������� �� Taylor ������� ��

Wroblewski ������� ��� Fasham
 Ducklow � McKelvie ������� ��� Moloney � Field ������� ��� Taylor et

al� ������� ��� Bascompte
 Sol"e � Valls ������� ��� Beltrami � Carroll ������� �	� Malchow ������� ��

Ross
 Gurney � Heath ������� ��� Truscott � Brindley ������� ��� Fasham ����	�� ��� Mosekilde ������

The models are �rst classi�ed by their crude structure �i�e� simple or complex�
 and then their handling

of several key pathways is listed� Tables ��	 and �� contains lists of six model descriptions or shared

properties for �� other plankton models �as well as the Fasham
 ����
 model itself��

Table ��� contains a list of common functional forms used in the models examined� In each case the

form is presented as a loss term for the state variable X� The rectilinear
 Michaelis�Menten �M�M� and

sigmoid terms are also often referred to as types I
 II and III respectively �additionally
 the Michaelis�

Menten term is also often referred to as a �hyperbolic� response curve�� The rectilinear form consists

	



of two functions
 a linear one which is used below a certain concentration of X
 and a constant one

which is used when X is above this concentration� The �nal term on the table is an Ivlev one
 but

with a �refuge� �in principle
 any of the other functional forms could also have a �refuge��� In the

context here
 a �refuge� is a concentration �Xmin here� of X below which it is not depleted by the loss

process in question� Ecologically
 such a �refuge� may exist where a predator ceases feeding on prey

when their concentration has dropped below a certain density �such a cessation may allow a predator to

save resources which would otherwise be wasted on active searching for scarce prey��

All bar two of the models use di�erential equations to describe the plankton systems in question� Frost

������ and Bascompte
 Sol"e � Valls ������ instead use di�erence equations to model the day by day

evolution of the populations they study� Of the di�erential equation models
 several have an explicit

spatial element� To model the Narragansett Bay system
 Kremer � Nixon ������ divided the bay into

� geographical regions
 each of which was simulated as a distinct series of ODEs� Information about

the rates of water �ow between these � regions was then used to link the modelled plankton systems

within them together� Using a similar �but much larger scale� approach
 Wroblewski ������ embedded

a zooplankton�phytoplankton�nutrient �ZPN� model within a general circulation model �GCM� of the

North Atlantic ocean �a similar approach was used by Fasham et al�
 ����
 and Sarmiento et al�
 ������

Malchow �������
 by contrast
 modelled the behaviour of di�using phytoplankton and zooplankton at

a smaller scale� Malchow�s ������ model also explicitly resolved vertical space� Taylor ������
 Taylor

et al� ������ and Ross
 Gurney � Heath ������ also included vertical resolution in the form of two

communicating layers �the mixed layer and a thermocline layer between it and the deep ocean��

����� Model structures

All of the models examined here have a phytoplankton compartment� This makes sense since almost all

of the energy which �ows through the plankton ecosystem enters it via the photosynthetic processes of

the phytoplankton� Inputs of organic material from rivers
 terrestrial run�o� and upwelling events can

provide alternative sources of energy �Sarmiento � Sundquist
 ����
 estimate that inputs to the ocean of

organic carbon from terrestrial sources are up to ��	 Gt C y�� � global marine net primary productivity

is estimated at �� Gt C y�� by comparison�� After this foundation compartment
 modellers diverge in

two obvious directions
 towards nutrients or towards herbivores�

Although most of the models on the list have more than two model compartments �and several have many

more�
 more than a third of the list consists of models which are either phytoplankton�nutrient �PN� or

phytoplankton�zooplankton �PZ� models� As would be expected
 the models which favour nutrient over

zooplankton �or vice versa� usually address di�erent questions� For example
 Taylor ������ and Taylor

et al� ������ are both primarily concerned with the phytoplankton�nutrient interaction in models which

represent the ocean as two vertical layers rather than the single layer here� Both are interested in the

e�ects of having the phytoplankton in the deeper layer control the nutrient �ux to the shallower layer


�Curiously� Malchow ������ is a carbon	copy of Malchow ����
��

	�



Model Type Phytoplankton growth limitation

Irradiance limitation Nutrient limitation

� Complex Depth�integrated M�M� multiple� additive

� Complex Complex M�M
 multiple
 most�limiting

� ZPN Complex M�M

� PN Complex M�M
 multiple
 most�limiting

	 ZPN Depth�integrated M�M

 Complex M�M M�M
 multiple
 multiplicative

� ZPN Depth�integrated M�M

� PN Simple M�M

� ZPN Depth�integrated M�M

�� Complex Depth�integrated M�M
 multiple
 additive

�� Complex � M�M

�� PN M�M M�M

�� PZ No explicit I or N limitation
 implicit rK form

�� PZ No explicit I or N limitation
 implicit rK form

�	 PZ � M�M
 �xed N

� Complex Complex M�M
 with quotas

�� PZ No explicit I or N limitation
 implicit rK form

�� Complex Depth�integrated M�M
 multiple
 multiplicative

�� Complex Simple M�M

Table ��	� Model structures and phytoplankton growth limitation terms for a range of plank�

ton models from the literature� Complex models are those with a structure more detailed

than zooplankton�phytoplankton�nutrient�detritus �ZPND�� The expression �implicit rK

form� refers to processes which relate population growth to a constant rate
 r
 and a pop�

ulation carrying capacity
 K� See the text for further details regarding speci�c irradiance

and nutrient limitation terms�

while the phytoplankton in the shallower layer control the irradiance �ux to the deeper layer �Chapter 

examines a similar model based around the Fasham
 ����
 model�� By contrast
 Bascompte
 Sol"e � Valls

������
 Malchow ������ and Truscott � Brindley ������ are interested in the e�ects of grazer control on

phytoplankton populations� Although Malchow ������ also investigates the role of nutrients and higher

	�



Model Zooplankton grazing Phytoplankton losses Zooplankton losses

� M�M� with preferences M�M M�M

� Ivlev
 with refuge Constant Explicit C
 Ivlev

� Sigmoid Constant Linear

� � Constant �

	 M�M
 with refuge Constant Constant

 Ivlev
 with preferences Rectilinear Explicit C
 Ivlev

� M�M
 with refuge � Explicit C
 M�M

� � Constant �

� Ivlev Constant Constant

�� M�M
 with preferences Constant Constant

�� M�M
 with refuge Constant Explicit C
 M�M
 with refuge

�� � Constant
 seasonal �

�� Constant � �

�� Constant Constant
 plus infection Constant

�	 M�M Linear Sigmoid
 and Constant

� M�M
 with migrating Z Constant Explicit C
 M�M

�� Sigmoid Constant Constant

�� Sigmoid Constant Explicit C
 Sigmoid

�� M�M
 with preferences Constant Explicit C
 M�M

Table ��� Zooplankton grazing
 phytoplankton loss and zooplankton loss terms for a range

of plankton models from the literature� The expression �Explicit C� refers to models in

which zooplankton are grazed by explicitly modelled higher predators� See the text for

further details regarding speci�c terms�

predation on this interaction
 these latter processes are treated implicitly so that the key interaction


that between phytoplankton and zooplankton
 dominates the study�

Of the remaining models examined
 most have been described here as �complex�
 but four are ZPN

models� This class of models is a popular one
 since it allows researchers to study both top�down �zoo�

	�



plankton� and bottom�up �nutrient� control of phytoplankton populations� The role of implicit higher

predation in shifting this balance has been examined by Steele � Henderson ������ using ZPN models

�this work has not been included in the list since it studies several di�erent models�� Another advantage

ZPN models o�er over simpler PN or PZ models
 is that explicit regenerative pathways are easier to

parameterise� Regeneration is not an issue at all in PZ models
 and is complicated in PN models by the

di�culty in creating plausible phytoplankton loss processes in the absence of grazer control� By building

a loop of interacting model compartments
 ZPN models are the �rst to come close to fully modelling

plankton systems�

The remaining models are all classed as �complex� models� All of them attempt to model more complete

ecosystems� Some of them �Kremer � Nixon
 ����� Andersen
 Nival � Harris
 ����� Ross
 Gurney �

Heath
 ����� aim to model very speci�c plankton systems
 usually in response to the availability of de�

tailed time series data for those systems� The others
 of which the Fasham ������ model is an example


while still aiming to successfully model complete ecosystems
 try to do so with more generic models
 and

often compare these models to data sets from quite geographically distinct areas �Fasham
 Ducklow �

McKelvie
 ����� Fasham
 ���	��

A feature of all of the more complex models
 is their use of detritus or particulate�dissolved organic com�

partments to further parameterise the regeneration of dead or excreted organic material to the inorganic

nutrients which phytoplankton can utilise� Several of the models �Kremer � Nixon
 ����� Andersen


Nival � Harris
 ����� Moloney � Field
 ����� introduce further complexity through multiple nutrient


phytoplankton or zooplankton classes� Kremer � Nixon ������ split the zooplankton compartment

�which explicitly represents copepod species� into age classes for di�erent developmental stages �which

feed on di�erent prey and which are consumed by di�erent predators�� While such approaches clearly

make good ecological sense �as Chapter � outlined
 there are many di�erent types of each of these trophic

classes�
 other models �Fasham
 ����� Ross
 Gurney � Heath
 ����� Fasham
 ���	� have resisted this

approach
 mostly because of the �unwanted� parameter and functional requirements such additions make

�for instance
 Kremer � Nixon�s model requires more than 	� physiological coe�cients�� Fasham ����	�


in particular
 through use of a single phytoplankton�single zooplankton model
 draws attention to the

need to add further levels of such complexity only when they are absolutely necessary �Kremer � Nixon


����
 explore and discuss the importance of multiple phytoplankton types in their detailed estuarine

model��

����� Phytoplankton limitation

Since phytoplankton form the basis of all of the models discussed here
 one of the uniting features of

the models is their need to represent the processes by which phytoplankton grow
 and the limitations

placed upon this growth�

�



Almost all of the models on the list restrict phytoplankton growth through either irradiance or nutrient

limitation �usually both�� However
 several models use more implicit methods to limit phytoplankton

densities� Truscott � Brindley�s ������ PZ model provides a good example of such a model� Phyto�

plankton growth is controlled by the following term �

dP

dt
� rP

�
��

P

K

�
������

A constant growth rate
 r
 increases phytoplankton density towards a carrying capacity
 K� At this

density
 phytoplankton population growth ceases� Since the model is concerned with the phytoplankton�

zooplankton interaction �speci�cally the occurrence of bloom phenomena�
 the exact mechanism for the

cessation of growth is not of interest �e�g� nutrient limitation! self�shading!�� Bascompte
 Sol"e � Valls

������ and Beltrami � Carroll ������ use very similar implicit functions to limit phytoplankton growth�

Irradiance limited growth

Although most of the plankton models have an irradiance�limited step to phytoplankton growth
 there

are di�erences as to how this step is implemented� The Fasham ������ model builds upon previous

models �Evans � Parslow
 ���	� Fasham
 Ducklow � McKelvie
 ����� and uses a standard P�I growth

curve
 and then explicitly integrates this curve through the submarine light �eld down the water column�

Similar approaches are used by the ZPN models of Frost ������ and Wroblewski �������

There are as many variants to this process as there are models� While considering mixed�layer depth in

their formulation
 Steele � Henderson ������ do so in an implicit fashion which assumes that this depth

is invariant
 and then scales certain model parameters appropriately �and non�transparently�� Taylor et

al� ������ consider di�erent colours of downwelling irradiance
 and calculate the fractions of this irra�

diance which penetrate to the middle of each of the two modelled ocean layers� The calculated light is

then used in a Michaelis�Menten term to determine the maximum light�limited growth rate� Andersen


Nival � Harris ������ use a similar Michaelis�Menten term
 but consider only irradiance at the surface

of the water �like Steele � Henderson
 ����
 they are only concerned with a relatively shallow
 enclosed

ecosystem�� Kremer � Nixon ������ use the ratio of incident to optimum light
 and integrate it across

both the day and down the water column� Additionally
 the phytoplankton acclimate �via an optimum

light parameter� to the ambient light conditions using a weighted average of the light conditions of the

previous three days�

In constrast
 neither Moloney � Field ������ nor Malchow ������ include an element of light limitation�

Both tie growth to nutrient availability �although in the latter model
 nutrients are �xed at a constant

concentration��

Nutrient limited growth

With the exception of the three PZ models mentioned previously
 all of the models examined �even

the �xed nutrient PZ model of Malchow
 ����� include nutrient�limitation in their formulations of phy�

�



toplankton growth� And in every case
 the Michaelis�Menten form of limitation is used �which
 as

described previously
 makes use of a half�saturation constant of nutrient uptake�� However
 although

there is constancy between models on this choice of term
 there are several minor variants in its use�

While most of the models examined consider only a single limiting nutrient
 Fasham ������ considers

phytoplankton to be limited by two nitrogenous nutrients
 nitrate and ammonium� Kremer � Nixon

������ go even further
 with growth limited by three di�erent nutrients
 nitrogen
 phosphorus �as phos�

phate� and silicon �as silicate�� As illustrated by both of these cases �and in the other examples of

multiple nutrient limited models�
 while Michaelis�Menten terms govern the limitation of each of the

nutrients
 the interaction between the di�erent limitations can be very di�erent� Fasham ������ consid�

ers the limitation as additive
 so that total nutrient limitation is the sum of the two Michaelis�Menten

terms� However
 other models �Andersen
 Nival � Harris
 ����� Fasham
 ���	� favour a multiplicative

relationship �where total limitation is the product of individual limitations�
 and yet others favour a

�most�limiting� relationship �where nutrient limited growth is determined by the most limiting nutri�

ent� also known as Liebig�s law��

The choice between these di�erent forms is unclear since each has di�erent theoretical advantages and

disadvantages �see O�Neill et al�
 ������ Chapter � includes a comparison of the form used in Fasham

������ with the multiplicative form used by Fasham ����	��

����� Phytoplankton losses

Another major set of ecological pathways most plankton models share are those which deal with phyto�

plankton losses� All of the models examined have such processes �phytoplankton biomass has got to go

somewhere after all�
 although
 as with irradiance�limitation
 there can be considerable variation in the

choice of formulation between models�

For the purposes of this section
 the losses have been divided into those which relate explicitly to

consumption by zooplankton
 and those which either represent other sources of mortality �or loss� or

are used to represent phytoplankton mortality in general �this latter quali�cation applies to the three

PN models on the list��

Zooplankton grazing

Of the models examined
 almost half use a Michaelis�Menten term as the functional form of zooplankton

grazing� Of the remainder
 all bar two use other curved functional forms �sigmoidal
 Ivlev�� The two

which do not use a curved response �Bascompte
 Sol"e � Valls
 ����� and Beltrami � Carroll
 �����

are simple PZ models whose interests lie in other facets of their behaviour �chaotic behaviour and viral

dynamics respectively��

�



Eccleston�Parry � Leadbeater ������ review the growth response of microzooplankton against the con�

centration of their picoplanktonic prey� Their results support the description of the grazing rates of these

microzooplankton by a Michaelis�Menten relationship� In direct observations of the feeding behaviour

of individual copepods
 Pa�enh#ofer et al� ����	� found a rectilinear�like response of cell capture rate

against cell concentration�

Curved responses such as the Michaelis�Menten
 Ivlev and sigmoid forms
 are used throughout ecology

to represent processes
 such as grazing
 which are density�dependent and saturate to a constant rate

with increasing density of some model component� In the case of the Michaelis�Menten and Ivlev forms


as prey density increases
 predators �zooplankton here� become �satiated� and show an increasingly

invariant speci�c rate of consumption with rising prey� This �satiation� may represent a number of

di�erent ecological processes� The sigmoidal form is broadly similar
 but produces a decrease in the zoo�

plankton grazing rate at low phytoplankton densities� In a later section of Chapter �
 the signi�cance

of the choice of di�erent functional forms for predation on zooplankton is examined
 and the ecological

rationale behind di�erent forms is more fully discussed�

Aside from the choice of the curved response used by the model zooplankton to graze the model phy�

toplankton
 there are several other variations in the terms used� Several include a �refuge� for phyto�

plankton which acts to prevent grazing on them when their concentration falls below a speci�ed value�

This may parameterise a grazer which ceases to actively search for food when the energy expended doing

so exceeds the gains from phytoplankton captured�

Another variation between the grazing terms enters where the zooplankton consume more than one prey

species� Fasham ������
 Fasham
 Ducklow � McKelvie ������ and Mosekilde ����� all use a preference

system where prey at a higher density are given preference over prey at lower density �this is further

skewed by Fasham
 ����
 where the phytoplankton are further favoured by parameterisation�� The

model of Andersen
 Nival � Harris ������ does not use a preference system for dealing with multiple

prey
 but instead uses parameters to assign prey di�erent capture e�ciencies �which are independent of

prey density��

Ross
 Gurney � Heath ������ model a two layer system in which a single zooplankton compartment

grazes phytoplankton in both layers� A simple function
 based on the ratio of phytoplankton in the two

layers
 is used by the zooplankton to divide their time between these two layers�

Other losses

Aside from losses due to the activity of zooplankton grazers
 most model phytoplankton usually have

additional losses to other processes� These losses are incurred through ecological pathways such as cell

starvation
 metabolic processes such as respiration
 cells sinking out of the modelled mixed layer
 viral

infection
 natural cell death and even accidents� Usually though
 models only include an explicit subset

�



of these processes �Steele � Henderson
 ����
 have a respiration and sinking loss terms� Andersen
 Nival

� Harris
 ����
 use a rate which varies with nutrient starvation�
 or use a single term which implicitly

includes several processes �Fasham
 ����� Mosekilde
 �����

Almost all of the models examined use a constant function to include loss processes
 but a few others

use di�erent forms �Fasham
 ����� Andersen
 Nival � Harris
 ����� Malchow
 ������ Since the loss

processes identi�ed above are mostly independent of cell density
 the use of a constant form makes sense�

However
 some processes are almost certainly density dependent� Suttle � Chan ������
 for instance


report results from a �eld survey of infective cyanophages which suggest that e�cient propagation of

the phages is dependent on the density of their hosts
 Synechococcus cyanobacteria� In their PZ model

of viral dynamics
 Beltrami � Carroll ������ explicitly include viral infection through an infected �and

infectious� phytoplankton compartment�

Of the models which use a non�constant form
 the processes represented by the Michaelis�Menten term

in Fasham�s ������ model are somewhat ambiguous
 since the term was chosen to match with the com�

parable one in the zooplankton equation
 and then the values of its parameters were used to ��ne�tune�

the model� Andersen
 Nival � Harris ������ chose a rectilinear response to parameterise the e�ect of

nutrient starvation on phytoplankton� Malchow ������ used a linear form to parameterise the compet�

itive consequences of high phytoplankton density �although the exact nature of this competition is not

made explicit��

As already pointed out
 several of the models examined are PN models and their phytoplankton �obvi�

ously� have no explicit losses to zooplankton �Kremer
 ����� Taylor
 ����� Taylor et al�
 ������ Since

their phytoplankton loss terms then include both grazing and other loss terms
 their losses have been

included in this category� Despite the use of density dependent responses in almost all of the models in

which zooplankton grazing is explicit
 all three of the PN models use a constant form for phytoplankton

loss� Taylor et al� ������ augment this form by allowing the constant rate to vary seasonally�

����� Zooplankton losses

Around half of the models examined include an explicit carnivore compartment which feeds on zooplank�

ton �labelled �Explicit C� in table ���� Of those
 all use a curved functional response to describe the

relationship� Fasham ����	� examined the signi�cance of an explicit carnivore compartment
 and found

that when a sigmoidal functional form was used to represent the functional response of these carnivores


a linear form for zooplankton loss was a good parameterisation of this when the carnivores were treated

only implicitly� Since an implicit carnivore requires fewer parameters to represent it
 this approach has

some merit�

Of the remaining models
 a mixture of functional forms are used
 with the constant form being the most

�



Symbol Value Units Range in literature

minimum maximum

C � oktas � ��	 � �	�

a ���	 � �

� ���� � �

kw ���� m�� ���� ���� ���� ���

kc ���� m� �mmol N��� 
�
� ��	 ���� �	�

Vp ���	 d�� ��� ��� ��� ��

	 ����	 �W m����� d�� 
�
� ��	 ����� ����

� ���	 ���	 ���� ���	 ����


 ��	 �mmol N m����� � �

k� ��	 mmol N m�� �����	 ���� ��� ����

k� ��	 mmol N m�� ���� ���� 
� ��	

k� ��� mmol N m�� ���� �	� ���� ���

k� ��	 mmol N m�� �����	 ���� ����� ����

k� ��� mmol N m�� � �

k� ��� mmol N m�� 
�� ��	 	��� ���

�� ���	 d�� ���	 ���� ���� ����

�� ���� d�� ���� ��� �	�� ���

�� ���	 d�� 
�
 ��	 ��� ����

�� ���	 d�� ����� ���� ���� ���

������ ���	 ���	 ��� ��� ��

p����� ��	�
 ���	
 ���	 � �

g ��� d�� ��	 ��� ��� ����

��� �� ���� ��� ��� ��� ���

Vb ��� d�� ��
 ��	 � ����

� �� � �

V �� m d�� ����� ���� �
�
 ��	

N� �� mmol N m�� geographically variable

m ���� m d�� 
�
� ��	 ��� �	�

Table ���� Baseline parameter values from Fasham ������ and ranges of values of the model

parameters from a sample of the modelling literature� Dashes mark those parameters for

which no comparable values could be found in the literature� Where the value used in

Fasham ������ is at the extreme of a range of values from other papers
 it has been marked

with emphasis� Abbreviations for literature sources are listed in the text� ��� indicates a

value of �� obtained from Jones � Henderson ������

	



popular� Malchow ������ uses two terms to represent zooplankton loss processes � a constant term for

respiration and general mortality
 and a sigmoidal term for predation losses� Fasham�s ������ model is

unique in its use of the Michaelis�Menten form
 although Steele � Henderson�s ������ model is similarly

unique in its use of the linear form�

Steele � Henderson ������ have drawn attention to the importance of the choice of this zooplankton loss

term
 and the consequences of di�erent forms on model behaviour� In Chapter � this issue is explored

using versions of the Fasham ������ model incorporating di�erent zooplankton loss terms�

����� Model parameters

One aspect not touched upon so far is that of the choice of values for the parameters in the models

examined� Table ��� lists the parameters used in Fasham�s ������ model
 their baseline values �for OWS

�India��
 and the range of values found across the models examined in this section� For each parameter

the modelling literature maximumand minimumare shown
 together with a reference to the model from

which the value was obtained� No comparable values were found for several parameters �a
 �
 

 k�


p����� and ��
 but where values were found a range was shown �even if one of its extremes was from

Fasham�s model itself��

��� Summary

This chapter has aimed primarily to introduce and describe the focus of this thesis
 the Fasham ������

model� Since this model is only one of many which are used in studies of plankton ecosystems
 the

chapter has additionally compared Fasham�s model to a sample of these other models
 to draw attention

to the wide variety in both the structures of these models
 and the choices of functional responses used

in them� This variety partially re�ects ignorance about the nature of the pathways
 but also often the

simpli�cation of models so that they remain analytically tractable�

Although there is considerable variety in the terms chosen for four of the shared model pathways
 all

of the models which include nutrients �and even in the model of Malchow
 ����
 in which nutrients are

only implicitly represented� use the Michaelis�Menten term for nutrient uptake� Similarly
 the losses of

phytoplankton and zooplankton to higher trophic levels
 while di�ering in the exact form used
 mostly

agree on the representation of these processes by curved responses� However
 there are still marked

di�erences between key model processes
 like irradiance limitation of phytoplankton growth� Some re�

searchers have explored the signi�cance of some of these di�erences �Steele � Henderson
 ����� Fasham


���	� Haney � Jackson
 ���� Edwards
 �����
 and several later sections in this thesis address such issues�





Chapter �

Reducing the Fasham ������ model

Everything should be made as simple as possible� but no simpler�

� Albert Einstein �����������

	�



��� Introduction

As raised in Chapter 
� the relatively large size of the Fasham ������ model is in contrast to the many

simpler models which are used by other researchers in explorations of plankton dynamics �Steele 

Henderson� ����� Bascompte et al�� ���
� Malchow� ����� ����� Truscott  Brindley� ������ While this

greater size re�ects the di�erence in the aims of these models �qualitative versus quantitative explana�

tions�� it does complicate any analytical examinations of the Fasham ������ model and restricts its study

to numerical solutions� Furthermore� attempts to validate the model are limited by a lack of measure�

ments for most of the state variables� The inclusion of compartments for which data are unavailable or

limited is debatable on both theoretical and empirical grounds� but it does provide a research agenda�

This chapter describes a reduction of the full seven compartment model to the simplest form often

favoured in such work� a phytoplankton�zooplankton �PZ� model� and then its gradual reassembly to

the full form� The aim is to determine whether a minimum model� which accurately describes the dy�

namics of the full model� can be reconstructed� Such a reduced model may be more easily �and usefully�

integrated in future work� whilst still retaining the behaviour of the full model� In particular� such a

model may be more amenable to analysis� or may be more e�ciently incorporated into a GCM� Addi�

tionally� the removal and replacement of model pathways may indicate which ones are the most �or least�

crucial� This latter �spin�o�� may assist future modelling or observational programmes by suggesting

where e�orts may be most fruitfully applied�

	�



��� Methodology

����� Reducing the Fasham ������ model

Since it was not clear that the full model could be reduced to only a single compartment� the reduction

was achieved by �rst removing �ve of the model compartments� The connections �ecological pathways�

between the two remaining compartments were maintained� but connections to other compartments were

either ignored �i�e� where they became meaningless in the context of the reduced form� or were modi�ed

to compensate for the loss of model complexity �i�e� where the connections retained some functional

meaning in the reduced model��

Following this� compartments were reinstated one at a time until models of up to six compartments were

obtained� The details of all of these reduced forms follow this section�

In principle� such a seven compartment model could be reduced to smaller models in many di�erent and

distinct ways� However� in the process of reducing and rebuilding the various models described below�

four general rules were applied to provide a consistent framework�

�i� Biology is important� The nitrogen dynamics of interest in biogeochemical models are driven by

biological processes �principally the trapping of solar energy by autotrophic phytoplankton�� so it

is crucial that a biological foundation is adhered to�

�ii� Reconstruction via major �ows� When the model is reconstructed� most attention should be paid

to the ecological pathways with the greatest annual throughput of nitrogen�

�iii� Sensible reconstruction only� It is possible to rebuild models composed of inappropriate compart�

ments �e�g� zooplankton and detritus only�� However� in each of the reduced forms described

below� consideration was given to the biological realism and potential usefulness of the reduced

form�

�iv� Parameters stay constant� It is possible that by manipulation of a combination of model param�

eters� to perhaps unrealistic values� reduced models could be �coaxed� into behaving like the full

model� However� since parameters were originally assigned values from the biological literature

�where possible�� this would undermine the original aim of this study� as well as perhaps reducing

the mechanistic integrity of the models� For these reasons� parameters were not allowed to vary

from their values in Fasham ������ unless absolutely necessary�

The following sections detail the reduced model equations as well as the thinking behind their formu�

lation� Where speci�c ecological pathways �e�g� phytoplankton growth terms and zooplankton grazing

terms� are duplicated between reduced forms� a full description is given only at the �rst occurrence of

the pathway�

	�



Two compartment models

In the �rst instance� the full model was reduced to a two compartment equivalent� Although there

are examples in the literature of phytoplankton�nutrient models �Taylor� ����� Taylor et al�� ������

more common are two compartment models based on a phytoplankton�zooplankton ecology �Steele 

Henderson� ����� Bascompte et al�� ���
� Malchow� ����� ����� Truscott  Brindley� ������ Whilst

such a system immediately neglects any nutrient�limitation of phytoplankton growth� such a limitation

is not necessarily important and is clearly� at least in the case of the macro�nutrients used here� less

important in certain oceanic environments �Behrenfeld et al�� ���	�� Additionally� while it is relatively

easy to remove nutrient limitation from the full model �by limiting phytoplankton growth by irradiance

only�� it is less clear how the zooplankton compartment could be replaced by an implicit grazing loss

function� For these reasons the �rst reduced model was a PZ ecology�

Model �c

ZP

Figure ���� Model 
c� a two compartment PZ system� In this� and all following schematic

diagrams of reduced systems� all pathways between compartments have been shown� Empty

arrow�headed �ows represent �ows into or out of the model mixed�layer system� Solid�

headed �ows out of compartments which appear to lead nowhere represent �ows into the

mixed layer itself� Usually they represent ecological pathways which the reduced model does

not consider�

The following equations describe a two compartment version of Fasham �������

dP

dt
� �� � ���b�t�M� P �P � G�b � ��P

�

k� � P
� �m � h��t��P

M
�����

dZ

dt
� ��G�b � ��Z

�

k� � Z
� h�t�Z

M
���
�

where�

�b � J�t�M� P �

G�b �
gPZ

k� � P

Since nutrients are not included in this model� it is assumed that phytoplankton are only light limited

�i�e� it is implicitly assumed that nitrogen supply is never limiting�� Consequently� the � term collapses

to that above� The remainder of the phytoplankton equation retains the same form to that of the full

��



model�

When modi�ed to account for only a single prey item� the zooplankton grazing term �Equation 
���

collapses to the hyperbolic �Holling type II� form shown above �see derivation in Chapter 
�� As well as

losing the multiple food types directly� this term also loses the �now redundant� prey�switching modi�

�cations present in the original form� The remainder of the zooplankton equation remains the same as

the full model�

Note that this new grazing term is denoted G�b� with the subscript b to distinguish it from the normal

form of the grazing term� G�� This form of subscripting is continued throughout the descriptions of the

reduced models wherever a new form of a term �e�g� grazing� phytoplankton growth� bacterial uptake�

et cetera� is introduced�

As can be seen from the diagram above� several �ows from the two compartment system no longer enter

other compartments� In the case of this model� where nitrogen is assumed to be non�limiting� this has

no consequences� However� in larger models where there are more feedbacks in the ecology� the fate of

these �ows is more signi�cant�

Three compartment models

The majority of three compartment plankton models add nutrient to the basic PZ ecology to allow nutri�

ent limitation to be studied �Steele  Henderson� ����� Evans  Parslow� ����� Frost� ����� Wroblewski�

����� Fasham� ����� Edwards  Brindley� ���	�� In the work presented here� three reconstructions ad�

dress di�erent approaches to the addition of a third compartment� Two are described directly following

this� the third in a later section on implicit modelling of nitrate�

Model �c

The following equations describe a three compartment version of Fasham ������� This system adds a

general nutrient compartment to the basic PZ ecology�

dP

dt
� ��� ���c�t�M� P�N �P �G�b � ��P

�

k� � P
� �m � h��t��P

M
�����

dZ

dt
� ��G�b � ��Z

�

k� � Z
� h�t�Z

M
�����

dN

dt
� ��� � ���c�t�M� P�N �P � ��� ���G�b �

��P
�

k� � P
�

��� ��
��Z

�

k� � Z
�

�m � h��t��

M
�N� �N � �����

where�

�c � J�t�M� P �Qb�N �

Qb�N � �
N

k� �N

��



ZP

N

Figure ��
� Model �c� a three compartment ZPN system�

With the addition of a general nutrient compartment� the �c term now includes nutrient limitation� The

general nutrient is assumed to comprise both nitrate and ammonium� so �ows which previously returned

via regeneration to ammonium now return directly to the general nutrient compartment�

Similarly� phytoplankton uptake of nutrient is a single �ow from the general nutrient pool� Because

there is no distinction between the two base nitrogen nutrients� the inhibition of nitrate uptake due to

ammonium is ignored� Nutrient uptake is represented instead as a single Michaelis�Menten term� Since

the half�saturation constants for nitrate and ammonium uptake are the same in the full model� k� is

arbitrarily used here� The remainder of the phytoplankton equation remains the same as 
c�

The zooplankton equation remains the same as in 
c as its only direct interaction with other compart�

ments is through grazing on phytoplankton�

The nutrient equation primarily acts as a source for the phytoplankton growth and a sink to zooplankton

mortality� However� since several other �ows� notably those into the detrital compartment� are relatively

substantial� it has been assumed here that the breakdown and regeneration processes are su�ciently fast

to return organic nitrogen �dissolved and particulate� instantaneously back to inorganic nutrient�

Model �c�

The following equations describe a second three compartment version of Fasham ������� This system

adds a detritus compartment to the basic PZ ecology�

dP

dt
� ��� ���b�t�M� P �P �G�c � ��P

�

k� � P
� �m � h��t��P

M
���	�

dZ

dt
� ��G�c � ��G�c � ��Z

�

k� � Z
� h�t�Z

M
�����

�




D

ZP

Figure ���� Model �c
� a three compartment ZPD system�

dD

dt
� ��� ���G�c � ��G�c � ��D �

��P
�

k� � P
� �m� V � h��t��D

M
�����

where�

G�c �
gp�bP

�Z

k��p�bP � p�bD� � p�bP � � p�bD�

G�c �
gp�bD

�Z

k��p�bP � p�bD� � p�bP � � p�bD�

With this model an attempt was made to break away from traditional three compartment ZPN models

by putting a detrital compartment in before that of nutrient� As with the two compartment version de�

tailed above� phytoplankton are assumed to never su�er nutrient limitation� Growth is only light limited�

The grazing term of the zooplankton equation is now modi�ed to account for the presence of detritus as

a secondary prey item �see the derivation in Chapter 
�� In the full model� where there are three prey

species� the zooplankton were assigned nominal preferences for each �p� � ����� p� � p� � ��
��� In

the absence of any information to select these preferences for a two prey species model� they have been

assigned equal value �p�b � p�b � ������ This choice of preferences is used for all of the reduced forms

which have two prey species for zooplankton� Other than the addition of the grazing term for detritus�

the zooplankton equation remains the same as model 
c�

The detrital equation retains most of its terms from the full model� The only absence is that from

zooplankton feeding ine�ciency on bacterial populations�

As with the 
c model� �ows which exit the modelled compartments bound for unmodelled compartments

are ignored because nutrients are not limiting�

��



Four compartment models

Increasing the complexity of the modelled ecosystem can be achieved in a number of di�erent ways� An

increase to four compartments presents a number of possibilities�

In the �rst case� which compartment should be �resurrected�� In model �c above� the potential for

�short�circuiting� nitrogen �ows by assuming instantaneous regeneration of organic nitrogen to inor�

ganic forms was raised� In this context� the next model element added should probably act as some sort

of �bu�er� to re�introduce regeneration lags�

Ammoniumis probably too directly usable to qualify� and DON is not really representative of the bulk of

the out�ows from phytoplankton and zooplankton compartments �mostly whole dead organisms� parts

of organisms or excretory�faecal material�� The addition of bacteria as the fourth compartment would

be di�cult� primarily because they would lack a heterotrophic substrate for growth� but also because

their ecological �role� of recycler would be entirely absent�

In the �rst instance then� two models were constructed which added detritus to the ZPN system� A

third model is described in the later section on implicit modelling of nitrate�

Model �c

P Z

DN

Figure ���� Model �c� a four compartment ZPND system�

The following equations describe a four compartment version of Fasham ������� This system includes

both a general nutrient and a detritus compartment�

dP

dt
� ��� ���c�t�M� P�N �P �G�c � ��P

�

k� � P
� �m � h��t��P

M
�����

��



dZ

dt
� ��G�c � ��G�c � ��Z

�

k� � Z
� h�t�Z

M
������

dD

dt
� ��� ���G�c � ��G�c � ��D �

��P
�

k� � P
� �m � V � h��t��D

M
������

dN

dt
� ��� � ���c�t�M� P�N �P �

��� ����Z
�

k� � Z
� ��D �

�m� h��t��

M
�N� � N � ����
�

The equations remain similar to those described for previous models� Phytoplankton are again limited

by the single general nutrient� whilst zooplankton and detritus equations remain identical to that de�

scribed for model �c
�

Unlike model �c� instantaneous regeneration to nutrient only occurs for �ows of DON� Flows of partic�

ulate organic nitrogen enter the detrital compartment directly�

Model �c�

N

P Z

D

Figure ���� Model �c
� a four compartment ZPND system�

The following equations describe a second four compartment version of Fasham ������� This system also

includes nutrient and detrital compartments�

dP

dt
� ��� ���c�t�M� P�N �P �G�c � ��P

�

k� � P
� �m � h��t��P

M
������

dZ

dt
� ��G�c � ��G�c � ��Z

�

k� � Z
� h�t�Z

M
������

dD

dt
� ��� ���G�c � ��G�c � ��D � ��c�t�M� P�N �P �

��P
�

k� � P
�

���Z
�

k� � Z
� �m � V � h��t��D

M
������

dN

dt
� ��c�t�M� P�N �P �

���Z
�

k� � Z
� ��D �

�m� h��t��

M
�N� � N � ����	�

��



The equations for model �c
 di�er from those of �c only in the �ow of DON� In model �c� DON was

assumed to be instantaneously regenerated to inorganic nutrient� In this model� DON �ows into the

detritus compartment together with particulate organic nitrogen� Whilst this does permit DON to sink

out of the mixed layer� it also allows its regeneration to be a rate limited process�

However� this regeneration of detritus to nutrient introduces a complication� In the full model� detrital

breakdown produces DON which is regenerated by bacteria to ammonium� As any DON produced in this

model now �ows into detritus� detrital breakdown itself should �ow back into the detrital compartment

�i�e� not a �ow at all�� This has been �resolved� by e�ectively introducing a new pathway allowing the

detritus to be regenerated as general nutrient� For simplicity� the rate of this regeneration has been set

to ��� the standard value for detrital breakdown�

Five and six compartment models

Since one of the principal reasons for reducing the size of the full model was to facilitate its use in future

work� models of �ve or more compartments are obviously of less value in this aim� However� should it

not prove possible to replicate the behaviour of the full model in the reduced forms so far described� the

construction of larger models which restore more of the ecological pathways may be useful in identifying

weaknesses of the reduced forms or possible key �ows in the full form�

To this end� seven models with �ve or six compartments have been constructed� Two are described in

the section on implicit modelling of nitrate�

Model �c

Z

B

P

DN

Figure ��	� Model �c� a �ve compartment system�
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The following equations describe a �ve compartment version of Fasham ������� This system adds a

bacteria compartment�

dP

dt
� ��� ���c�t�M� P�N �P �G� � ��P

�

k� � P
� �m � h��t��P

M
������

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
������

dB

dt
� U�b �G� � ��B � �m � h��t��B

M
������

dD

dt
� ��� ���G� � ��� ���G� � ��G� � ��D �

��P
�

k� � P
� �m � V � h��t��D

M
���
��

dN

dt
� ���� ���c�t�M� P�N �P �

�� � ����Z�

k� � Z
� U�b � ��B �

��D �
�m � h��t��

M
�N� � N � ���
��

where�

U�b �
VbBN

k� �N

This model retains the basic structure of model �c but adds a compartment to represent bacteria� This

addition provides a third prey species for zooplankton�

Since DON is assumed to decay instantaneously to inorganic nutrient and DON �ows enter this com�

partment directly� bacteria uptake their substrate solely from the nutrient compartment� As such this

places them in direct con�ict with phytoplankton for nutrients� This may have consequences for model

behaviour� However� because bacteria also excrete ammonium �which �ows into the general nutrient

compartment�� the signi�cance of this feature of the model is unclear�

Model �c�

The following equations describe a second �ve compartment version of Fasham ������� This system also

adds a bacteria compartment�

dP

dt
� ��� ���c�t�M� P�N �P �G� � ��P

�

k� � P
� �m � h��t��P

M
���

�

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
���
��

dB

dt
� U�c � U�c �G� � ��B � �m � h��t��B

M
���
��

dD

dt
� ��� ���G� � ��� ���G� � ��G� � U�c �

���Z
�

k� � Z
� ��c�t�M� P�N �P �

��P
�

k� � P
� �m � V � h��t��D

M
���
��

dN

dt
� ���t�M� P�N �P �

���Z
�

k� � Z
� U�c � ��B �

�m � h��t��

M
�N� � N � ���
	�

where�

U�c �
VbBD

k� � Sc �D

U�c �
VbBSc

k� � Sc �D

Sc � min�N� 	D�
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Figure ���� Model �c
� a �ve compartment system�

Following the lead of model �c� this model takes its basic structure from model �c
 and adds a bacterial

compartment� As above� this adds a third prey species for zooplankton�

Since DON �ows in this model enter the detrital compartment� bacteria here use detritus as a growth

substrate analogously to their use of DON in the full model� Ecologically this is not �at a �rst glance�

unreasonable� since particulate organic material is degraded by attached bacteria �see Chapter ��� How�

ever� since the bacteria in the full model mainly represent free bacteria� this pathway is questionable�

but its consequences unclear� General nutrient is used by the bacteria as a replacement for ammonium�

and is both absorbed and excreted�

As in model �c
� there is a new pathway to allow the decay of detritus to inorganic nutrient�

Model �c�

The following equations describe a third �ve compartment version of Fasham ������� This system adds

an ammonium compartment�

dP

dt
� �� � ����t�M� P�Nn� Nr�P �G�c � ��P

�

k� � P
� �m � h��t��P

M
���
��

dZ

dt
� ��G�c � ��G�c � ��Z

�

k� � Z
� h�t�Z

M
���
��

dD

dt
� �� � ���G�c � ��G�c � ��D � ���t�M� P�Nn� Nr�P �

��P
�

k� � P
�

���Z
�

k� � Z
� �m � V � h��t��D

M
���
��

dNn

dt
� �J�t�M� P �Q��Nn� Nr�P �

�m � h��t��

M
�N� � Nn� ������

dNr

dt
� �J�t�M� P �Q��Nr�P � ��D �

���Z
�

k� � Z
� �m � h��t��Nr

M
������
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Figure ���� Model �c�� a �ve compartment system�

where�

� � J�t�M� P �Q�Nn� Nr�

This third �ve compartment model builds again on model �c
� but adds an ammonium compartment

and replaces the general nutrient compartment with nitrate�

The phytoplankton equation is modi�ed to uptake from both base nutrients� and recycled nitrogen from

zooplankton and detritus now returns to ammonium� As described previously� the detrital compartment

has an additional �ow to allow its breakdown to usable ammonium�

The presence of both base nitrogen nutrients allows this model to determine the f�ratio of phytoplankton

production� This ratio is the fraction of �new� primary production �that which involves nitrate� to total

primary production� Since nitrate is normally introduced into the mixed layer by physical processes

such as mixing or entrainment� production using it is called �new� production� By contrast� ammonium

is normally recycled into the mixed layer by the activities of zooplankton and bacteria within the layer�

and production using it is described as �regenerated� production� The f�ratio is a useful measure which

provides insight into the patterns of nitrogen �ow in an ecosystem� Here it also provides another yardstick

against which the reduced models can be compared to the full model�

Model �c

The following equations describe a six compartment version of Fasham ������� This system adds an

ammonium compartment�

dP

dt
� ��� ����t�M� P�Nn� Nr�P �G� � ��P

�

k� � P
� �m� h��t��P

M
����
�

��
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Figure ���� Model 	c� a six compartment system�

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
������

dB

dt
� U�d � U�d �G� � ��B � �m � h��t��B

M
������

dD

dt
� ��� ���G� � �� � ���G� � ��G� � U�d � ���t�M� P�N �P �

��P
�

k� � P
�

���Z
�

k� � Z
� �m� V � h��t��D

M
������

dNn

dt
� �J�t�M� P �Q��Nn� Nr�P �

�m � h��t��

M
�N� � Nn� ����	�

dNr

dt
� �J�t�M� P �Q��Nr�P � U�d � ��B �

���Z
�

k� � Z
� �m � h��t��Nr

M
������

where�

� � J�t�M� P �Q�Nn� Nr�

U�d �
VbBD

k� � Sd �D

U�d �
VbBSd

k� � Sd �D

Sd � min�Nr � 	D�

This model takes model �c
 as its basis and adds an ammonium compartment� This addition allows

the split of the general nutrient compartment into nitrate and ammonium� as described for model �c�

above�

��



This split has the same consequences for phytoplankton and zooplankton already described� Bacteria

now use this ammonium� rather than general nutrient� as a growth substrate together with detritus� The

detrital compartment retains its new breakdown pathway to return organic nitrogen to ammonium�

Model �c�

Nd

B

ZP

N

D

Figure ����� Model 	c
� a six compartment system�

The following equations describe a second six compartment version of Fasham ������� This system adds

a dissolved organic nitrogen compartment�

dP

dt
� �� � ���c�t�M� P�N �P � G� � ��P

�

k� � P
� �m� h��t��P

M
������

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
������

dB

dt
� U�e � U�e �G� � ��B � �m � h��t��B

M
������

dD

dt
� �� � ���G� � ��� ���G� � ��G� � ��D �

��P
�

k� � P
� �m � V � h��t��D

M
������

dN

dt
� ��c�t�M� P�N �P � U�e � ��B �

���Z
�

k� � Z
�

�m� h��t��

M
�N� � N � ����
�

dNd

dt
� ���t�M� P�N �P � ��D �

���Z
�

k� � Z
� U�e � �m � h��t��Nd

M
������

where�

U�e �
VbBNd

k� � Se � Nd

��



U�e �
VbBSe

k� � Se � Nd

Se � min�N� 	Nd�

This model essentially takes model �c as its basis and adds a DON compartment� This redirects several

�ows which previously entered detritus�

The attention of bacteria is now split between general nutrient and DON for growth substrate� The

detrital compartment no longer needs the new pathway to allow decay into base nitrogen nutrients�

�




����� Modelling nitrate implicitly

In the work here� the major aim has been to examine reduced models to determine the minimum size of

model required to study the more complex plankton ecosystems that the models of Fasham� Ducklow 

McKelvie ������ and Fasham ������ were built to study�

One of the ways in which such models could be made would be to represent compartments or processes

of the full model implicitly �in a not dissimilar way� the full model represents many processes from reality

implicitly�� In some of the models already described this has been done �recycling elements have been

replaced by simple rates or allowed to become instantaneous��

In the following four models the general nutrient compartment has been replaced by an implicit nitrate

compartment and an explicit ammonium compartment� The aim being to examine the usefulness of

an implicit compartment� but also to predict the f�ratio �which depends more on the concentration of

ammonium than the concentration of nitrate��

The nitrate compartment is put back into the four reduced forms as a constant value �N�

n�� In most of

the numerical solutions presented here� the value used is that of the annual mean nitrate concentration

from solutions using the full model�

Model �c�

P Z

NrNn*

Figure ����� Model �c�� a three compartment system� In this and subsequent schematic

diagrams� the shaded N�

n compartment is modelled only implicitly �see text for details��

��



The following equations describe a three compartment version of Fasham �������

dP

dt
� ��� ���d�t�M� P�N�

n� Nr�P �G�b � ��P
�

k� � P
� �m � h��t��P

M
������

dZ

dt
� ��G�b � ��Z

�

k� � Z
� h�t�Z

M
������

dNr

dt
� �J�t�M� P �Q��Nr�P �

���Z
�

k� � Z
� �m � h��t��Nr

M
����	�

where�

�d � J�t�M� P �Q�N�

n� Nr�

Q�N�

n� Nr� � Q��N
�

n� Nr� �Q��Nr�

Q� �
N�

n expf�
Nrg
k� �N�

n

Q� �
Nr

k� � Nr

This three compartment model is based upon model �c� As already described� the general nutrient

compartment has been replaced by an ammonium one� and nitrate is represented implicitly in the phy�

toplankton nutrient uptake equations�

Since the model is no longer conservative in its treatment of nitrogen �ows� and since the f�ratio is of

interest� �ows into detritus and DON are ignored �similarly to models 
c and �c
� but dissimilar to

model �c��

Model �c�
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Figure ���
� Model �c�� a four compartment system�

The following equations describe a four compartment version of Fasham �������

dP

dt
� ��� ���d�t�M� P�N�

n� Nr�P � G�c � ��P
�

k� � P
� �m � h��t��P

M
������

��



dZ

dt
� ��G�c � ��G�c � ��Z

�

k� � Z
� h�t�Z

M
������

dD

dt
� ��� ���G�c � ��G�c � ��D � ��d�t�M� P�N�

n� Nr�P �
��P

�

k� � P
�

���Z
�

k� � Z
� �m � V � h��t��D

M
������

dNr

dt
� �J�t�M� P �Q��Nr�P �

���Z
�

k� � Z
� ��D � �m � h��t��Nr

M
������

This four compartmentmodel is based upon model �c
� As previously� the general nutrient compartment

has been replaced by implicit nitrate and an explicit ammonium compartment�
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Figure ����� Model �c�� a �ve compartment system�

The following equations describe a �ve compartment version of Fasham �������

dP

dt
� �� � ���d�t�M� P�Nn� Nr�P �G� � ��P

�

k� � P
� �m � h��t��P

M
������

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
����
�

dB

dt
� U�d � U�d �G� � ��B � �m � h��t��B

M
������

dD

dt
� �� � ���G� � ��� ���G� � ��G� � U�d � ��d�t�M� P�N �P �

��P
�

k� � P
�

���Z
�

k� � Z
� �m � V � h��t��D

M
������

dNr

dt
� �J�t�M� P �Q��Nr�P � U�d � ��B �

���Z
�

k� � Z
� �m � h��t��Nr

M
������

��



This �ve compartment model is based upon model 	c� The nitrate equation in that model has been

removed however� and the occurrence of nitrate in the remainder of the equations replaced by N�

n�

Model �c�
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Z

Figure ����� Model 	c�� a six compartment system�

The following equations describe a third six compartment version of Fasham �������

dP

dt
� �� � ���d�t�M� P�Nn� Nr�P �G� � ��P

�

k� � P
� �m � h��t��P

M
����	�

dZ

dt
� ��G� � ��G� � ��G� � ��Z

�

k� � Z
� h�t�Z

M
������

dB

dt
� U� � U� � G� � ��B � �m � h��t��B

M
������

dD

dt
� �� � ���G� � ��� ���G� � ��G� � ��D �

��P
�

k� � P
� �m � V � h��t��D

M
������

dNr

dt
� �J�t�M� P �Q��Nr�P � U� � ��B �

���Z
�

k� � Z
� �m � h��t��Nr

M
���	��

dNd

dt
� �J�t�M� P �Q�Nn� Nr�P � ��D �

���Z
�

k� � Z
� U� � �m � h��t��Nd

M
���	��

This six compartment model is based directly upon the full model� The nitrate equation in the full model

has been removed however� and the occurrence of nitrate in the remainder of the equations replaced by

N�

n�

�	



Table ��� presents a summary of the compartments present in each of the fourteen reduced forms� In

the �nal column the number of parameters required for each model is listed� The full model has ��

parameters in total�

Model complexity Name P Z B D Nn Nr Nd N N�

n Param


 compartment 
c
p p

�	

� compartment �c
p p p


�

�c

p p p


�

�c�
p p p p


�

� compartment �c
p p p p


�

�c

p p p p


�

�c�
p p p p p


�

� compartment �c
p p p p p

��

�c

p p p p p

��

�c�
p p p p p


�

�c�
p p p p p p

�


	 compartment 	c
p p p p p p

�


	c

p p p p p p

��

	c�
p p p p p p p

��

Full model
p p p p p p p

��

Table ���� A summary table of the compartments present in each of the reduced models�

N�

n is represented implicitly in the models indicated� The Param column lists the number

of parameters required for each reduced model�

��



����� Ammonium inhibition of nitrate uptake

As mentioned in chapter 
� the formulation of ammonium�inhibition of nitrate uptake used in the Fasham

������ model �and the reduced forms� is by no means the only one�

Q�Nn� Nr� � Q��Nn� Nr� �Q��Nr� �
Nn expf�
Nrg

k� �Nn

�
Nr

k� �Nr

���	
�

In fact� some researchers �A� H� Taylor� Plymouth Marine Laboratory� pers� comm�� have expressed

strong reservations about this particular form�

Fasham ������ examined this form� and found it to be more adequately replaced by an uptake model in

which ammonium inhibition is only implicitly parameterised�

Q�Nn� Nr� �
Nn

k�
� Nr

k�

� � Nn

k�
� Nr

k�

���	��

This form drops direct inhibition by the negative exponential of ammonium and its coe�cient�
� but

compensates for this by reducing the value of k� to ����� This allows the model phytoplankton to still

express a preference for ammonium� but removes the limitation on Q placed on the previous formulation

by the negative exponential �which reduced overall nutrient uptake as a result of inhibition of nitrate

uptake��

This approach of favouring ammonium uptake by reducing its half�saturation constant is used by many

other models �e�g� Hofmann  Ambler� ����� Taylor et al�� ������ but has been criticised in a recent

paper which drew together the results of �ve research cruises in the North Atlantic �Harrison� Harris

 Irwin� ���	�� One of the results from this paper was that half�saturation constants for nitrate and

ammonium should be set to equivalent values �albeit ones up to an order of magnitude lower than those

chosen in Fasham� ������

However� to examine the possible importance of this alternative formulation� it has been put into a

version of the full model so that the signi�cance of this particular facet of the model can be explored�

This alternative full model is referred to as the NH� model� Some of its results appear alongside those

of the reduced models� but a separate discussion appears at the end of the results section�

��



����� Model numerical solutions

Mixed�layer depth data was available for both OWS �India� and Bermuda Station �S�� and numerical

solutions were performed at these locations with all of the reduced models� OWS �India� is at a temper�

ate latitude in the North Atlantic Ocean and has very deep mixing during the winter months� Bermuda

Station �S�� by contrast� is sub�tropical with considerably shallower mixing� even in the winter months�

Forced solutions were favoured over unforced ones for several reasons� Primarily� the full Fasham ������

model was originally created to study annual cycles rather than steady state situations� Additionally�

since unforced solutions would probably only produce a stable equilibrium �see Chapter ��� distinguish�

ing a �good� model from a �bad� one would be more di�cult� Essentially� the dynamics through time�

rather than the constant �ows between compartments� are of greater interest in this work�

Although the disparity between these two stations provides a not unreasonable sample of the variety

of physical forcing the model would likely experience if simulated all over the global ocean� additional

solutions under di�erent forcing regimes were performed�

Aside from the di�erences in receipt of irradiance due to latitude� the two principal di�erences between

OWS �India� and Bermuda Station �S� are the depth of winter mixing already mentioned� and the

deep ocean nitrate concentration� The in�uences these two features have on the seasonal dynamics of

the full model were examined by calculating solutions across ranges of mixed layer winter maxima and

subthermocline nitrate concentration�

Since these ranges were observed to produce signi�cant qualitative changes in the behaviour of the full

model� the reduced models �where appropriate� were similarly examined�

In all of these additional solutions� the models were run with the appropriate di�erences� but with

otherwise OWS �India� settings� In the case of di�erent cycles of mixed�layer depth� a small number of

alternative series of mixed�layer depth were generated such that the winter maximumwas set to a given

value and the rest of the data set scaled around this value� Figure ���� shows these new data sets�

Computational details

All of the model solutions described were performed on Sun SPARC stations �IPX� �� and 
�� using

programs written in the C language by the author� Several representative programs and subroutines

have been included in Appendix A�
� All model output was handled by the visualisation software� MAT�

LAB v��� �The MathWorks� Inc�� Massachusetts� USA�� for analysis and interpretation� Additionally�

MATLAB was used to produce all of the graphical output shown�

��
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Figure ����� Annual mixed�layer depth pro�les generated from the OWS �India� data set

but re�scaled to new winter maximum depths�

A Runge�Kutta IV scheme �with �xed step�length� was used to perform the numerical integration of

the ODEs in this �and later� work� Testing showed that for most cases� a consistent model solution was

produced for all step�lengths less than � hours �i�e� � iterations per day�� For simplicity� a step�length

of � hour was used �i�e� 
� iterations per day�� Model runs where a shorter step�length was required

are identi�ed in the text�

Given this step length� it was found that usually within � to �� simulated years� transient behaviour in

the model died out �i�e� variation between compartment values on the same day of consecutive years

was less than ���� mmol N m��� and the system produced a consistent annual pattern� In all of the

results presented� �� years were allowed to minimise transient e�ects� The results shown were then all

taken from year ���

In all solutions� initial conditions for model compartments were set to ���� mmol N m��� The only

exceptions were for nitrate or comparable nutrient compartments which were set to the default value for

N��

Analytical integration of light�limited growth

The model described in Fasham ������ makes use of an analytical formulation derived by Evans 

Parslow ������ for integrating primary production both down the mixed layer and through the day� In

all of the work described in this thesis� this approach has been revised� An analytical function for instan�

taneous light�limited growth down the water column has been derived� and this function is numerically

integrated across the day� This allows the function to more accurately represent the non�linear pattern

��



of daily irradiance� and to account for changes in the phytoplankton population during the day�

The software package MAPLE V �Waterloo Maple Software� Waterloo� Ontario� Canada� was used to

produce the analytical form and the equations below detail the formula derived for depth�integrated

production�

Given that irradiance is attenuated with depth due to absorption by water� kw� and phytoplankton

pigments� kc� irradiance at a given depth� Iz � can be calculated from irradiance just below the surface

of the water� I�� by applying the following equation �

Iz � I� expf��kw � kcP �zg

A standard function� F �I�� is then used to describe the relationship between photosynthesis and irradi�

ance� This takes the form of a curve described by the maximum growth rate� Vp� and the initial slope

of the curve� � �

F �I� �
Vp�Iq

�Vp
� � ��I��

To produce an equation for instantaneous photosynthesis down a water column� the previous two equa�

tions must be combined by integrating them with respect to depth �

J�M�P� I�� �
�

M

Z M

�

F �I� expf��kw � kcP �zg� dz

This then yields an equation which expresses instantaneous irradiance�limited growth in terms of mixed�

layer depth� M � phytoplankton concentration� P � and irradiance just below the surface of the water� I�

�

J�M�P� I�� � � �

M

�
� ln

�
�I� expf��kw � kcP �Mg�

q
V �
p � ��I�� �expf��kw � kcP �Mg��

�
�I��kw � kcP �

�
A

�
�

M

�
� ln

�
�I� �

q
V �
p � ��I��

�
�I� �kw � kcP �

�
A

This function is then just treated in the same manner as other model terms and calculated on an

iteration�by�iteration basis during a model run�

��



��� Results

����� OWS 	India
 solutions

Figures ���	 to ���� illustrate the seasonal patterns of pairs of the various model compartments produced

by the full model and its reduced forms at OWS �India�� Where a reduced model lacks both of the

compartments� a gap is left in the appropriate position on the �gure tableau�

With the exception of model �c� all of the models capture the basic winter�summer pattern of ecosystem

activity observed at OWS �India�� Model �c fails to replicate this pattern for several reasons� primarily

because the bacteria are assumed to not be limited by the forcing functions represented in the model�

This combines with the bacterial compartment�s use of general nutrient as its sole substrate� and allows

the bacteria to uptake nutrient at relatively high rates throughout the year� This leads to high bacterial

populations all year round� high zooplankton populations� low nutrient concentrations� and resultingly

low phytoplankton populations �a combination of low nutrient concentrations and high zooplankton

grazing pressure��

Phytoplankton and zooplankton

Figure ���	 shows the abundances of phytoplankton and zooplankton through an annual cycle� Of par�

ticular note in the full model are the cycles of the populations in the summer months following the spring

bloom� The signi�cance of such cycles has been examined in recent work by Edwards  Brindley ����	�

and Popova et al� ������� and is more fully examined for the Fasham ������ model in Chapter ��

Of the reduced models� there are roughly three classes of behaviour� Models which are very similar to

the full model �e�g� �c
� �c� �c
� �c�� �c�� 	c
 and 	c��� models whose summer peaks and troughs are

higher and lower respectively than the full model�s �e�g� 
c� �c and �c��� and models where the summer

zooplankton peaks are considerably greater than those of the full model �e�g� �c
� �c� and 	c��

Bacteria and ammonium

Figure ���� shows the abundance of bacteria and the concentration of ammonium through an annual

cycle� Gaps exist where models lack both of these compartments�

Only models 	c
 and 	c� come close to accurately mimicing the full model� However� models �c� and �c�

are only slightly di�erent in their annual patterns of ammonium concentration� As previously� models

�c
� �c� and 	c show similar patterns which diverge from the full model� Model �c� utterly fails to

capture the annual pattern of ammonium observed in the full model�

�
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Figure ���	� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� in each of the models� Note the change of scale for model �c� Con�

centrations are in mmol N m���
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Figure ����� Simulated annual cycles of bacteria �solid line� and ammonium �dashed line�

at OWS �India� in each of the appropriate models� Concentrations are in mmol N m���
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Figure ����� Simulated annual cycles of detritus �solid line� and DON �dashed line� at OWS

�India� in each of the appropriate models� Concentrations are in mmol N m���
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Detritus and DON

Figure ���� shows the concentrations of detritus and DON through an annual cycle� Because of the rel�

atively tight coupling between detritus and phytoplankton �through natural mortality and zooplankton

grazing ine�ciency�� the pattern of detritus is similar to that of phytoplankton� The pattern of DON

shows an early spring spike where concentrations rise before bacterial populations have risen su�ciently

to utilise the DON�

Unsurprisingly� most reduced models show seasonal concentrations of detritus which are similar to that

of the full model� However� most have slightly more extreme peaks and troughs �e�g� models �c
 and

�c� or slightly more rapid cycles �e�g� model �c
�� Models �c
� �c� and 	c show patterns of detritus

abundance which are very similar to those of the full model �plus models 	c
 and 	c�� for DON�

Only models 	c
 and 	c� incorporate DON explicitly� and both capture its annual cycle of abundance

well�

Nitrate and total system nitrogen

Figure ���� shows the concentrations of nitrate or general nutrient and total system nitrogen across the

annual cycle� In the full model� nitrate is depleted from the mixed layer during the productive summer

months but recovers to high levels in the unproductive� deeper mixed winter months�

With the exception of model �c�� all of the reduced models show greater summer nitrate�nutrient levels

than the full model� However� this is perhaps unsurprising considering that where a general nutrient

compartment exists it receives regenerated �ows as well as nitrogen entrainment� Models �c
 and 	c


show lower summer nitrate levels and somewhat better agreement with the seasonal pattern than the

other reduced forms�

The implicit nitrate models have constant nitrate so are unable to provide information about the cycle

of nitrate abundance or total system nitrogen�

Phytoplankton growth limitation

Figure ��
� shows the pattern of growth limitations placed on the phytoplankton� Maximum irradiance�

limited growth is determined from the depth�integrated light �eld� Nutrient limitation represents com�

bined nitrate and ammonium limitation where appropriate� At OWS �India�� growth limitation is most

severe in the winter where lack of incident irradiance reduces growth to almost zero� As summer ap�

proaches and irradiance increases� this growth limitation is reduced� However� it is still su�ciently severe

to exert the greater in�uence� Nutrient limitation is mild by comparison�

Almost all of the reduced models have a similar pattern of irradiance limitation to the full model� Mod�

�	
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Figure ����� Simulated annual cycles of nitrate�nutrient �solid line� and total system nitro�

gen �dashed line� at OWS �India� in each of the models� Concentrations are in mmol N

m���
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Figure ��
�� Simulated annual cycles of maximumpossible phytoplankton growth �solid line�

and nutrient limitation �dashed line� at OWS �India� in each of the appropriate models�

Maximum growth in d��� nutrient limitation is non�dimensional�
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els 
c� �c and �c� show greater limitation where their phytoplankton populations grow high enough to

induce self�shading�

Nutrient limitation is somewhat more haphazard because the models less accurately model nutrients �as

seen in Figure ������

Zooplankton mortality rate

Figure ��
� shows the annual pattern of zooplankton loss rate� Since zooplankton are are their greatest

concentration in the summer� their loss rates �through predation� are greatest then too�

The reduced models only perform as well here as they do in modelling zooplankton� Several models

�e�g� 
c� �c and �c�� have signi�cant variation in the summer months as their zooplankton populations

undergo extreme �uctuations�

f�ratio

Figure ��

 shows the annual pattern of the f�ratio� In the winter� when nitrate concentrations are high

due to deep mixing and low production� the ratio is close to one� In the summer� when nitrate levels are

somewhat reduced and ammonium levels are more signi�cant through regeneration processes� the ratio

falls� recovering as winter sets in�

Models �c�� �c� and especially 	c� compare well with the full model� Model �c� unsurprisingly fails to

capture the variation across the year� Models �c� and 	c have very low troughs in the summer due to

high ammonium concentrations generated through regenerative processes�

Note that the annual pattern of the f�ratio for the NH� model is also shown in �gure ��

� The results

from this model are fully discussed in section ������

OWS �India	 statistics

Table ��
 details a series of statistics which quantify particular aspects of the OWS �India� solutions�

Net primary productivity quanti�es the total amount of nitrogen which is absorbed by phytoplankton

across the year �after exudation losses�� The quantity is depth�integrated so the units are in an areal

measure �i�e� m��� The f�ratio here is the fraction of total annual primary production which comes

from �new� �nitrate� production� Note that this is not the mean of the daily f�ratio values �which would

be biased by days on which the production was low since these days would carry equal weight to a day

on which total production was high�� The �rst two phytoplankton statistics respectively refer to the

maximum size of the spring bloom �P max�� and the day on which this maximum occurs �P time��

The last two statistics refer to the phytoplankton�zooplankton oscillations which dominate the summer

months� A simple MATLAB macro was written to determine the location of turning points in the annual

��
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Figure ��
�� Simulated annual cycles of zooplankton daily loss rate at OWS �India� in each

of the models�
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Figure ��

� Simulated annual cycle of the f�ratio at OWS �India� in each of the appropriate

models�
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Model NPP f�ratio P max P time P peaks P cycle

Full �����
 ������ ���
�� ��� � ��


c ���	�� ����	� ��� � 
�

�c ����	
 ��		�	 ��� � ��

�c
 ������ ��		�	 ��� � ��

�c� ������ ��	

	 �����
 ��� � ��

�c ������ ������ ��� � ��

�c
 ���	�� ������ ��� � ��

�c� ������ ������ ��	
�� ��� � ��

�c �����	 ������ ��� � 
�

�c
 ���	�� ������ ��� � ��

�c� ���	�� ������ ��	
�	 ��� � ��

�c� �����	 ������ ������ ��� � ��

	c ������ ������ ������ ��� � ��

	c
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	c� ������ ������ ���
�� ��� � ��

NH� �����	 ���		� ������ ��� � ��

Table ��
� Model statistics from OWS �India� solutions� NPP is total annual net primary

productivity �mol N m�� y���� f�ratio is the mean annual f�ratio in the appropriate

models� P max is the maximumconcentration of phytoplankton in the spring bloom �mmol

N m���� P time is the day of the year this maximum occurs� P peaks is the number of

phytoplankton oscillations in the summer months� P cycle is the mean period of these

oscillations �days��

phytoplankton time series� The number of turning points it found during the summer months �P peaks�

and the average time between them �P cycle� were then calculated�

Since phytoplankton form the key component of the majority of the models here �model �c provides an

exception�� net primary productivity essentially provides a measure of the quantity of nitrogen �pumped�

around the ecosystem� Most of the models ��c� �c
� �c�� �c�� 	c
 and 	c� especially� show NPP com�

parable to that of the full model� However� it is signi�cant that even model 
c� whose dynamics depart

radically from the full model�s� exhibits NPP close to that of the full model�

The signi�cance of the f�ratio has already been touched upon� Models 	c and �c� �which is an implicit

nitrate representation of model 	c� can clearly been seen to depart from the average value for the full

model� The higher ammonium concentrations of both these models act to shift the annual f�ratio lower�

��




In the case of model �c� �which produces much lower seasonal concentrations of ammonium�� the situ�

ation is reversed� The remaining models fall within a narrow range around the full model� The results

from the NH� model are discussed in a later section�

With the much�noted exception of model �c� the timing and magnitude of the spring bloom is mostly

consistent between the full model and its reduced forms�

Although the exact number of phytoplankton peaks counted occasionally varies due to the occurrence

of minor peaks� almost all of the reduced models have average oscillation periods comparable to that

of the full model� With the exception of models �c
� �c� and 	c �related to their di�erent patterns of

zooplankton activity�� all of the reduced models have cycles with a period less than the full model� The

larger the model however� the longer the period� up to model 	c� which matches that of the full model�

���



����� Bermuda Station 	S
 solutions

Figures ��
� to ��
	 illustrate the seasonal patterns of the various model compartments produced by

the full model and its reduced forms at Bermuda Station �S�� This station contrasts signi�cantly with

OWS �India� in its annual pattern of ecosystem activity� Whereas at OWS �India�� the summer is the

period of greatest production� at Bermuda Station �S�� the late spring and early autumn show greater

production� with a relatively unproductive summer period�

Also unlike the OWS �India� solutions� several of the models now depart signi�cantly from this pattern

of ecosystem activity� Model �c still refuses to conform� but additionally the implicit nitrate models� as

well as those models lacking nutrient limitation� depart fairly radically from the results of the full model�

Phytoplankton and zooplankton

Figure ��
� shows the abundance of phytoplankton and zooplankton through an annual cycle� Unlike

OWS �India� there are no rapid predator�prey oscillations during the summer months�

However� whilst this is true of the full model� models 
c� �c
 and �c� exhibit such cycles through the

summer months� In these models� the lack of nutrient limitation �models 
c and �c
 directly� model

�c� indirectly� allow the dynamics to be governed by irradiance limitation which is much reduced at

Bermuda Station �S��

Of the remaining reduced models� once again there are roughly three classes of behaviour� Models

whose behaviour closely follows that of the full model �e�g� �c� �c
� �c� and 	c
�� models with low

winter populations but high summer populations �e�g� �c� �c�� �c�� �c� and 	c��� and models with

somewhat higher summer phytoplankton populations and signi�cantly higher zooplankton populations

�e�g� �c
 and 	c��

Bacteria and ammonium

Figure ��
� shows the abundance of bacteria and the concentration of ammonium through an annual

cycle�

Of the models possessing these compartments� only models �c� and 	c
 describe patterns and magnitudes

similar to those of the full model� Models �c
 and 	c whilst getting similar general patterns� have

signi�cantly greater magnitudes� The implicit nitrate models almost reverse the patterns found in the

full model� with highs in the summer and lows in the winter�

���
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Figure ��
�� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at Bermuda Station �S� in each of the models� Note the changes of scale for models


c� �c
� �c�� �c� and 	c�� Concentrations are in mmol N m���
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Figure ��
�� Simulated annual cycles of bacteria �solid line� and ammonium �dashed line�

at Bermuda Station �S� in each of the appropriate models� Concentrations are in mmol N

m���
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Figure ��
�� Simulated annual cycles of detritus �solid line� and DON �dashed line� at

Bermuda Station �S� in each of the appropriate models� Note the change of scale for model

�c
� Concentrations are in mmol N m���
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Detritus and DON

Figure ��
� shows the concentrations of detritus and DON through an annual cycle� As with OWS �In�

dia�� detrital levels are tied strongly to those of phytoplankton� Since bacterial populations at Bermuda

Station �S� do not die back in the winter as signi�cantly as those at OWS �India�� the spring bloom

of phytoplankton production here is not marked by a signi�cant spike of DON� Levels remain fairly

constant throughout the year�

Once again� only models �c� �c
� �c� and 	c
 reproduce the patterns of production observed in the

full model� Model �c
 degenerates into extreme �uctuations which track the summer phytoplankton�

zooplankton cycles� Models �c
 and 	c� as was observed in the OWS �India� solutions� show detrital

patterns which resemble the DON patterns of the full model� The implicit nitrate models again show

summer�high� winter�low patterns�

Nitrate and total system nitrogen

Figure ��
	 shows the concentrations of nitrate or general nutrient and total system nitrogen across the

annual cycle� In the full model� nitrate is depleted rapidly at the onset of the spring bloom and remains

low throughout the summer period before recovering slowly in the winter� Unlike OWS �India�� where

nitrate levels return to values close to those in the subthermocline layer� nitrate levels here remain low

because of shallower winter mixing and greater populations of phytoplankton�

The same patterns of similarity to the full model continue here� Models �c� �c
� �c� and 	c
 follow the

full model closely ��c� particularly because it has a nitrate rather than a general nutrient compartment��

Models �c
 and 	c come closer to the full model here but have much greater total system nitrogen� The

implicit nitrate models cannot be used here because of their non�conservative nature�

Phytoplankton growth limitation

Figure ��
� shows the patterns of growth limitations placed on the phytoplankton� Unlike OWS �India��

growth limitation is more severely constrained by nutrient limitation� In the winter� irradiance levels�

whilst low� still permit growth� As the season progresses and irradiance rises� nutrients are depleted

shortly after the spring bloom and a summer of severe nutrient limitation follows� As the irradiance falls

in the winter and the mixed layer deepens� nutrient levels rise again� lowering limitation�

Almost all of the reduced models have the same pattern of irradiance limitation to the full model� Since

they lack nutrient limitation� models 
c and �c
 allow phytoplankton populations to reach levels where

self�shading is extreme �although not as extreme as winter irradiance limitation��

Patterns of nutrient limitation are usually similar to those in the full model� although models �c
 and 	c

are not as nutrient limited in the summer months due to higher levels of regenerated ammonium� Model
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Figure ��
	� Simulated annual cycles of nitrate�nutrient �solid line� and total system nitro�

gen �dashed line� at Bermuda Station �S� in each of the models� Note the changes of scale

for models 
c� �c
� �c� and 	c�� Concentrations are in mmol N m���
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Figure ��
�� Simulated annual cycles of maximumpossible phytoplankton growth �solid line�

and nutrient limitation �dashed line� at Bermuda Station �S� in each of the appropriate

models� Maximum growth in d��� nutrient limitation is non�dimensional�
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�c shows considerably less nutrient limitation in the summer because of instantaneous regeneration to

usable nutrient� and consequently this leads to its high summer phytoplankton populations�

The implicit nitrate models comprehensively fail to capture the pattern of nutrient limitation observed

in the full model� In an environment such as this one� where the ecosystem rides very closely to nutrient

starvation� the existence of a never�ending supply of nutrients �in the form of the implicit nitrate

compartment� severely disrupts the normal seasonal patterns�

Zooplankton mortality rate

Figure ��
� shows the annual pattern of zooplankton loss rate� As already stated� these results are tied

very closely to the abundances of zooplankton� Those models which capture zooplankton abundance

well also do well with zooplankton loss rate �e�g� models �c� �c
� �c� and 	c
��

f�ratio

Figure ��
� shows the annual patterns of the f�ratio� As with OWS �India�� the winter months have

relatively greater amounts of new �nitrate fueled� production� and the summer months higher amounts

of regenerated �ammonium fueled� production� Late autumn spikes of new production arise as the deep�

ening mixed layer entrains more nitrate from beneath the thermocline�

None of the reduced models describe the pattern of the full model particularly well� The implicit nitrate

models are entirely at sea� with ratios which remain fairly constant throughout most of the year� These

are punctuated only in the period from winter to spring where falling ammonium levels increase the

f�ratio� only for it to fall following the spring bloom when zooplankton abundance rises su�ciently to

provide regenerated ammonium�

Model �c� appears to overestimate the signi�cance of new production in the late summer and early

autumn� but otherwise shows a similar pattern to the full model� The reason for this overestimation is

unclear since otherwise this model agrees relatively well with the full model with respect to nitrate and

ammonium concentrations�

Model 	c goes the reverse way and consistently overestimates the signi�cance of regenerated production�

leading to the annual pattern of f�ratio being shifted downwards� This pattern is caused by greater

abundances of zooplankton which regenerate more nitrogen to ammonium�

Bermuda Station �S	 statistics

Table ��� details a series of statistics which quantify particular aspects of the Bermuda Station �S�

solutions� The de�nitions here are the same as those already described for OWS �India��
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Figure ��
�� Simulated annual cycles of zooplankton daily loss rate at Bermuda Station �S�

in each of the models�
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Figure ��
�� Simulated annual cycle of the f�ratio at Bermuda Station �S� in each of the

appropriate models�
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Model NPP f�ratio P max P time P peaks P cycle

Full ����	� ������ ���
�� ��� � ��


c 
����	 ��	��� �
� � ��

�c ���	�	 ����	� ��� � �


�c
 ������ ������ ��� �� ��

�c� ����
� ������ ���	�� ��� � ��

�c ������ ������ ��� � �	

�c
 ������ ���	�� ��� � �	

�c� ���
�� ������ ��	��� �
� � ��

�c �����	 ������ 
�� � ��

�c
 ��	��	 ������ ��� 	 �


�c� ������ ������ ����
	 ��
 � ��

�c� �����	 ������ ��	��� ��� 	 �	

	c ��	�	� ���
�
 ���	�� ��� � ��

	c
 ������ �����
 ��� � ��

	c� ���	�� ������ ��	��	 �
� � ��

NH� ���	�� ������ ������ ��
 � ��

Table ���� Model statistics from Bermuda Station �S� solutions� NPP is total annual

net primary productivity �mol N m�� y���� f�ratio is the mean annual f�ratio in the

appropriate models� P max is the maximum concentration of phytoplankton in the spring

bloom �mmol N m���� P time is the day of the year this maximum occurs� P peaks is

the total number of phytoplankton peaks in the annual cycle� P cycle is the mean period

of time between these peaks �days��

Unlike OWS �India� solutions� Bermuda Station �S� solutions of the reduced models produce a much

wider range of NPP �despite the full model producing an NPP lower than that of the comparable OWS

�India� solution�� The nutrient unlimited �i�e� 
c and �c
� and implicit nitrate models do particularly

badly� with NPP being up to six times greater than that of the full model �model �c
�� Models �c� �c
�

�c� and 	c
 once again perform reasonably well� with NPP values within ��� of the full model� Models

�c
 and 	c are somewhat more productive due to their increased regenerative production�

The averaged f�ratio results here are mostly fairly poor� but with model �c� coming very close to that

found in the full model� Model �c� produced a value slightly above that of the full model� but that it

also produced one of the worst daily f�ratio traces of the reduced models does not inspire con�dence

in such averaged measures� Model 	c produces a lower f�ratio due to greater regenerated production

caused by higher ammonium concentrations� The remaining implicit nitrate models do unsurprisingly

���



poorly �model �c� particularly��

With the obvious exception of model �c� every reduced model over�estimates the size of the phytoplank�

ton spring bloom maximum� For models 
c and �c
� this excess is dwarfed by later predator�prey cycles

in the summer� Model �c�s high spring bloom is merely the start of a summer of high phytoplankton

abundance� Models �c� �c
� �c� and 	c
 do increasingly well� as would be expected from earlier reported

results� The results of models �c
 and 	c disguise their failure to produce the summer phytoplankton

lows of the full model� And the implicit models� like model �c� have high spring blooms which continue

into high summer abundances�

On the timing of the bloom� all of the models bloom later than the full model� Most only fall a few

days late� but several �e�g� 
c� �c and �c
� from a week to almost a month late� All of the implicit

nitrate models fall around 
� days late� although as already described� their spring blooms are of a very

di�erent nature to those of the other models�

The numbers of peaks and the periods between them are of less consequence for Bermuda Station �S�

since it lacks the rapid predator�prey cycles present in the OWS �India� solutions� However� they still

should provide reasonable �if somewhat coarse� system measures so have been included here� Most

models have slightly more peaks and somewhat lower periods between them� However� models �c� and

	c
 get the number of peaks and their period perfectly the same as the full model� And models �c and

�c
� despite having shorter periods at OWS �India� now have somewhat longer ones� However� since

Bermuda Station �S� has much less well�de�ned peaks� these results are less interesting and somewhat

dubious�
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����� Mixed�layer depth solutions

Figures ���� to ���� illustrate the results of numerical solutions calculated at four di�erent annual pat�

terns of mixed�layer depth� For comparison� the top row of each Figure shows the results obtained using

the full model�

With the exception of model 	c
� none of the reduced models do very well at emulating the full model at

shallow mixed�layer depths� Models �c
 and �c� come close to emulating the asymmetrical oscillations

of the full model� However� most produce a series of fairly symmetrical predator�prey cycles through

the spring bloom into the summer �e�g� models 
c� �c� �c
� �c
� 	c�� This is particularly true of all the

implicit nitrate models�

However� as the seasonal patterns of mixed�layer depth become deeper� a few more of the models come

closer to emulating the full model�s annual patterns� This is especially true of the implicit nitrate model�

	c�� although models �c
� �c and �c� show a similarly improved performance as mixed layers become

deeper� In the cases of models �c
� �c� and 	c�� this is due to nutrient limitation becoming less impor�

tant� and thus allowing these models to more accurately emulate the full model�

Models 
c� �c� and �c� never do well� and always degenerate into extreme summer predator�prey cycles�

Models �c
� �c� and 	c show the same higher zooplankton populations already found with these models�

Model �c� as ever� performs very badly in all seasonal cycles�
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of mixed�layer depth regimes� Concentrations are in

mmol N m���
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of mixed�layer depth regimes� Note the change of scale

for model �c� Concentrations are in mmol N m���
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Figure ���
� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of mixed�layer depth regimes� Concentrations are in

mmol N m���
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of mixed�layer depth regimes� Concentrations are in

mmol N m���
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����� Sub�thermocline nitrate solutions

Figures ���� to ���� illustrate the results of numerical solution calculated at four di�erent subthermocline

nitrate or general nutrient concentrations� As previously� for comparison purposes� the top row of each

�gure shows the results of the full model solutions� Note that models 
c and �c
 do not appear here

since they do not have a subthermocline nutrient reservoir�
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of subthermocline nitrate�nutrient concentrations� Con�

centrations are in mmol N m���

Unsurprisingly� almost all of the models do well at emulating the full model at low nutrient concentra�

tions� Since a shortage of nutrients constricts all activity in the model� excesses in behaviour of the

reduced forms are curbed� Model �c however� because of its instantaneous regeneration of detritus et

cetera to nutrient� retains more nitrogen in the mixed layer and exhibits slightly greater activity in the

summer� As was observed with the similarly nutrient�starved Bermuda Station �S� solutions� the implicit
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of subthermocline nitrate�nutrient concentrations� Note

the change of scale for model �c� Concentrations are in mmol N m���

nitrate models all have much greater phytoplankton production because nitrate supply remains constant�

As the concentration of nutrient below the thermocline is increased the results drift back to those found

for solutions at OWS �India�� Models �c and �c� return to the more extreme and pronounced summer

blooms� Models �c� �c
 and �c� do well� but still exhibit the slightly more rapid predator�prey cycles in

the summer� Models �c
� 	c and �c� begin to show the much higher zooplankton populations and more

extreme summer oscillations seen at OWS �India�� Model �c� becomes more like model �c� �its explicit

nitrate counterpart� as nitrate levels rise to non�limiting concentrations� Similarly� model 	c� becomes

more and more like the full model �its explicit counterpart� as nitrate levels become saturating�

Interestingly� model 	c
� whilst very similar to the full model at lower subthermocline nitrate concentra�

tions �around those at OWS �India� and lower�� departs more and more signi�cantly in the summer as

nitrate levels become higher� Principally� the summer zooplankton populations are somewhat higher and
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Figure ���	� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of subthermocline nitrate�nutrient concentrations� Con�

centrations are in mmol N m���

show less extreme oscillations than the full model� Examination of the data from the other compartments

does not give much information as to the cause of this�
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Figure ����� Simulated annual cycles of phytoplankton �solid line� and zooplankton �dashed

line� at OWS �India� under a range of subthermocline nitrate�nutrient concentrations� Con�

centrations are in mmol N m���
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����� Annual nitrogen ow results

Figures ���� to ���� show the total annual networks of nitrogen �ows for the full model and its reduced

forms� All results are derived from solutions determined at OWS �India� except for Figure ���� which

presents the results from the full model solution at Bermuda Station �S�� Figure ���� shows the results

from an OWS �India� solution of the full model using the nutrient uptake model described in equation

��	��

OWS �India	 versus Bermuda Station �S	

The most signi�cant di�erence in the �ow networks produced from OWS �India� and Bermuda Station

�S� solutions is the initial �ux of nitrogen from inorganic nutrients to phytoplankton �gross primary

production�� This �ux is essentially the �pump� of the system with every other compartment �excepting

nitrate� depending on phytoplankton to fuel them �unsurprising since phototrophs are� for most ecolog�

ical systems� the only possible source of energy��
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Figure ����� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of the Fasham ������

model�

OWS �India� has a gross primary production almost double that of Bermuda Station �S� despite having

a phytoplankton population severely constrained by irradiance levels in the winter� As stated already�

low productivity at Bermuda Station �S� is due to reduced availability of subthermocline nitrate� itself
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Figure ����� Annual nitrogen �ows �mol N m�� y��� at Bermuda Station �S� of the Fasham

������ model�

due to shallower winter mixing�

Since phytoplankton populations are less limited by irradiance in the winter at Bermuda Station �S��

populations remain at comparably high values year round� Due to the lower availability of nitrate how�

ever� the populations never attain the concentrations found at OWS �India� in the spring and summer�

As a consequence� a lower zooplankton population is supported and a greater fraction of phytoplankton

�nds its way directly into detritus�

The generally lower concentrations of compartments at Bermuda Station �S� reduces the importance

of zooplankton �because of the Michaelis�Menten form of zooplankton grazing� at this location� And

relatively greater fractions �indeed� usually greater actual quantities� of phytoplankton� bacteria and

detritus are lost due to detrainment�

Interestingly� despite quite di�erent systemic throughputs of nitrogen� both locations have the same ratio

of bacterial to phytoplankton production �where production is quanti�ed purely in nitrogen �ux terms��

Another interesting result is that whilst Bermuda Station �S� has a considerably lower daily average

f�ratio than OWS �India�� when annual nitrogen �ows from ammonium and nitrate are considered� the

situation is reversed and Bermuda Station �S� has the greater f�ratio �although the di�erence is not
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quite as extreme as seen in the daily averages��

Reduced model nitrogen 
ows
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0.733 0.550
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Figure ����� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of model 
c�

Figure ���� shows the network of nitrogen �ows for model 
c� As stated earlier� solid headed arrows

relate to �ows to other compartments� and empty headed arrows to �ows that leave the upper mixed

layer� Those solid headed arrows which appear to �go nowhere� are �ows which previously entered

compartments not modelled here� Since this model is non�conservative� the loss of nitrogen through

these pathways is not important to this model�

Interestingly� despite showing quite di�erent dynamical behaviour to the full model� model 
c�s annual

nitrogen �ows are not too dissimilar� Surprisingly even� considering the more extreme behaviour of the

model� the �ows are even somewhat lower than that of the full model�
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Figure ����� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of model �c�

Figure ���� shows the network of �ows for model �c� Curiously� despite having an extra layer of com�

�
�



plexity� model �c is further o� from the full model than model 
c� having even lower �ows� Additionally�

the instantaneous regeneration of dead organic material to general nutrient reduces system loss through

sinking or detrainment and consequently very little nutrient is entrained�
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D
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1.051 0.040 0.000

0.221

0.732

0.6630.884

0.055 0.069
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Figure ���
� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of model �c
�

Figure ���
 shows the network of �ows for model �c
� Although sharing growth limitation with model 
c�

higher average phytoplankton populations lead to greater primary production than both 
c and the full

model� Fewer �ows into the new detritus compartment lead to slightly reduced �ows out of it compared

to the full model� Otherwise� most of the �ows are reasonably close to those of the full model�

Figure ���� shows the network of �ows for model �c�� Despite the added complexity of another compart�

ment plus an implicit representation of nitrate� the �ows are very similar to those of model 
c �agreeing

with the results found for the mixed�layer depth solutions��

Figure ���� shows the network of �ows for model �c� Once again� �ows are not very dissimilar from

those of the full model� For the same reasons as model �c� nutrient entrainment is reduced� although

by nowhere near the same magnitude� Noticeably� the new ecological pathway from detritus to general

nutrient �introduced to represent regenerative processes� has a very low annual �ux�

Figure ���� shows the network of �ows for model �c
� The pattern of �ows here is similar to that in

model �c� and somewhat closer to that in the full model� The diversion of DON outputs into the detri�

tus compartment �mostly zooplankton mortality� leads to higher detrital concentrations and somewhat

greater detrital sinking and grazing �uxes �particularly grazing�� The diversion also forces greater en�

trainment of subthermocline nutrient� although the quantity is still lower than that of the full model�
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Figure ����� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of model �c�

Figure ���	 shows the network of �ows for model �c�� Since this model shares the same DON pathways

as model �c
� the nitrogen �uxes are very similar� Production is slightly greater and this is re�ected in

all of the �ows�

Figure ���� shows the network of �ows for model �c� The network clearly illustrates what has already

been suggested about this model� The phytoplankton compartment is withered to almost nothing� whilst

the bacterial compartment has swollen with a massive annual throughput of nitrogen� Although a major

regenerative artery running between B�Z�N has been established� entrainment from beneath the ther�
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Figure ���	� Annual nitrogen �ows �mol N m�� y��� at OWS �India� of model �c��

mocline is also an order of magnitude greater than that in the full model� The detrital compartment�

through feeding ine�ciency by the zooplankton� has also become a signi�cant artery for nitrogen �ow�

although most quickly returns to zooplankton through grazing�

Figure ���� shows the network of �ows for model �c
� Although primary production is comparable �but

low� to that from other models and the full model� most of the other pathways are signi�cantly di�erent

from those of the full model� The �plumbing in� of the bacterial compartment whilst not leading to

a disaster of the magnitude model �c presents� still allows the bacteria access to the general nutrient
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�

compartment� This is combined with access to the detrital compartment� and the results are very high

�uxes �approximately double their counterparts in the full model� from these compartments into the

bacterial compartment� This in turn leads to a shift in the feeding of the zooplankton �which causes

the high summer zooplankton populations observed previously� and the regeneration of material from

there� The uptake of detritus by the bacteria� and the relatively high regeneration of material B�Z�N

lead to a reduced particulate sinking �ux and a lower quantity of entrainment respectively�

Figure ���� shows the network of �ows for model �c�� As the explicit form of model �c�� itself a descen�
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dant of model �c
� this model has �ows very similar to both as well as the full model� In common with

both of these reduced models� inputs to detritus via DON pathways lead to greater concentrations of

detritus and resulting greater sinking and grazing �uxes�
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Figure ���� shows the network of �ows for model �c�� Although this model is more complex in its

treatment of nutrients than model �c
� the �uxes through it remain very similar� Uptake of detritus

and ammonium are around double those of the full model� Nitrate entrainment �implicit� and detrital

sinking are again lower than that in the full model�
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Figure ���� shows the network of �ows for model 	c� As a fully realised version of the implicit model �c�

it has almost identical �ows to that model� It shares the high bacterial �uxes of that model and model

�c
 for the same reasons�

Figure ���
 shows the network of �ows for model 	c
� With the single exception of the entrainment �ux�

almost all of the �ows are within 
� mmol N m�� y�� of the full model� Examining the full model �ows

reveals that the discrepancy in the entrainment �ux of model 	c
 is explained exactly by the amount of

ammonium detrained in the full model solution�

Figure ���� shows the network of �ows for model 	c�� As an implicit form of the full model� this model

gets the �ows almost exactly correct� with only mild di�erences �principally caused by slightly greater

primary production�� As observed in the Bermuda Station �S� results though� this model is considerably

less successful in a nutrient�limited environment�
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Nitrogen 
ow statistics

Table ��� details a series of statistics regarding the nitrogen �ow in the full model and its reduced forms�

The f�ratio results agree with those discussed earlier� namely that models �c�� �c� and 	c� have ratios

very similar to that of the full model� whilst models �c�� �c� and 	c produce quite di�erent ratios �par�

ticularly model �c���

All of the reduced forms �with the exception of model �c� agree relatively well with the full model in

terms of the fraction of phytoplankton nitrogen which is grazed by zooplankton�

The reduced models show more variety in the amount of nitrogen consumed annually by the zooplankton�

The smaller models are particularly di�erent from the full model here since they have fewer available

prey items� Models �c
� �c� and 	c show higher amounts of zooplankton consumption because of greater

bacterial abundance� The remaining larger models with all three prey �	c
 and 	c�� have levels of zoo�

plankton consumption comparable to that of the full model�

The same is true of the proportions of di�erent prey species consumed� The smaller models heavily bias

phytoplankton� since it is often the only available prey species� Only the larger models show proportions

comparable to those of the full model� Again� models �c
� �c� and 	c show a high bacterial component

to the zooplankton diet�

This trend continues with the ratio of bacterial to phytoplankton production� Models �c
� �c� and 	c

have ratios more than double that of the full model� whilst models 	c
 and 	c� have production ratios

very close to that of the full model� Model �c produces a particularly impressive� if thoroughly erroneous�

performance�

Detrital sinking �uxes and nutrient entrainment have been discussed previously and are presented here

merely to summarise them�
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Model f�ratio P fate Z food P frac B frac B�P D sink N in

Full I ����� ���
� ����� ��	�� ��
�� ����� ���	� �����

Full B ���	� ��	�� ����� ����� ����� ����� ����� �����


c ����� ����� �����

�c ����
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 ����� ����
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 �����

�c
 ���
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 �
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 ����� ����� ���	� ���

 ����� ��
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� ���
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 ����� ����� ��	�� ��
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NH� ���	� ����� ����� ��	�	 ��
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Table ���� Model statistics from nitrogen �ow data� Full I and Full B refer to �ows from

runs of the full model at OWS �India� and Bermuda Station �S� respectively� The results

presented for the reduced forms are those from OWS �India� runs� f�ratio is the ratio of

total annual nitrate uptake by phytoplankton to their total annual uptake of nitrogen� P

fate is the fraction of the annual nitrogen �ow into phytoplankton which is consumed by

zooplankton� Z food is the total annual �ow of nitrogen as food into zooplankton �mol N

m�� y���� P frac is the fraction of this �ow which comes from phytoplankton� B frac is the

fraction of this �ow which comes from bacteria� The remaining fraction of this �ow comes

from detritus� B�P is the ratio of bacterial production to phytoplankton production� D

sink is the total annual sinking �ux of detritus and zooplankton mortality from the mixed

layer �mol N m�� y���� N in is the total annual quantity of nitrate or general nutrient

entrained into the upper mixed layer� Italicised results� whilst correct for that model� are of

limited comparative value due to the structure of those models�
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����� Model �c� implicit nitrate solutions

As described previously� in the majority of solutions calculated for the implicit nitrate models� N�

n was

set to the mean daily value of Nn obtained from the comparable full model solution�

In order to establish the sensitivity of the implicit models to N�

n� a series of three solutions using model

	c� �an implicit form of the full model� were performed for both OWS �India� and Bermuda Station

�S� conditions� In the �rst� N�

n was assigned the minimumNn observed during a comparable full model

solution� in the second� the mean daily value �as previously�� and in the third� the maximumNn observed�
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Figure ���� shows the results of the solutions performed at OWS �India�� As can clearly be seen� in

all three cases model 	c� comes very close to the full model solution� In the Nn � minimum case� the

departure from the full model solution is at its greatest� However� this only results in a slightly lower

spring bloom maximum and somewhat more damped summer predator�prey oscillations� In the two

other cases� the �t is almost perfect with only slightly more extreme predator�prey oscillations in the

���



summer� These departures coincide with the lowest concentrations of Nn in the full model�

Figure ���� shows the results of the solutions performed at Bermuda Station �S�� In these cases� the

departures from the full model are very extreme� In the minimumcase� phytoplankton concentrations are

below the minimumrecorded by the program performing the solutions �i�e� less than ���� mmolN m����

In the mean case� winter levels of phytoplankton fall below those of the full model �Nn concentrations

in the full model are close to their maximum then�� whilst those in the summer exceed those of the full

model considerably� Finally� in the maximum case� winter levels of phytoplankton are closer to those

found in the full model� but again summer levels are considerably higher�
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����� Ammonium inhibition of nitrate uptake

As discussed earlier� the formulation of ammonium�inhibition of nitrate uptake used in the full model

and the reduced forms is by no means the only formulation for nutrient limitation of phytoplankton

growth� To this end� the alternative formulation given in Fasham ������ �and described previously� was

put into the full model so that the signi�cance of this particular facet to the model can be explored�

This model favourably uptakes ammonium� but with no direct inhibition of nitrate uptake�
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Figure ���	� Surfaces of phytoplankton growth limitation �model term Q� i�e� � � totally

limited by nutrient availability� � � totally unlimited by nutrient availability� produced

using di�erent models of nitrate and ammonium uptake� Model � is that used in Fasham

������ and in the majority of the work presented here� Model 
 is that used in Fasham

������� Concentrations are in mmol N m���

Figure ���	 shows the surfaces of growth limitation produced by the two models of nitrate and ammo�

nium uptake kinetics� Both models cause the greatest limitation at the origin� and in both this falls

away as nitrate� ammonium or both increase� Model � has relatively shallow increases in uptake as it

moves away from the origin since both half�saturation constants have relatively high values� Model 
�

on the other hand� has a sharp increase in uptake as soon as ammonium is present since ammonium�s

half�saturation constant is very much lower than that in model �� Consequently� the greatest disparity

in uptake between the two models occurs at low concentrations of nitrate and ammonium�

Figure ���� shows the results of runs performed at OWS �India� and Bermuda Station �S� using full

models running both uptake models� The results are presented as a phase portrait in nitrate�ammonium

space so that comparison with Figure ���	 is easier�

The major di�erence between the two uptake models lies with the concentrations of ammonium they

predict� At both OWS �India� and Bermuda Station �S�� uptake model � predicts ammonium concen�

trations considerably greater than those of model 
� The seasonal patterns of nitrate concentration� by
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Figure ����� Nitrate�Ammoniumphase space portraits showing the trajectories of full model

running uptake model � �circles� and uptake model 
 �crosses� at OWS �India� �left� and

Bermuda Station �S� �right�� The circles and crosses mark the locations of the trajectories

once every � days� and are added to convey the rate of movement along the trajectories�

Note that the scale of the Bermuda Station �S� plot is one tenth that of the OWS �India�

plot� Concentrations are in mmol N m���

contrast� are very similar between the two models� This considerable di�erence conceivably represents

a means by which the two models could be distinguished and tested�

In both OWS �India� solutions the lowest nitrate and ammonium concentrations are relatively far away

from the region of nitrate�ammonium space in which the disparity between the uptake models is great�

est� However� in the case of the Bermuda Station �S� solutions� both models spend the entire annual

cycle close to the nitrate�ammonium origin�
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Figure ����� Simulated annual cycles of phytoplankton for the full model using uptake model

� �solid line� and uptake model 
 �dashed line�� Concentrations are in mmol N m���

Despite the foray of the nitrate�ammonium trajectories into the region close to the origin� �gure ����

shows relatively little di�erence in the phytoplankton time series between the di�erent uptake models�

The OWS �India� spring bloom is una�ected� although the subsequent summer oscillations are some�

what damped with uptake model 
� At Bermuda Station �S� the di�erences� although smaller� occur
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throughout more of the year� The spring bloom is somewhat higher �phytoplankton growth being higher

due to the greater uptake of model 
 close to the origin�� and the summer dip somewhat lower �due to

the concomitantly lower nutrient levels�� This lack of di�erence in the time series of model compart�

ments is repeated for all of the model compartments except ammonium and DON� In the case of DON�

uptake model 
 results in autumn levels of DON around twice those produced in uptake model � solutions�

The similarity between the results is not as good as some of the reduced models have shown� but it is

considerably better than most of them� The principal di�erences appear to be slightly higher phyto�

plankton growth� greater use of ammonium as a growth substrate� and resultant lower concentrations

of ammonium �at OWS �India� the maximum ammonium concentration under uptake model 
 is only

around a half that when uptake model � is used� and around an eighth at Bermuda Station �S���
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Figure ����� Annual nitrogen �ows �mol N m�� y��� of the NH� model at OWS �India��

Figure ���� shows the network of �ows for the NH� model� Since the nutrient uptake model used here

does not actively limit uptake in the presence of ammonium� uptake of nitrate and ammonium is greater

than in the full model solutions using the standard uptake model� Unsurprisingly then� this leads to

greater primary production and slightly higher �uxes throughout the network� Since ammonium is now

preferred to nitrate there is greater uptake of ammonium and a slightly reduced uptake of nitrate� This

leads to lower ammoniumdetrainment and lower nitrate entrainment� This greater uptake of ammonium

is also re�ected in the f�ratios calculated across the year at both OWS �India� and Bermuda Station

�S� �see �gures ��

 and ��
�� and tables ��
� ��� and ����� At both stations both the annual patterns
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and averages fall below those produced by the full model with uptake model ��
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��� Summary

The primary aim in this chapter was to determine if a �minimum model�� which accurately described

the behaviour of the full model� could be rebuilt from a na !ve deconstruction of the full model� Fourteen

reduced models were constructed� ranging in size from a minimal PZ model to a six compartment model

with an implicit representation of nitrate� Each model was reconstructed along rational lines� with at�

tention paid to major ecological pathways and to the plausibility and utility of the reduced form� While

several models �e�g� models �c� �c
 and �c�� were particularly successful in this regard� the failure of

the other models also provided insight into the importance of particular ecological pathways included in

the full model�

The behaviour of three of the simplest models� 
c� �c and �c�� at OWS �India� revealed the �rst �aw

of the reduced models� At OWS �India�� nutrient limitation is always less signi�cant than irradiance

limitation during full model solutions� and consequently all three reduced models degenerate to rapid

PZ cycles� Although these cycles are con�ned to the summer months� as are the oscillations of the full

model� their severity is greater� These results contrast with those of model �c
� which has no nutrient

limitation� but which has a detrital compartment which the zooplankton can graze on� This latter model

produces a series of damped summer oscillations� similar to those of the full model�

Another �aw of the simpler reduced models� as well as the implicit nitrate models� was revealed by

solutions determined for Bermuda Station �S�� At this station� nutrient limitation of the full model is

more severe than irradiance limitation for a considerable period of the simulated year� Models 
c and

�c
� which have neither explicit nor implicit nutrient limitation� both produce extreme solutions� with

oscillations in the phytoplankton and zooplankton populations which take them to values more than

one order of magnitude greater than these populations reach in the full model� In the case of model �c

and the implicit nitrate forms� nutrient limitation is considerably more muted than in the full model �in

model �c� this is because regeneration is so rapid� in the implicit nitrate forms� this is because nitrate

cannot be depleted�� Consequently� the summer slump in phytoplankton and zooplankton populations

found in the full model do not occur in these models� leading to high summer production and even

oscillatory behaviour �model �c���

As suggested during the original formulation of the reduced models� the reinstatement of the bacterial

compartment poses a number of problems� The failure of model �c� and the di�culties found with

models �c
 and 	c would appear to con�rm this� In the case of model �c� the bacteria utilise only

general nutrient for their metabolism� Since they have no seasonal limitations placed on them �unlike

the phytoplankton� they make use of general nutrient throughout the year� raising their own populations

at the expense of phytoplankton who spend their year considerably more nutrient limited than in the
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full model� While the bacterial populations produced across the year by model �c are never much more

than twice the annual maximum found in the full model solutions� these low populations hide bacterial

production �annual nitrogen uptake� more than ��� times that found in the full model �for OWS �In�

dia��� In model �c� the N�B�Z pathway almost entirely surplants the N�P�Z pathway�

Models �c
 and 	c �and� at OWS �India�� model �c� � the implicit nitrate version of model 	c� also

exhibit slightly more active bacterial populations� but nowhere nearly on the scale of model �c� In

both cases� as an alternative to using DON as a growth substrate� bacteria are given access to detritus

as a carbon source �note that detritus is also assigned �ow inputs which formerly ran to DON�� This

pathway makes sense since bacteria are known to occur in association with particulate material as well

be free�living �Totterdell et al�� ������ However� while ecologically the tying of bacteria to detritus may

be unobjectionable� in the context of the Fasham ������ model it appears that this step is misjudged�

In both reduced models� the bacterial populations now have access to a much larger carbon source�

Consequently their populations are more pronounced across the year� This leads to a larger zooplankton

population� and also to a larger phytoplankton population �supported by regenerated excretion and pre�

dation losses from the bacterial and zooplankton populations respectively�� Since most detritus becomes

regenerated by bacteria� its sinking �ux out of the mixed layer is shifted markedly �in both models the

�ux is lower than the full model �ux by at least a third�� Note that both models produce very similar

results despite di�ering in the nitrogen source their bacterial utilise �general nutrient in model �c
� am�

monium in model 	c��

Although their results at Bermuda Station �S� have already been singled out as erroneous� the per�

formance the implicit nitrate models �c� and 	c� at OWS �India� is considerably better� This is

unsurprising however� since both models are respectively the implicit nitrate forms of reduced model

�c� and the full model itself� Model �c�� along with model �c
� is one of the most successful of the

reduced forms �note that �c
 is the parent model to �c��� Both of these models accurately caricature

the full model�s dynamics and �ow network� and both predict values of NPP and sinking �ux close to

those produced by the full model�

In the context of the primary aim of this chapter� the reduced forms known as �c
 and �c� appear to be

candidates for the title of �minimum model�� The slightly increased complexity of model �c� allows it

to capture certain facets of the full model that are not addressed by model �c
 �the f�ratio for instance��

and where those facets are required� it is undoubtedly superior�
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��� Discussion

A key �but unstated� assumption in this chapter has been that the full model represents reality �other�

wise why waste time �tting smaller models to a bigger one��� While this assumption is clearly not true�

the full model does represent an attempt to capture reality� and makes use of what is known about the

pathways between the ecosystem components represented� as well as the parameters which are involved

in these pathways� However� since many of the pathways represented are poorly understood� or stand

in for a myriad of real ecological processes� there is considerable uncertainty in the full model�

An important part of modelling is the production of models only as complex as demanded by the ques�

tions they attempt to answer� The questions the full model attempts to address are mostly concerned

with the annual cycle of phytoplankton production� and the annual loss of particulate material to the

deep ocean �since answers to these questions will help researchers predict carbon �ow to the deep ocean�

and ultimately assist in the ongoing race to understand the future impact of the greenhouse e�ect on

earth�� Consequently� if simpler models can successfully mimic these important facets of the larger full

model� considerable e�ort can be spared both computationally �should these simpler models be inserted

into GCMs� and analytically �usually� the more complex a model� the greater the uncertainty in its

formulation� and the harder the interpretation of its results�� The approach used here to achieve this

�i�e� na !ve reconstruction� is not obviously inviable� and the success of models �c
 and �c� in reduc�

ing the complexity of the full model while behaving very similarly to it� at least lends it empirical support�

In addition to �nding that the full model can be reasonably accurately mimiced by a ZPND model�

several other interesting results about the importance of parts of the full model were discovered� One of

the most signi�cant structural di�erences between the Fasham ������ model and simpler models is the

inclusion of a relatively complex mechanism for regenerating nitrogen to ammonium� This mechanism

includes compartments for both dissolved and particulate organic matter� and additionally a bacterial

compartment which both uptakes and regenerates ammonium� Furthermore� numerical solutions of the

full model �nd that these regenerative pathways have a relatively large annual throughput of nitrogen�

However� the most successful reduced models with less than 	 compartments were all able to remove

these pathways and replace them with either direct �ows back to utilisable nutrient� or with decay terms

with a constant rate� While this result does not suggest that bacteria are an unnecessary model compo�

nent in all instances� it does draw into question whether or not they should be explicitly included�

Although explicit bacteria and DON compartments were not found necessary in successful reduced forms�

the inclusion of a detrital compartment with similar �ows to that in the full model appeared important�

In the case of the contrasting results of models �c and �c
� the inclusion of such a compartment appears

even more important than the addition of a nutrient compartment �at least for the relatively nutrient
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replete OWS �India��� As well as providing an alternative food source for zooplankton� the detrital

compartment acts as a �halfway house� for dead organic material� This latter role removes the need to

instantly regenerate nitrogen back to utilisable nutrient� a pathway which crippled model �c�

Two other interesting results� both concerning nutrients� also arose from this work� Firstly� the success

of the implicit nitrate models ��c� and 	c�� in mimicing the behaviour of the full model� And secondly�

the general success of reduced models in which utilisable nutrients were represented by only a single

compartment� Although these models predicted slightly lower values of entrained nutrient �models �c


and 	c
 were both within ��� of the full model�s annual nitrate entrainment�� they were otherwise as

successful as those models which divided general nutrient into nitrate and ammonium�

Since numerical solutions were used to examine the reduced models� a large quantity of system infor�

mation was presented in the results section� While much of this information may appear super�uous�

most of it was used to determine the causes of speci�c model �aws� In the �rst instance� time series of

model state variables or speci�c processes �limitations� predation� f�ratio� provided a useful �rst guide to

potential model failings� For instance� model �c�s characteristic time series scrawls� and the resemblance

of the detritus plots of models �c
 and 	c to those of DON in the full model provided a useful diagnostic

of the �mis�behaviour of these models� The use of �ow networks allows comparable pathways between

di�erent models to be contrasted aside from the dynamics� In the context of providing estimates of

annual photosynthetic uptake of carbon or sinking �uxes to the deep ocean� the �ow networks provide

crucial information� Particularly so where the reduced forms give the appearance of matching aspects of

the time series of the full model while doing so via quite di�erent modelled �ows �e�g� models �c
 and

	c�� Finally� the summary statistics attempt to quantify aspects of both the time series dynamics and

the �ows� Some� like Pmax and Ptime� while not distinguishing the reduced forms at OWS �India� �

indicate that despite the wide range of model forms� some results are controlled by forcing or another

model feature �e�g� the constancy of both Pmax and Ptime at OWS �India� between models with and

without nutrients points to the termination of the spring bloom maxima by zooplankton grazing rather

than nutrient starvation��

One of the criteria used in the derivations of the reduced models was that parameter values were to

remain at their values assigned in Fasham ������� This rule was enforced since many model parameters

were assigned values from data� However� since parameters are rarely constant in nature� and since

the performance of several of the models could probably be improved by parameter manipulation �e�g�

reduction of the e�ciency of regeneration in model �c� reduction of bacterial growth in models �c
� �c�

and 	c�� this represents a possible extension to the work� The use of non�linear optimisation techniques

�see Fasham  Evans� ����� with the full model solution as �data� may represent one potential avenue

for future research here�

��	



Chapter �

Oscillatory behaviour at OWS

�India�

If we knew what it was we were doing� it would not be called research� would it�

� Albert Einstein �����������

�	�



��� Introduction

As has been remarked previously
 the OWS �India� simulations of the Fasham ����� seven compartment

ecosystem model �subsequently referred to as the �full model��
 as well as the majority of the reduced

forms of that model
 have marked phytoplankton�zooplankton oscillations in the summer months when

the mixed layer is at its shallowest and irradiance at its highest� These oscillations are comparable to the

predator�prey cycles seen in simpler models �Lotka
 ����� Volterra
 ����� Truscott � Brindley
 ���	�


insofar as a predator population �zooplankton� �chasing� a prey population �phytoplankton� leads to a

series of overcompensations which result in both populations oscillating between higher and lower values�
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Figure 	��� Depth�corrected measurements of chlorophyll in the mixed layer at OWS �India�

during ����� Squares represent measurements
 dotted line added for clarity� Chlorophyll

concentration in mg chl� m��� �Data courtesy of Bob Williams and Dr� Mike Fasham��

More signi�cantly
 chlorophyll data collected at OWS �India� in ���� and other years shows some evi�

dence for peaks and troughs during the summer months �see �gure 	����
 lending the full model some

tentative support�

Recent work �Steele � Henderson
 ����� Edwards � Brindley
 ����� Popova et al�
 ����� has drawn

attention to such oscillations
 and in particular to qualitative changes in model behaviour that they

may represent� Edwards � Brindley ������
 for instance
 examine the  compartment ZPN model �rst

proposed by Steele � Henderson ������
 and reveal a rich structure of Hopf bifurcations from stable

equilibrium states to stable limit cycles� They also speculatively suggest that the seasonal occurrence of

phytoplankton�zooplankton cycles
 as perhaps shown in the OWS �India� data
 may re�ect the move�

�Appendix A�� details the procedure used to convert depth samples to mixed layer concentrations�

�	�



ment of the ecosystem from a regime of stable populations to one of limit cycle behaviour�

Furthermore
 limit cycle behaviour �or even weakly damped spiral sinks� can have important conse�

quences for models in which spatial structure is included� Parameter �tting is also complicated by any

oscillatory behaviour in a model
 since most simple statistics assume �xed point behaviour� As the

Fasham ����� model has been both embedded within a spatial GCM �Fasham et al�
 ���� Sarmiento et

al�
 ����
 and used in parameter�optimisation studies �Fasham � Evans
 �����
 oscillatory behaviour

is of interest�

The following chapter describes a probing of the behaviour of the full model at OWS �India� to estab�

lish the nature of the summer oscillations observed
 and to suggest parameter or forcing regimes under

which oscillatory behaviour could be observed� A model prediction of the circumstances under which a

plankton ecosystem could shift from a stable equilibrium to limit cycle behaviour would provide a good

test of the model�s validity�

�	�



��� Examination of the full model

����� Forcing functions

A major complicating factor in examining the behaviour of the full model is its use of forcing functions

to replicate the annual cycles of mixed�layer depth and solar irradiance� The former driven by an array

of daily depth values
 the latter by a series of standard astronomical formulae�

In one sense
 forcing functions may be regarded as implicit representations of unmodelled processes�

Where the exact character of these processes is poorly known
 or where they can be accurately charac�

terised by simple equations
 this approach can be useful and can reduce model complexity� The seasonal

cycle can then be regarded as the limit cycle produced by the full series of equations �those explicitly

in the model
 and those implicitly incorporated via the forcing functions�� This cycle may be examined

using Poincar�e sections to establish if the model exhibits any behaviour with a periodicity di�erent to

that of the forcing �Wiggins
 ������

In another sense
 the forcing functions can be regarded as parameters with continuously changing values�

In the actual computer programs used to run the full model
 this is essentially how the forcing functions

are treated� These parameters create a series of attractors �one for each combination of forcing function

values� onto which the model trajectory continually attempts to converge� In this view
 unless the model

is given su�cient time to converge onto a particular attractor
 the resultant trace in the model�s phase

space will be an unending transient �albeit one which may be repeated regularly with the period of

the forcing�� Note that �su�cient time� here will be highly dependent on both the forcing functions

themselves and the model equations in�uenced by them�

In the context of elucidating the behaviour of the full model during the oscillations it produces during

the summer months of OWS �India� runs
 the forcing functions are best treated this latter way� Namely


treated as model parameters and examined to determine whether their range of annual variation includes

regions in which the model behaves qualitatively di�erently�

����� Fixed forcing studies

To examine its behaviour
 runs of the full model were performed under OWS �India� conditions and

allowed to equilibrate to the standard annual cycle found in previous work� Then
 at speci�ed days of

the year the forcing functions were �frozen� to constant values and the model followed to establish the

nature of the attractor at those values� Mixed�layer depth �M � was set to a constant value
 the rate of

change in depth of the mixed layer �h�t�� was set to zero
 and the daily cycle of irradiance was exactly

repeated on subsequent days�

���
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Figure 	��� Seasonal cycles of forcing functions �left � mixed�layer depth
 solid� average

daily irradiance
 dashed� and plankton �right � phytoplankton
 solid� zooplankton
 dashed�

for simulations in which the forcing functions were locked at the labelled points in the

annual cycle �see text for details�� Mixed�layer depth in metres
 irradiance in W m��


concentrations in mmol N m���
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Figure 	�� shows some of the results obtained� A normal model trace is shown �row �� plus the traces

produced when the forcing functions are frozen at the winter mixed�layer depth maximum �day ���
 just

prior to the spring phytoplankton bloom �day ���
 and at the summer mixed�layer depth minimum

�day ����� In each example the values of the forcing functions and the populations of phytoplankton

and zooplankton are shown�

In the case where the forcing functions are frozen at the winter mixed�layer depth maximum
 the model

�nally converges on a steady equilibrium solution at low concentrations of all state variables �except

nitrate
 which converges on a value close to its subthermocline value�� It is noticeable that this equilib�

rium has a phytoplankton concentration approximately � times greater than the concentration observed

on day �� during a normal
 forced simulation� This supports what was suggested earlier
 namely that

during forced runs the model solution is not on the attractor
 at least not on day ���

In the remaining cases presented
 where the forcing functions are frozen in shallower mixed layer�higher

irradiance regimes
 stable equilibria are also found� However
 unlike the winter case
 the equilibria are

marked by considerably lower nitrate and somewhat higher concentrations of the other state variables�

When the forcing functions are frozen at pre�bloom levels �day ��� the bloom oscillation is followed

by much smaller oscillations than usually observed in the summer� It is likely that the slightly lower

phytoplankton growth rate is responsible� Curiously
 the phytoplankton and zooplankton oscillations

appear to be converging to an equilibrium around ��� mmol N m�� by what would be the early winter�

However
 with the continuing depletion of nitrate �which
 because of the high winter levels it rises to


was previously at almost unlimiting concentrations�
 the phytoplankton and zooplankton concentrations

�as well as those of the other state variables� fall to a lower stable equilibrium�

A similar phenomenon occurs when the forcing functions are locked in the height of summer �day �����

However
 because of the higher phytoplankton growth rates
 nitrate is depleted faster and the �crash�

towards lower concentrations occurs earlier� Concomitantly with the higher phytoplankton growth rates

though
 the summer oscillations observed are more similar to those observed in the forced case� In fact


because the �xed summer minima forcing is even more favourable than the normal variable forcing
 the

oscillations are slightly more rapid and extreme�

In the winter then
 it appears that high nitrate�low phytoplankton�zooplankton stable equilibria ex�

ist
 whilst in the summer
 low nitrate�higher phytoplankton�zooplankton stable equilibria are found�

The oscillations observed in the normal simulations would then appear to be transient
 and reliant on

the high quantities of nitrate entrained during the deep winter mixing� Summer entrainment through

cross�thermocline mixing is unable to supply su�cient nitrate to sustain bloom�level phytoplankton

populations should summer conditions persist�

���



��� Examining a nitrate�unlimited case

The previous section found that the relatively high summer densities of phytoplankton and zooplankton

during normal simulations were supported by the entrainment of nitrate during deep winter mixing


and that a prolonged period of favourable growth conditions led to the exhaustion of this �reservoir�

of nitrate and the collapse of phytoplankton densities to much lower stable equilibria� This observation

suggests that if nitrate is unlimited �or supplied at a rate greater than or equal to its rate of depletion�


phytoplankton densities in favourable conditions may be �buoyed up� to higher densities which may

exhibit qualitatively di�erent dynamics�

In Chapter 
 several reduced models were introduced in which nitrate was modelled implicitly by replac�

ing it in equations by a parameter with a constant value� It was found that where nitrate concentrations

were not exhausted during a normal seasonal cycle �e�g� at OWS �India��
 these models were relatively

successful at emulating the full model�s behaviour�

In order to establish the validity of the suggestion that nitrate replete conditions may exhibit qualita�

tively di�erent behaviour
 model �c was examined in a similar manner to that previously described

for the full model� This model is identical to the full model with the single exception that nitrate is

modelled implicitly as already described�

As before
 the model was run with the forcing functions on until a consistent seasonal cycle was obtained

�which
 in the case of model �c at OWS �India�
 is almost identical to that of the full model�
 then at

various points in the annual cycle the forcing functions were �xed and the model behaviour followed�

Figure 	� shows the results of locking the forcing functions at the same times in the seasonal cycle as

was done previously for the full model� For comparative purposes
 row � again shows the results from a

forced simulation�

As was found with the full model
 locking the forcing functions at the winter mixed�layer depth max�

ima
 leads to the state variables converging on a low
 stable equilibrium� However
 when the forcing

functions are locked closer to the more favourable summer values
 the behaviour hinted at in the full

model simulations becomes much clearer�

When the forcing is �xed at day ��
 model �c behaves exactly the same as the full model until ap�

proximately day ��� By this point both models show the apparent convergence on an equilibrium at

high state values� Beyond this point nitrate becomes limiting in the full model
 and the trajectories of

the state variables converge on a lower stable equilibrium� However
 in model �c the state variables

��



0 200 400 600 800 1000
-600

-400

-200

0

200

Time (days)

M
ix

ed
-l

ay
er

 d
ep

th
 o

r 
Ir

ra
di

an
ce

Normal 

0 200 400 600 800 1000
0

0.5

1

1.5

Time (days)

C
on

ce
nt

ra
tio

n

0 200 400 600 800 1000
-600

-400

-200

0

200

Time (days)

M
ix

ed
-l

ay
er

 d
ep

th
 o

r 
Ir

ra
di

an
ce

Day 75 

0 200 400 600 800 1000
0

0.5

1

1.5

Time (days)

C
on

ce
nt

ra
tio

n

0 200 400 600 800 1000
-600

-400

-200

0

200

Time (days)

M
ix

ed
-l

ay
er

 d
ep

th
 o

r 
Ir

ra
di

an
ce

Day 136

0 200 400 600 800 1000
0

0.5

1

1.5

Time (days)

C
on

ce
nt

ra
tio

n

0 200 400 600 800 1000
-600

-400

-200

0

200

Time (days)

M
ix

ed
-l

ay
er

 d
ep

th
 o

r 
Ir

ra
di

an
ce

Day 197

0 200 400 600 800 1000
0

0.5

1

1.5

Time (days)

C
on

ce
nt

ra
tio

n

Figure 	�� Seasonal cycles of forcing functions �left � mixed�layer depth
 solid� average

daily irradiance
 dashed� and plankton �right � phytoplankton
 solid� zooplankton
 dashed�

for simulations of model �c in which the forcing functions were locked at the labelled points

in the annual cycle� Mixed�layer depth in metres
 irradiance in W m��
 concentrations in

mmol N m���
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continue to converge on a stable equilibrium at these comparatively high values� This con�rms the

suggestion that a high equilibrium exists and that falling nitrate in the full model prevents this from

being a stable equilibrium�

Furthermore
 when the forcing is �xed at the summer mixed�layer depth minima
 the transient
 oscilla�

tory behaviour of the forced simulations collapses not to a stable equilibrium
 but to a stable limit cycle�

This suggests that the oscillations observed in the summer months of full model runs are transients

towards an unstable �limit cycle�� This cycle is unstable again because falling nitrate concentrations

move the model to the low stable equilibrium�

���



��� Can the full model produce limit cycles�

The conclusion drawn in the previous section from the comparison of numerical solutions of the full

model with those of model �c
 is that depletion of nitrate in simulations of the full model prevents the

existence of the the high phytoplankton�high zooplankton stable equilibria and stable limit cycles found

in model �c�

Given this
 is it possible that these solutions become stable in the full model at di�erent parameter values�

The most obvious approach is to examine parameters which directly in�uence nitrate concentrations� If

nitrate depletion can be curtailed
 it is possible that these more �interesting� behaviours can be attained�

dNn

dt
� �J�t�M� P �Q��Nn� Nr�P �

�m � h��t��

M
�N� �Nn� �	���

Equation 	�� above shows the nitrate di�erential equation from the full model� The equation consists

of only two terms
 one for nitrate loss due its uptake by phytoplankton
 and a second for entrain�

ment�mixing gains�

The former term is unlikely to o�er any productive avenues for progress since any reduction in nitrate

loss to phytoplankton will reduce phytoplankton growth rates and prevent the rapid
 predator�prey

oscillations in question �as can be seen in the �xed forcing simulations which halt during the winter��

The latter term
 however
 presents two obvious routes for reducing nitrate depletion� By increasing the

cross�thermocline mixing rate �m�
 nitrate can be entrained from below the thermocline at a greater

rate� Secondly
 by increasing the subthermocline nitrate concentration �N�� itself
 more nitrate can be

entrained into the mixed layer�

����� Analysis

Ideally
 an analysis of the model equations would determine the stability of steady states of the model

and reveal regions of parameter space in which qualitatively di�erent behaviour occurs�

The local stability of the steady states of a model can be determined by constructing the Jacobian matrix

from the equations
 and then examining the eigenvalues of the resulting linearised equations about the

steady states� The Jacobian matrix of
 for instance
 a ZPN model with three di�erential equations would

take the following form �

A �

�
��������

�
�P

h
dP
dt

i
�
�Z

h
dP
dt

i
�
�N

h
dP
dt

i

�
�P

h
dZ
dt

i
�
�Z

h
dZ
dt

i
�
�N

h
dZ
dt

i

�
�P

h
dN
dt

i
�
�Z

h
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This matrix is then evaluated at a �xed point
 yielding the eigenvalues� When the real parts of all of the

eigenvalues are negative
 trajectories are attracted inwards from all directions and a stable equilibrium

state results� The magnitude of the di�erent eigenvalues will determine just how quickly a trajectory

will move towards this stable equilibrium along di�erent directions� By contrast
 when the steady state

has at least one eigenvalue with a positive real part this implies that the �xed point is unstable and

stable limit cycles are a possible outcome �although by no means the only one�� Note that eigenvalues

contain a real and an imaginary component� When all the imaginary components are zero �and all of

the real components are negative�
 then the stable equilbrium is a �node� and trajectories will converge

to it monotonically� However
 when the imaginary component of an eigenvalue becomes non�zero �this

necessarily happens to pairs of eigenvalues�
 a spiralling trajectory results� When all of the eigenvalues

have negative real parts and some have non�zero imaginary parts
 the stable equilibrium is a spiral sink


and trajectories spiral as they collapse towards it�

Real parts Imaginary parts Behaviour

All �ve All zero Stable �node�

All �ve Some non�zero Stable spiral sink

All zero � Neutrally stable

Some �ve � Unstable �limit cycles possible�

To determine the behaviour of neutrally stable systems �e�g� the Lotka�Volterra equations described in

Chapter ��
 higher order terms need to be considered�

The complexity of the full model �in particular the complex depth�integral of phytoplankton growth

rate
 J 
 and the minimum function in bacterial substrate uptake
 S� prevents such an analysis without

simpli�cation
 and numerical solutions were employed instead to explore the model�s behaviour� In the

following section
 the program written to explore parameter space and to classify the model behaviour

found is described�

����� Numerical approach

A preliminary �manual� exploration of the m and N� parameter space encountered both stable equilib�

ria and oscillatory behaviour� To explore parameter spaces more thoroughly
 a program was written to

automatically move across them and to categorise the behaviour found for di�erent parameter values�

Initial versions of the program attempted to distinguish di�erent dynamical behaviours in a crude fash�

ion� However
 through examination of the trajectories these versions produced
 more robust algorithms

were programmed to automatically classify behaviour�

As previously
 all numerical solutions were carried out with �xed forcing� Mixed�layer depth remained

���



unchanged through the entire duration of each run and the same daily cycle of irradiance was repeated

on every simulated day� All parameters
 other than the one�s� under study
 were set to the baseline

values from Fasham ������ The following procedure was followed by the program for each combination

of parameter values in the ranges examined �

�i� Parameter and state variable initialisation

At the start of each individual simulation the parameter�s� in question was assigned the next value

from the range to be explored� Ranges were speci�ed by their minimum and maximum extent


and the actual parameter values used in the simulations were evenly spaced across the range�

Since it is possible that multiple stable attractors may exist for a particular choice of parameter

values
 the initial conditions of the each of the state variables were assigned randomly� Should such

multiple attractors occur within a region of parameter space examined
 the results from solutions

of consecutive parameter values may be expected to be attracted di�erently depending on their

initial conditions� Such results would �unless the di�erent attractors reside very closely to one

another in state space� be very obvious from plots of the parameter space results� The range of

initial values assigned to each of the state variables fell with a uniform distribution between �����

mmol N m�� and the value of N� �for obvious reasons
 ordinarily the ranges of state variables

never exceed that of the subthermocline nitrate concentration during a simulation��

�ii� Initial transient phase

After parameter and state variable values were assigned
 the model was simulated for a period of

��� days to attempt to remove transient behaviour� The run was not monitored during this period�

�iii� Long�term monitoring phase

After the initial transient phase
 the run continued into a monitoring phase which was allowed to

persist for up to ����� days �� �� years� during which time the behaviour of the state variables

was followed by the program� This section sought to eliminate transient behaviour
 and to establish

whether a stable equilibrium or oscillatory behaviour was occurring�

Since solar�forcing retained its diel cycle
 model state variables exhibited a low amplitude diel

signal� The e�ects of this were ignored by sampling state variables constantly at midday of each

simulated day� At this time
 the values of each of the state variables were compared to that of

the previous midday� Where the values were found to be identical to � decimal places �machine

precision was still considerably greater than this�
 a counter was incremented by �� Where the

values were di�erent at the same precision
 the counter was reset to ��

A run was deemed to have reached a stable equilibrium state when the values of all of the state

variables remained constant �by the de�nition in the last paragraph� for �� days� At this point the

run in question was terminated
 the data from it recorded and a new run with a new parameter

value started�

���



�iv� Averaging phase

If a run did not reach a stable equilibrium during the long�term monitoring phase
 the midday

value of the phytoplankton state variable was recorded for ���� days and its maximum
 minimum

and mean over this period calculated�

�v� Oscillations phase

These calculations were then used in a �nal phase during which the trajectory of the phytoplankton

state variable was used to determine whether oscillations were occurring about the mean value�

Sampling again at midday
 a pair of switches in the program monitored the times when the phyto�

plankton population crossed the mean value which had been obtained for it in the previous phase�

One switch recorded the time when the phytoplankton population rose from below the mean to

above the mean
 the other monitored for the reverse and reset the �rst switch when it occurred�

Whenever the �rst switch was triggered
 the values of all of the state variables at the time of the

switch triggering
 and the values of the minima and maxima each state variable had recorded since

the last switch triggering were stored� These data allowed the calculation of the period of any

oscillations found
 as well as the �amplitude� of the oscillations in state variable phase space�

Conventionally
 the amplitude of a wave is the distance between its mean and either the maximum

or minimum value reached in one wavelength� Since the oscillations in this work were often

asymmetric about their mean
 here the term �amplitude� is used instead to describe the full

distance between the maximum and minimum of a given state variable during one orbit of the

limit cycle�

This phase ran for a period of ���� days� At the end of it
 the simulation was terminated and data

collected during it was examined�

�vi� Classi�cation

Runs which were not deemed to have reached a stable equilibrium during the long�termmonitoring

phase were found �through manual examinations of their trajectories� to fall into one of three

distinguishable categories �

� �Long�term transients�

� �Spiral sinks�

� �Stable limit cycles�

Long�term transients were those trajectories which were constantly rising or falling �increasingly

slowly with time� apparently towards a stable equilibrium� Since the trajectory of their phyto�

plankton population �and that of the other state variables� always moved in one direction
 they

recorded no oscillations during the oscillation phase�

Using the amplitudes of the oscillations recorded for each state variable whenever the oscillation

switch was triggered during the �nal simulation phase
 �spiral sinks� were identi�ed as those

���



trajectories which
 while oscillating around the phytoplankton mean
 were constantly contracting

in all seven state variables� Although possible that the trajectories labelled as �spiral sinks� were

actually converging onto stable limit cycles
 after the ����� days of the long�term transient phase


it was usual for the oscillation amplitudes of trajectories labelled spiral sinks to be considerably

smaller than the diel signal�

Again using the amplitudes of the oscillations recorded during the �nal phase
 stable limit cycles

were identi�ed as those oscillating trajectories which showed no constant reduction in the ampli�

tudes of the oscillations in the seven state variables� Although the algorithm used to establish

whether the amplitudes were constantly decreasing could in principle be �fooled� by trajectories

which sometimes increased their amplitudes despite a general trend for amplitude shrinkage
 no

trajectories classi�ed as stable limit cycles were found to show this pattern of behaviour �data

output by the program included that which would show such a pattern were it to exist��

While these three categories could be distinguished from the trajectories they recorded
 it is still

possible that had a particular run not been terminated
 the trajectory it was tracing could have

changed its behaviour as it approached an unseen attractor� Since only trajectories were used to

distinguish di�erent behaviours
 this possibility cannot be ruled out�

�vii� Data output

To safeguard against misclassi�cation of trajectories
 pertinent summary data from each simulation

was output� This included a time series of the midday values of each of the state variables for each

of the last ��� simulated days� Also output were the amplitudes recorded for each of the state

variables for each of the oscillations tracked by the program during the oscillation phase�

These data were perused later for anomalies through data handling and presentation software

�MATLAB�� Although no anomalies were found during runs of the most robust program
 the

possibility for errors in such work always exists�

While transient behaviour may be important in the seasonal dynamics of forced runs
 initial conditions

can play an important role in their duration� Therefore
 although the program could distinguish long�

term transients and spiral sinks
 only stable equilibrium and stable oscillatory behaviours were sought

and the duration of the long�term transient phase was often increased to allow trajectories time to

�settle down� and be classi�ed as stable equilibria�

All of the research described in the remainder of this chapter made use of this program�

���



��� Mixing rate and subthermocline nitrate

As stated previously
 the results of simple �xed forcing simulations of the full model and model �c

suggest two obvious parameters which may provides routes to stable oscillatory behaviour � the cross�

thermocline mixing rate
 m
 and the subthermocline nitrate concentration
 N��

����� OWS �India�

In the �rst instance
 a region of parameter space of both of these parameters was examined� The cross�

thermocline mixing rate
 m
 is assigned a wide range of values in the modelling literature� Fasham �����

used a low value of ���� m d�� to better �t the summer phytoplankton dynamics at Bermuda Station

�S�� Almost all of the models in the literature surveyed �see Chapter �� used values below ��� m d��


but values up to �� m d�� have also been used �Evans � Parslow
 ������ The values of subthermocline

nitrate
 N�
 used in the literature normally re�ect the geographical location the model is intended to

simulate� Strass � Woods ������ report mixed layer nitrate concentrations during winter ranging from

approximately � mmol N m�� at �� N
 to �	 mmol N m�� at ��� N� Since the mixed layer is normally

shallower when the majority of phytoplankton production occurs
 and since models normally assume

that most production is occurring in this shallower mixed layer
 the subthermocline nitrate parameter is

usually set to the concentration reached in the deeper mixed layer of the winter� Consequently
 latitudi�

nal di�erences in the annual cycles of thermal strati�cation and wind�mixing mean that the parameter

N� is usually assigned a value between � and �� mmol N m�� depending on the location in question�

Figure 	�	 shows the results of numerical solutions across a range of m and N�� The �rst three rows

of plots show surfaces of equilibrium concentrations �left� and limit cycle amplitudes �right� for phyto�

plankton
 zooplankton and nitrate respectively� The seventh plot shows the periods measured for the

limit cycles found
 and the eighth plot shows the pattern of limit cycle amplitude against period�

The �bulges� which can be seen on the phytoplankton and zooplankton equilibrium surfaces are caused

by the limit cycles which occur at those regions of parameter space� In these regions the plots actually

show the extent �the maximum and minimum concentrations which occur during a cycle� or envelope

of the limit cycles found �although not visible in these plots
 the �bulges� extend both upwards and

downwards � see later �gures�� The nitrate surface also has this �bulge�
 but because of the scale on the

plot
 it cannot easily be seen� The plots of limit cycle amplitude aim to show the extent of limit cycle

oscillations more clearly� Combinations of parameters which produce stable equilibria have amplitudes

of zero�

In the case of the plot of limit cycle periods
 parameter combinations which produce stable equilibria

have their periods set from � to � days for the purpose of clarity in the plot� The plot has also been
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Figure 	�	� The results of numerical solutions performed at OWS �India� on day ��� across a

range of cross�thermocline mixing rates �m� and subthermocline nitrate concentrations �N���

Mixing rates in m d��
 subthermocline nitrate concentrations in mmol N m��� Equilibrium

concentrations and limit cycle amplitudes in mmol N m��� Limit cycle periods in days�

Note that non�limit cycle regions are assigned periods of � days in the bottom two plots

for the purposes of graphical presentation�
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rotated anti�clockwise by ��� to more clearly present its most interesting surface� In subsequent plots

of limit cycle period
 the value assigned to regions of stable equilibria
 and the angle the plot is rotated

to
 are similarly adjusted to maximise the information presented�

The results show that a region of limit cycle behaviour exists for mixing rates between approximately

���� and ��� m d�� and for values of subthermocline nitrate greater than approximately � mmol N

m��� While mixing rates of this magnitude are not uncommon in the literature
 the minimum value of

subthermocline nitrate required for such behaviour falls considerably outside the range of deep nitrate

observed at OWS �India� or nearby latitudes �Strass � Woods
 ����� Fasham et al�
 �����

The amplitudes of the limit cycles were found to increase with rising N�
 while increases in m at �rst

increased amplitudes
 but then decreased them before limit cycle behaviour ceased at values above ���

m d��� This cessation is likely to be related to one of the �side�e�ects� of increased mixing� While

increasing subthermocline nitrate can only add nitrate to the mixed layer
 increased mixing adds nitrate

but also removes phytoplankton� Above a certain amount of mixing
 the phytoplankton gains from en�

hanced nitrate supply will be outweighed by the losses incurred from cells being mixed out of the mixed

layer�

Limit cycle periods ranged between ��� and �� days
 with the most signi�cant trend being decreasing

period with increasing m� The chlorophyll data collected at OWS �India� during ���� suggests oscilla�

tions with a period around �� days� This clearly contrasts with the shorter periods of the model cycles

found here� However
 as the periods found here are variable with parameter values
 it is still possible

that di�erent values of other parameters �excluding the parameters examined here
 there are around ��

other parameters� will produce cycles with longer periods� However
 the model periods found do agree

with several other model studies� In their analysis of the considerably simpler ZPN model of Steele �

Henderson ������
 Edwards � Brindley ������ found limit cycles with periods between approximately 

and � days� Oscillation periods within this range were also found by Popova et al� ������� McCauley

� Murdoch ������ reviewed algae and Daphnia data from both experimental and �eld environments�

Cyclic behaviour with periods ranging across ����	 �algae� and ���	� �Daphnia� days was commonly

found �although the work reviewed related exclusively to freshwater habitats��

Aside from the region of limit cycle behaviour
 the stable equilibria of phytoplankton and zooplankton

rise relatively sharply with increases in both m and N�� For the majority of the parameter space exam�

ined
 phytoplankton and zooplankton concentrations plateau to stable equilibria around ���	 and ����

mmol N m�� respectively� Nitrate stable equilibria mostly reached values slightly below the value of

N� for each given simulation� These results are expected since the phytoplankton are also limited by

irradiance
 so can only deplete nitrate at some maximum rate� When nitrate is supplied faster than

this rate �which it is across most of the parameter space examined� it cannot be depleted and tracks its

subthermocline concentration�
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Figure 	��� Sample time series of phytoplankton �solid� and zooplankton �dashed� for two

pairs of m and N� values� Baseline �left� m � ����
 N� � ��� and limit cycle �right� m �

���
 N� � �� values of parameters used� Concentrations in mmol N m���

Figure 	�� shows examples of stable equilibrium and limit cycle time series� Identical initial state variable

conditions were used in both examples� Although in both cases shown the long term behaviour of the

model is quickly approached �in the case of the baseline parameter values
 a stable equilibrium state

was judged here to have been reached after approximately ���� days�
 as parameter values approached

those which resulted in limit cycle behaviour
 the time taken by the program to judge a trajectory to

have reached its stable equilibrium increased sharply� This is entirely expected from bifurcation theory�

As a model�s behaviour moves from a locally stable equilibrium to an unstable one
 the real part of

at least one of the eigenvalues which describes the local stability will increase from a negative value

to a positive one� As it does so
 the time taken for a trajectory to converge to the stable equilibrium

increases
 since the value of the eigenvalue in question dictates the rate of convergence �in the state space

direction it represents�� A Hopf bifurcation occurs when the real part of the eigenvalue passes through

zero� Fortunately
 prohibitively long transient times �� ����� days� were encountered infrequently in

the work here �and generally in the simulations presented in this chapter��

����� Bermuda Station �S�

The results from model runs performed during the OWS �India� summer place a region of limit cycle

behaviour at values of m and N� quite far from their baseline values� Although simulations performed

at Bermuda Station �S� �unlike those at OWS �India�� show no evidence of limit cycle behaviour across

the seasonal cycle
 the irradiance�limitation of phytoplankton growth is considerably reduced �both by

greater surface irradiance and a shallower mixed layer� and the baseline maximumphytoplankton growth

rate is more than double that at OWS �India� � For these reasons
 a second series of runs across m�N�

parameter space was undertaken with �xed forcing from the Bermuda Station �S� summer� Forcing was

locked on the values from day ���
 the �rst day of the shallowest mixed layer depths in the summer�

Figure 	�� shows the results of these runs� Comparable plots to those already presented for results
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Figure 	��� The results of numerical solutions performed at Bermuda Station �S� on day

��� across a range of cross�thermocline mixing rates �m� and subthermocline nitrate con�

centrations �N��� Mixing rates in m d��
 subthermocline nitrate concentrations in mmol N

m��� Equilibrium concentrations and limit cycle amplitudes in mmol N m��� Limit cycle

periods in days� Note that non�limit cycle regions are assigned periods of �� days in the

bottom two plots for the purposes of graphical presentation�
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from OWS �India� are shown� Note that in the case of the plot of limit cycle periods
 locations of the

parameter space in which only stable equilibria were found are here assigned a period of �� days for the

purposes of clarity�

The pattern of limit cycle behaviour found is quite di�erent from that found under conditions during

an OWS �India� summer� The region of limit cycle behaviour is much larger
 and although at low m

the pattern of occurrence is similar to that at OWS �India�
 the region of limit cycles does not stop

above a certain value of m in the range examined �see also �gure 	���� This is not unexpected since

the potential for phytoplankton growth �and thus the growth term of the phytoplankton equation given

su�cient nutrient� is much higher at Bermuda Station �S� �i�e� higher irradiance
 shallower mixed layer


higher maximum phytoplankton growth rate�� Furthermore
 the minimum values of N� at which limit

cycles occur are considerably lower than those found at OWS �India�� With high m �� ���� m d���


limit cycles are found at subthermocline concentrations of nitrate as low as � mmol N m��� This value

is lower than the baseline value used for OWS �India��

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Limit cycles

OWS "India"

N0

Stable equilibria

m

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Bermuda Station "S"

N0

Limit cycles

Stable equilibria

m

Figure 	��� Extent of limit cycle regions �shaded grey� for �xed forcing simulations at both

stations on days ��� and ��� respectively� OWS �India� baseline values � m � ���� m d��


N� � �� mmol N m��� Bermuda Station �S� baseline values � m � ���� m d��
 N� � �

mmol N m���

The limit cycles found also di�er from those found at OWS �India� in their size and duration� Their

amplitudes are up to four times as great and their periods are around � to �� days shorter �ranging from

approximately ���� to ���� days in duration�� The pattern of amplitudes re�ects the distribution of limit

cycles in the parameter space examined
 and there is no rise�then�fall of amplitude with increasing m�

And unlike OWS �India�
 where increasing m led to a decrease in the period of the limit cycles found


increasing m here leads to an increase�

These di�erences are also re�ected in the patterns of limit cycle amplitudes against their periods at

both stations� While both stations are merely located at di�erent positions in the continuum of multi�

parameter space
 the di�erences are quite stark� At OWS �India� the relationship
 while positive �i�e�

limit cycles of longer duration tend to have a larger amplitude�
 is comparatively loose
 with limit cycles

���



of di�erent periods showing a similar amplitude� The limit cycles at Bermuda Station �S� by contrast

show a markedly stronger positive relationship between amplitude and period�

One feature the limit cycle regions at both locations share is their ranking compartments by limit cycle

amplitude� In both cases
 nitrate amplitudes are greater than zooplankton ones
 and zooplankton ones

are greater than phytoplankton ones� Commonly in modelled plankton oscillations �e�g� Steele � Hen�

derson
 ����� Edwards � Brindley
 ����� the order is instead N � P � Z
 since transfer ine�ciencies

at each level bring less to each consumer than they take from the consumed� This is obscured in this

model by the multiple prey compartments the zooplankton graze�

As already pointed out
 the periods of the oscillatory behaviours found under Bermuda Station �S� con�

ditions were considerably shorter than those found for OWS �India� forcing conditions� The di�erences

between these two situations relate to the irradiance�limitation of phytoplankton growth� At Bermuda

Station �S�
 growth is enhanced by greater irradiance �the station is located at a lower latitude�
 a shal�

lower mixed layer �phytoplankton growth is integrated across a narrower water column�
 and a higher

maximum speci�c growth rate for phytoplankton �the station has a higher mixed layer temperature��

Since these three factors result in a higher irradiance�limited phytoplankton growth rate
 an additional

series of numerical solutions across a range of Vp
 the maximum speci�c phytoplankton growth rate
 was

performed� This aimed to establish that the ranges of limit cycle periodicity observed between the two

locations could be bridged by phytoplankton growth rate�

The simulations were performed
 as previously
 with �xed forcing for OWS �India� during the height of

summer �day ����� Baseline values were used for all parameters except m and N�
 which were set to

values which produced limit cycle behaviour �m � ���
 N� � ��� The value of Vp was ranged between

��� to 	�� d���

Figure 	�� shows the limit cycle periods found for the range of Vp across which they were encountered�

For the particular forcing and parameter values chosen
 no limit cycles were found for values of Vp

below ��� d��� Above this value limit cycles were encountered all of the way to the top of the Vp range

examined� The period of oscillations found can be seen to fall sharply with faster growth rates� At

the OWS �India� baseline value ����� d���
 the period is approximately ��� days �as was found in the

earlier simulations�� By the Bermuda Station �S� baseline value ���� d���
 the period of the oscillations

has fallen to around �� days
 and by the end of the range examined
 the oscillation periods have fallen

to values below �� days �these periods are still slightly higher than those recorded during the earlier

Bermuda Station �S� results because the irradiance and mixed layer depth conditions are still slightly

less favourable at OWS �India� forcing conditions��
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Figure 	��� Limit cycle period versus phytoplankton maximumgrowth rate at OWS �India�

on day ���� Circles mark values of Vp used� Values of Vp to the left of the solid vertical

line did not produce oscillatory behaviour� The dashed vertical line at the right of the plot

indicates that values of Vp above this value were not examined �i�e� limit cycle behaviour

may persist beyond this value�� Maximum phytoplankton growth rate in d��� Limit cycle

periods in days�

����� Conclusions

In this section
 limit cycle behaviour was sought across a region of m�N� parameter space� While only

stable equilibria were found in the area around baseline values of these parameters �both at OWS �India�

and Bermuda Station �S��
 oscillatory behaviour was found at more extreme values� Although these

values were extreme for both stations
 they do not fall outside the ranges of both parameters used in the

modelling literature� At Bermuda Station �S� for instance
 limit cycle behaviour was found in the region

m � ����
 N� � ���� However
 such mixing values are still extreme and it is questionable whether the

concentration of nitrate just below the seasonal thermocline �here parameterised by the constant N��

would remain at such a high value in the face of such intense mixing� The resolution of problems such

as this one will require the use of more realistic or explicit water column models �e�g� the Kraus�Turner

turbulent kinetic energy model or the Mellor�Yamada turbulence closure model� see Archer
 ����
 for a

comprehensive introduction to models of upper ocean physics��

Since both parameters are directly involved in the supply of nitrate to the mixed layer
 the occurrence

of limit cycles with higher values of both is analogous to a result found by Rosenzweig ������� His work

on simpler ecological models found a �paradox of enrichment�
 where inputs to an ecological system �in

this case
 nitrate entrainment� caused instability in the system instead of the na !vely expected increases

in productivity�
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��	 Bifurcations in other parameter ranges

In the previous section
 the long�term behaviour of the full model was examined across a range of m�N�

parameter space� While limit cycle behaviour was found within the range of these parameters used

within the modelling literature
 the values were extreme and questionable �i�e� they push at the bound�

aries of the assumptions made by such a single layer model�� Across most of the plausible parameter

space
 only stable equilibria were found�

As already stated
 the variability of certain parameters
 like N�
 usually re�ects physical or geographical

in�uences� However
 as the wide range of parameter values �see table ���� indicates
 most
 if not all
 other

parameters also exhibit variability in their values� Again
 some of this variability may be associated with

features of the local physical environment� However
 this variability may also be attributed to uncer�

tainties in data collection
 lack of data itself
 or variability introduced by the biological systems studied

�e�g� di�erent species compositions will show di�erent composite responses to nutrients or to preda�

tors� similar compositions may show di�erent responses where their histories are di�erent� apparently

similar compositions may behave di�erently due to the presence of pathogens which may go undetected��

Therefore
 to explore the full model�s behaviour across the ranges of parameter variability
 a series of

runs were performed
 one for each parameter� Each parameter was examined over a range which included

the maximum and minimum listed in table ���� Where groups of parameters shared a common function

�e�g� half�saturation constants
 maximum mortality rates
 et cetera� they were examined over identical

ranges� As previously
 the full model was simulated with with �xed forcing �OWS �India�
 day �����

Runs were initially performed with all parameters
 bar the one in question
 at their baseline values�

They were also performed with a cross�thermocline mixing rate of ��� m d�� �a value within the range

that was closest to limit cycle activity in previous OWS �India� runs�� Both sets produced results which

were very similar qualitatively �although unsurprisingly di�erent quantitatively�� However
 some of the

numerical solutions with higher mixing rates also generated plausible limit cycles
 so only the results

from this latter series are shown and discussed here�

Figures 	�� to 	�� show the phytoplankton
 zooplankton and nitrate equilibria found across ranges of

each of the model parameters� The cloudiness index
 C
 was excluded because it does not have a contin�

uous range� Figures 	��	 and 	��� show the equilibria of selected parameters for bacteria and detritus

respectively� In the case of most parameters
 these two compartments show behaviour qualitatively very

similar to the phytoplankton compartment� These latter graphs show the bacterial or detrital equilibria

where they di�er markedly from those of the phytoplankton compartment�

In each plot shown
 a solid line marks a region of stable equilibria across the range of that parameter
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Figure 	��� Phytoplankton
 zooplankton and nitrate equilibria across ranges of parameters

a
 �
 kw
 kc and Vp �see text for further details��
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value� When dotted lines are shown oscillatory behaviour occurs in the region marked� The extent of the

gap between the lines marks the amplitude of the oscillations� A dashed vertical line marks the baseline

value of the parameter in question� Note that a constant vertical scale for each compartment is used on

each of the plots� The units used on each plot are those listed in table ����

Parameters a �air�water albedo� and � �PAR fraction� relate to physical constants which are not likely

to vary signi�cantly� Both directly a�ect the amount of irradiance available to phytoplankton� Conse�

quently
 increases in the former �more light re�ected at the air�sea interface� and decreases in the latter

�incoming irradiance shifted to less photosynthetically active parts of the electromagnetic spectrum� both

lead to decreased phytoplankton concentrations
 and consequently lower zooplankton concentrations and

higher nitrate concentrations� Shifts in the reverse direction produce the reverse e�ects� In both cases


the baseline values of the parameters place the phytoplankton equilibria in relatively �at plateau regions�

The attenuation coe�cient
 kw
 controls the absorption and re�ection of light as it descends the water

column� Similarly to a
 increases in kw decrease the amount of irradiance available to phytoplankton�

However
 as can be clearly seen on the plot
 over the literature range of kw ���� � ���� m���
 the

equilibria shift much more sharply� Since kw can
 in principle
 be in�uenced by biological activity� �e�g�

by the coccoliths of prymnesiophyte algae�
 this is a signi�cant parameter�

The self�shading coe�cient
 kc
 acts similarly to kw but its e�ects on downwelling irradiance are de�

pendent on the concentration of phytoplankton� For the equilibrium concentrations of phytoplankton

found
 the e�ects of increasing or decreasing its value are very similar to those of kw but slightly less

severe� The reported range for the parameter ���� � ���� m� �mmol N���� is also narrower�

The e�ects of varying the maximum phytoplankton growth rate
 Vp are very similar to those with ��

Decreasing the value lowers both phytoplankton and zooplankton equilibria
 but raises those of nitrate�

Increases only slightly produce the reverse e�ects� Also similarly to �
 the baseline value of Vp at OWS

�India� puts the equilibrium near the summit of a plateau� Although earlier work explored oscillatory

behaviour across a range of Vp
 there was no evidence of such behaviour here�

The initial slope of the photosynthesis�irradiance �P�I� curve
 �
 again produces very similar curves of

equilibria to Vp and �� Also again
 while decreases in its value decrease the phytoplankton and zoo�

plankton equilibria and increase the nitrate equilibria
 increases in its value only slightly reverse these

trends
 since the baseline value again places the baseline equilibria near the summit of a plateau�

The fraction of phytoplankton photosynthate which is used for growth is controlled by the exudation

�The distinction between the ostensibly abiotic kw � and the biotic kc� is blurred when non�living or formerly�living

organic material is considered� Garver et al� ����	
 draw attention to the signi�cant role of such material in submarine

absorption of radiation�

���
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fraction parameter
 �� Increases in its value lead to an almost linear decline in phytoplankton equilibria�

At a value of �
 the phytoplankton are incapable of growth and their population entirely extinguished�

The zooplankton equilibria
 while decreasing with rising �
 do so at a lower rate since bacterial equi�

libria rise with increasing � �exudation produces DON
 a growth substrate for bacteria in the model��

Although the fractions used in the modelling literature only range up to ����
 �eld estimates range up

to ���� �Moloney � Field
 ������

No directly comparable literature estimates were found for the ammonium inhibition parameter
 	
 so an

arbitrary range was chosen to examine it over� Although the phytoplankton equilibria fell only slightly

as ammonium became more inhibiting
 the zooplankton concentration almost halved
 and the nitrate

concentration rose more than �ve�fold� However
 since no range was known for this parameter
 the

signi�cance of these results is unclear�

Unexpectedly
 the phytoplankton half�saturation constant for nitrate uptake
 k�
 produced a series of

limit cycles at the extreme low end of the range of values examined� As k� was reduced from �����

to ����� mmol N m��
 a series of limit cycles �all with a period between � and � days� see Figure

	���� were found� They were unexpected since the reduction of k� from its baseline value towards the

literature minimum actually reduced the equilibrium concentrations of nitrate� The values at which the

limit cycles occur are not as low as that used by Moloney � Field ������ for their smallest phytoplank�

ton class �which are actually bacterioplankton�
 but they do fall at the low end of the range found by

Harrison
 Harris � Irwin ������ during their survey in the North Atlantic open ocean�

While the behaviours of the stable equilibria across the range of the ammoniumhalf�saturation constant


k�
 are somewhat similar to those across the range of its sister parameter k�
 no limit cycle behaviour was

found� Across the literature range of k� ������ ��� mmol N m���
 the phytoplankton and zooplankton

equilibria rise only slightly
 but the nitrate equilibria more than halve� The shape of the latter curve of

equilibria within this range is di�erent from that of parameter k�� That parameter traces a hyperbolic

curve
 tending towards zero nitrate concentration
 while the equilibria produced by k� trace a sigmoid

shape
 tending toward a positive non�zero equilibrium at k� � ��

The half�saturation constant of zooplankton grazing
 k�
 traces an interestingly non�linear series of equi�

libria� Below its baseline value �also the lowest value obtained from the literature�
 both phytoplankton

and zooplankton concentrations rise with increasing k� �and decreasing grazing ability on the part of the

zooplankton�� This is matched by a sharp decrease in the equilibrium concentrations of nitrate� How�

ever
 almost straight after the baseline value
 the zooplankton equilibrium concentrations cease rising

and begin to fall as the zooplankton grazing abilities continue to decline� The phytoplankton equilibria

continue to rise
 and the nitrate equilibria to fall however�

The e�ect on the phytoplankton
 zooplankton and nitrate equilibria across the range of bacterial uptake

��
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half�saturation constant
 k�
 examined was found to be almost negligible� Perhaps surprisingly
 the same

was found also for the bacterial equilibria� Over the range examined
 the bacterial equilibria changed

by less than �"�

The half�saturation constant of phytoplankton mortality
 k�
 produced a similarly invariable series of

equilibria across the range examined�

By contrast
 its zooplankton equivalent
 k�
 was found to in�uence equilibria much more strongly across

its range ���� � ��� mmol N m��� the range shown is truncated to match those of the other half�

saturation constants�� The largest changes in the equilibria were additionally found around the baseline

value used by Fasham ������ The nitrate equilibria were found to be particularly dependent on k��

The phytoplankton natural mortality parameter
 
�
 behaved similarly to several other parameters �e�g�

kw
 kc�� Although a phytoplankton parameter
 across its literature range
 
� most a�ected zooplankton

and nitrate equilibria� Unexpectedly
 the nitrate equilibria initially fell with increasing phytoplankton

mortality before rising
 as would be expected from reduced phytoplankton concentrations� This anomaly

coincides with the rise in the detrital equilibria in the same region of 
� space �phytoplankton natural

mortality produces detrital material�
 and may be an e�ect of shifting zooplankton food preferences �i�e�

preference for detritus increases
 leading to an easing of the grazing pressure on phytoplankton and a

resultant increase in nitrate uptake��

Varying the zooplankton maximum mortality rate
 
�
 produced e�ects on the equilibria found which

were similar �but much more extreme� to those produced by the zooplankton parameter k�� Increasing


� from its literature minimum produced a sharp sigmoidal trend in the phytoplankton equilibria
 and

an even sharper decline in the nitrate equilibria� Below its baseline value
 the zooplankton equilibria

rose with the increasing phytoplankton �despite the increasing predation�� However
 at a value of ���

d��
 this trend abruptly changed
 with the equilibria falling
 most sharply at values close to the baseline�

Of the other state variables
 both the bacteria and detritus equilibria increase with 
� at low values


but both plateau �and the bacteria equilibria actually fall away� above certain values� In the case of

bacteria
 this decline is caused by a reduction in the availability of ammonium �which they utilise as

a growth substrate�
 which itself is caused by a reduction in the zooplankton equilibrium biomass� In

the case of detritus
 its major inputs normally come from the feeding ine�ciency of zooplankton
 and

as zooplankton equilibrium populations fall
 so do these inputs �however
 this is partially o�set by a

similarly falling grazing pressure on detritus�� The signi�cance of this parameter is further examined in

a later section of this chapter�

Unlike the two previous �mortality� rates
 
� and 
� �respectively the bacterial excretion and detrital

breakdown rates� are in functional forms which make them constant rates �
� and 
� are in hyperbolic

forms�� Both also share the occurrence of limit cycle behaviour �in a later section in which 
� is used in

���
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Figure 	��	� Bacterial equilibria for selected parameters�

a similar constant form
 the model is also able to exhibit such behaviour�� In the case of 
�
 oscillatory

behaviour only occurs over a small region of parameter space
 already at very high values outside that of

the literature range� The oscillations found have a period of around �� days �see Figure 	����
 and occur

across a stretch of parameter space ���	� � 
� � ���� just before the bacterial population goes extinct

�
� � ������ Their extinction can be seen in the equilibria of phytoplankton
 zooplankton and nitrate


where they all abruptly become constant� Across the region of parameter space used in the literature


the phytoplankton equilibria mostly decrease slightly� The zooplankton equilibria also decrease with

rising 
� �bacteria being one of their prey�� The nitrate equilibria rise relatively signi�cantly
 due both

to decreasing phytoplankton �more zooplankton attention�
 and also to increasing ammonium �which

the bacteria excrete��

In contrast with 
�
 oscillatory behaviour is found across a much wider range of 
�� The limit cycles

found occupy almost the whole region of parameter space examined �
� � ��� d��� and exhibit periods

ranging from 	�� days up to almost ��� days� However
 although this behaviour begins at a relatively

low value
 Fasham
 Ducklow � McKelvie ������ citing Jones � Henderson
 ����� report a maximum for

���
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Figure 	���� Detritus equilibria for selected parameters�


� of ���� d���

The zooplankton assimilation e�ciency parameter
 �
 produces a number of unexpected results� The

phytoplankton and nitrate equilibria behave as one might expect across the full range from total in�

e�ciency �� � �� to total e�ciency �� � ��� At low e�ciency
 the phytoplankton equilibria are very

high
 and the nitrate equilibria very low� Increasing e�ciency reverses this position� The other two

prey compartments
 bacteria and detritus
 both have their maximum equilibrium points lying inside

this range� The zooplankton equilibria
 unsurprisingly
 rise with increasing e�ciency� However
 the

maximum equilibrium falls before total e�ciency �� � �����
 very close in fact to the baseline value�

Similarly
 the zooplankton feeding preference for phytoplankton
 p� �p� and p� are automatically set

to values of �� � p�����
 produces some unexpected results� Although
 of the three zooplankton prey

species
 phytoplankton normally occur at the highest density
 the zooplankton reach their stable equi�

librium maximum at a relatively low value �p� � ������ Also
 despite sharing a common response to

increasing p� �i�e� being preferred by zooplankton less�
 the bacteria and detritus equilibria show equi�

librium trends in opposite directions� As p� increases
 the bacteria equilibria rise
 while those of the

detritus compartment fall� Additionally
 at high values of preference for phytoplankton �p� � �����
 limit

cycle behaviour is encountered� Both the amplitude and period of this behaviour increase with p�� The

heterogeneity of the organisms which make up the zooplankton compartment makes choosing a value

for p� di�cult
 and consequently the parameter was used originally to �ne�tune the behaviour of the

full model �Fasham
 Ducklow � McKelvie
 ������ As such
 it is possible that the oscillatory behaviour

encountered may occur at reasonable values for this parameter�

���
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�
 p� and V � Circles mark parameter values where numerical solutions were obtained�

Solid vertical lines mark values above or below which runs were performed but only stable

equilibria found� Dashed vertical lines mark values beyond which runs were not performed�

Limit cycle activity may still occur beyond these values however� Note that on each plot

the vertical scale covers a � day range�

The behaviour of the stable equilibria across the examined range of zooplankton maximum ingestion

rate
 g
 is similar to that produced by �� At low values
 the phytoplankton equilibria are high
 while the

nitrate equilibria are low� As g increases
 the phytoplankton equilibria fall and the nitrate equilibria rise�

Again the zooplankton equilibria reach a maximumat an intermediate value across the range
 and again

that value almost coincides with the baseline value chosen by Fasham ������ The bacteria equilibria

also reach a maximum at an intermediate value �g � ������

Regeneration of zooplankton losses is governed by two terms
 � and �
 which respectively are the ratios

of the losses returned as ammonium and as DON� In the examination of them here
 they were kept at

a constant ratio to one another ���� of ��� and the value of their sum was ranged from total loss from

the mixed layer ��� � � �� to total regeneration in the mixed layer ��� � � ��� Models in the literature

use values across the full range examined here� The stable equilibria of all � state variables rose with

increasing regeneration
 but the magnitude of the change in equilibria di�ered between state variables

�the ammonium equilibria increased more than ���fold across the range
 whereas the DON equilibria

only managed to double��

Similarly to its partnered half�saturation constant
 k�
 the maximum uptake rate of bacteria
 Vb
 was

���



found to produce only very slight changes in stable equilibria of all of the state variables across its liter�

ature range� At low values �Vb � ���� d��� below the literature minimum�
 the stable equilibria of the

bacteria fell signi�cantly �with similar decreases in most other state variables
 although DON equilibria

increased markedly�
 and below ���� d�� the bacteria compartment went extinct� However
 across the

majority of its range examined �and the entire region encompassed by the literature� Vb produced almost

no change in the values of the model state variables�

Unlike several other bacteria parameters
 the ammonium�DON uptake ratio
 
 changed stable equilib�

ria across the range examined� As its value was increased �and the bacteria were able to uptake more

ammonium per unit DON�
 the bacteria stable equilibria rose
 at the expense of the phytoplankton

stable equilibria which fell as more of the available ammonium was utilised by bacteria� The increasing

bacteria populations supported a greater zooplankton population
 with their stable equilibria also rising�

However
 above  � ��
 no further rises in the bacteria equilibria occurred and the equilibria of all of the

state variables remained constant� Unfortunately
 no estimates for this parameter were found �Fasham


Ducklow � McKelvie
 ����
 examined the parameter at values double and a half that of the baseline�


so the signi�cance of these results is unclear�

Examination of a range of the parameter 
� found that oscillatory behaviour occurred as the rate of

detrital breakdown rose �and the value of the detrital stable equilibria fell�� By contrast
 when a range

of detrital sinking velocities
 V 
 was examined
 oscillatory behaviour was found to occur as the rate

decreased �and detrital stable equilibria rose�� For values � ��� m d��
 limit cycle behaviour was found�

These cycles were found to increase in period as the rate of sinking was slowed� The range over which the

cycles occurred overlapped with the literature range
 and fell close to that estimated by Fasham �����

from measurements of the sinking �ux� While the stable equilibria of all the other state variables rose

with decreasing V 
 the equilibria of the phytoplankton population were found to remain fairly constant

until oscillatory behaviour occurred�

��	�� Conclusions

This section aimed to uncover bifurcations in the ranges of other parameters
 and to determine whether

any oscillatory behaviour so produced occurred within the parameter ranges reported in the literature�

Five of the parameters examined were found to produce oscillatory behaviour in the ranges across which

they were examined� These were the nitrate uptake half�saturation constant �k��
 the bacterial excretion

rate �
��
 the detrital breakdown rate �
��
 the zooplankton preference for phytoplankton �p�� and the

detrital sinking velocity �V �� The region of oscillatory behaviour of k�
 while not outside the literature

range
 was at the low extreme of values reported �Harrison
 Harris � Irwin
 ������ Both 
� and 
� were

found to only produce limit cycles in regions outside those reported in the literature �in the case of 
�


this region was only slightly beyond that reported�� The parameter p� a�ects the feeding preferences of

the zooplankton for their three food species� Since most other plankton models do not include multiple

���



prey for their zooplankton
 and since the formulation of the zooplankton compartment in Fasham �����

attempts to mimic the behaviour of a changing zooplankton species composition �rather than emulate

a particular zooplankton species�
 it is di�cult for either the modelling or experimental literature to

provide a reasonable range for p�� So although oscillatory behaviour occurs
 it is unclear whether it

does so at plausible values� However
 the range of detrital sinking velocities examined contains a region

of limit cycle behaviour within that of the modelling literature
 and within that estimated by Fasham

����� from a regression of total particulate material and total sinking �ux�

Note that in this work
 only one dimensional transects through parameter space have been used to

look for limit cycle behaviour� Using a bifurcational region of the zooplankton mortality parameter �d�


Edwards � Brindley ������ examined the movement of this region as each of the other model parame�

ters was moved across a range from the literature� This e�ectively examined two dimensional planes of

parameter space for the bifurcation in question� Ideally any searches for qualitative changes in model

behaviour would occur across the full parameter space� However
 for models with as many parameters

as these models this is utterly impractical� The Hopf bifurcations found with the �ve parameters here

are only those found for baseline values of the other parameters� At di�erent parameters values
 other

model parameters will contain Hopf bifurcations within their literature range�

Aside from the oscillatory behaviour found
 several other interesting points arose from observations of

the equilibria detected� Curiously
 the baseline values of four of the six zooplankton parameters �k�



�
 � and g� all fell very close to the values which produced the highest zooplankton stable equilibria

for those parameters� Another unexpected result came with the insensitivity of the equilibria of all

the model compartments to the bacterial growth parameters
 k� and Vb� In both cases
 the equilibria

found
 even for the bacteria themselves
 varied only slightly across parameter ranges examined� This is

surprising because bacterial production �growth� constitutes a major ecological �ow �see the results in

Chapter ��

���



��
 E�ects of a reduced detrital sinking rate

The previous section established that
 in addition to m and N�
 �ve other model parameters produced

limit cycles while baseline values of the other parameters were used �except m
 which was set to ���

m d���� Of these
 only really the detrital sinking velocity
 V 
 produced limit cycles well within its

literature range �and within the range used by both Fasham
 Ducklow � McKelvie
 ����
 and Fasham


���
 for ��ne�tuning��� Since the original exploration of m�N� parameter space found limit cycles at

only the extremes of the reasonable range for those parameters
 another exploration of m�N� space was

undertaken to establish the e�ect of a reduced detrital sinking velocity on the region of limit cycles�
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Figure 	���� The numerical solutions produced from runs performed at OWS �India� on

day ��� across a range of cross�thermocline mixing rates �m� and subthermocline nitrate

concentrations �N��� Detrital sinking velocity set to � m d��� Mixing rates in m d��


subthermocline nitrate concentrations in mmol N m��� Equilibrium concentrations and

limit cycle amplitudes in mmol N m��� Limit cycle periods in days�

For this analysis
 m�N� space was explored with all the other model parameters at their baseline values

except for V 
 which was set to � m d�� �the low value used by Fasham
 ���� the baseline value is �� m

d���� Model runs were performed again with OWS �India� forcing from day ���
 and Bermuda Station

�S� forcing from day ����
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Figure 	���� The numerical solutions produced from runs performed at Bermuda Station

�S� on day ��� across a range of cross�thermocline mixing rates �m� and subthermocline

nitrate concentrations �N��� Detrital sinking velocity set to � m d��� Mixing rates in m

d��
 subthermocline nitrate concentrations in mmol N m��� Equilibrium concentrations

and limit cycle amplitudes in mmol N m��� Limit cycle periods in days�

Figures 	��� and 	��� show the results obtained from the OWS �India� and Bermuda Station �S� runs

respectively� Since
 in both cases
 the zooplankton and nitrate results followed the phytoplankton ones

in the same manner as before
 only the equilibria and amplitudes from the phytoplankton compartment

are shown� The limit cycle periods
 and the relationships between limit cycle period and phytoplankton

amplitude are also shown� Note that the range of m across which results are shown is half that of the

previous graphs �the range of m was explored up to values of ���� m d����

The results from both stations show a marked increase in the size of the region across which limit cycles

were found� At OWS �India�
 at mixing rates as low as ���� m d��
 limit cycle behaviour was found

at values of N� � its baseline value� At Bermuda Station �S�
 limit cycles were still not found at its

baseline N� value
 but they found over an increased region �although not as increased as that at OWS

�India��� While previously limit cycles could only be found with mixing rates of ���� m d��
 with the

reduced detrital sinking velocity
 they could be found at values as low as ���� m d�� �see also �gure 	�����

Similarly to the solutions found at OWS �India� for higher V 
 the amplitudes of the cycles increase here

with m at �rst
 then fall o� after reaching a certain value �� ���	 m d��� by which time the maximum

��	
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Figure 	���� Extent of limit cycle regions �shaded grey� for �xed forcing runs at both stations

on days ��� and ��� respectively�

amplitudes found are almost double those found for higher V �� However
 across the range of m exam�

ined
 limit cycle behaviour did not cease as it had previously with increasing m� Also in common with

those earlier solutions
 the period of the cycles was found to mostly decrease with rising m� Noticeably


all of the cycles found here are of longer period �the lowest found here was just below � days
 while the

highest found at higher V was below 	 days� than those found in at higher V �

Bermuda Station �S� results show similar patterns of period and amplitude across m�N� space as those

found previously� Both increase with m and produce a similar
 almost linear
 relationship with one

another across m�N� space� In comparison with the earlier work at higher V 
 the range of periods found

�like that at OWS �India�� is shifted upwards to longer periods� However
 the ranges of limit cycles

period found at both values of V mostly overlap �unlike that at OWS �India���

Overall
 both sets of results increase the range of m and N� over which limit cycle behaviour is found�

More importantly
 at least for OWS �India�
 a reduced detrital sinking velocity brings limit cycle be�

haviour inside a more reasonable range of m and N�� This makes the possibility that modelled limit

cycles may indeed be features which could be searched for in real world data more likely�

���



��� Seasonal forcing

Earlier sections have shown that stable limit cycle behaviour can occur across regions of parameter space

for the summer forcing conditions found at OWS �India� and Bermuda Station �S�� Although no limit

cycles were found at Bermuda Station �S� within a reasonable range of N�
 at OWS �India� �with

manipulation of the parameters m and V � such behaviour was found at values of N� below the baseline

value� In this section
 the full range of seasonal forcing is explored to determine the fraction of the year

during which limit cycle behaviour occurs given these manipulations�

Two sets of runs were performed to answer this question� Both were performed at OWS �India�
 and

both determined the equilibria produced by �xing the forcing regime on each day of the year� The �rst

set of runs used baseline values for all model parameters
 the latter set repeated this procedure
 but used

values of the cross�thermocline mixing rate
 m
 and the detrital sinking velocity
 V 
 which produced

limit cycle behaviour �m � ��� m d��� V � ��� m d���� The results from these runs were compared

with normal dynamic solutions using these parameter regimes�
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Figure 	���� Normal dynamic forcing solution �top row� and daily �xed forcing equilib�

ria �bottom row� for OWS �India�� Baseline parameter values used� Concentrations and

equilibria in mmol N m���

Figures 	��� and 	��� show the results from these runs� In both cases
 the top row of plots shows the

normal
 forced solutions for the phytoplankton
 zooplankton and nitrate compartments� The bottom

row of plots shows the equilibria for these compartments found when forcing is �xed on each day of the
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(ii) Daily fixed forcing equilibria
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Figure 	���� Normal dynamic forcing solution �top row� and daily �xed forcing equilibria

�bottom row� for OWS �India�� High cross�thermocline mixing rates �m � ��� m d���

and low detrital sinking velocities �V � ��� m d��� used� Concentrations and equilibria in

mmol N m���

year� The plots share the same vertical scale to ease comparison�

As expected from the results presented for the full model at the beginning of this chapter
 there are

di�erences between the forced
 dynamic solutions and the �xed forcing equilibria� These di�erences are

most obvious in the case of the runs performed at baseline parameter values� The nitrate equilibria found

are much lower across most of the year �from the early spring to the late autumn� than their dynamically

forced equivalents� Consequently the concentrations of phytoplankton and zooplankton supported are

also much lower� Although the nitrate equilibria in the second set of runs are also mostly lower than

their equivalents in normally forced solutions
 they never reach particularly limiting concentrations� The

phytoplankton and zooplankton equilibria then fall at values much closer to those observed during the

dynamic solutions�

More importantly though
 while in the former set of runs only stable equilibria were found
 in the latter

set
 limit cycle behaviour occurs during the summer between days ��� and ��� �inclusively�� The cycles

found varied in amplitude �reaching a maximumamplitude on day ���� and period �reaching a minimum

on day ����
 showing trends which reversed around the centre of the limit cycle region� These results

support the suggestion made earlier that seasonal forcing may move the model equilibria from a region

of stable �xed points to one of stable limit cycles�

���



�� Functional forms of higher predation

Although the results so far have found oscillatory behaviour occurring in regions of parameter space

associated with nitrate supply to the mixed layer �in agreement with Steele � Henderson
 ����
 and

Popova et al�
 �����
 Edwards � Brindley ������ and Steele � Henderson ������ have examined the

occurrence of such behaviour in relation to losses of the zooplankton to higher predation� Edwards �

Brindley ������ found that the rate of this process acted as a bifurcation parameter for their modelled

ZPN system
 while Steele � Henderson ������ found that di�erent forms of the loss term had di�erent

consequences for system behaviour�
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Figure 	���� Zooplankton loss rate �d��� versus zooplankton concentration �mmol m���

for four functional forms of higher predation� The forms shown are constant �solid�
 linear

�dashed�
 hyperbolic �dotted� and sigmoid �dot�dash�� The loss rate
 

 in each case is ����

d��� For the hyperbolic and sigmoid cases
 the half�saturation constant is ��� mmol N m���

The full Fasham ����� model makes use of a hyperbolic
 or type II
 response curve to determine the loss

rate of zooplankton� Edwards � Brindley ������ and Steele � Henderson ������ observed limit cycle

behaviour in their ZPN models with linear and constant responses respectively� Figure 	��� shows the

shape of these three forms
 together with a fourth sigmoidal form
 in relation to zooplankton concentra�

tion� Table 	�� lists the functions which specify each of these forms as well as examples of their use in

the modelling literature�

The constant form has a speci�c rate independent of zooplankton concentration
 and may be interpreted

as representing a predator whose biomass does not �uctuate� Although this is perhaps unrealistic
 the

constant form is the simplest and is commonly used� The value of the rate constant
 

 may be �ne�tuned

���



Mortality term Function Literature examples

Constant dZ
dt

� � � �� �
�Z �
 �
 ��
 �	
 ��

Linear dZ
dt

� � � �� �
Z�Z 
 ��

Hyperbolic dZ
dt

� � � ��

�

Z

�k � Z�

�
Z �
 �
 ��

Sigmoid dZ
dt

� � � ��

�

Z�

�k� � Z��

�
Z ��

Table 	��� Zooplankton mortality terms used in the modelling literature� Key to literature

examples in Chapter ��

to produce a model output in agreement with a particular data set �e�g� Fasham
 Ducklow � McKelvie


������

Note that some researchers �e�g� Edwards � Brindley
 ����� prefer to call this form �linear�
 since

the term appears linear in the zooplankton ODE� The �linear� form
 as used here
 is then de�ned as

�quadratic�
 again because of the appearance of the term in the ODE�

The linear form has a speci�c rate dependent on the zooplankton biomass itself� This may be interpreted

as representing either cannibalism within the zooplankton compartment
 or a predator whose biomass

is proportional to that of the zooplankton� As such
 this form is perhaps more realistic since predator

populations commonly vary with those of their prey� Note that in a bulk model such as the full model


cannibalism in the form above may represent true cannibalism �i�e� species X eats species X� or intra�

trophic cannibalism �i�e� zooplankton species X eats zooplankton species Y�� The latter as sometimes

known as �functional� cannibalism since it is only cannibalism because all of the zooplankton have been

combined into a single compartment where they are assumed to be functionally identical�

The latter two forms
 hyperbolic and sigmoid
 lie between the constant and linear forms� At lower

zooplankton concentrations
 both behave somewhat similarly to the linear form �i�e� with a speci�c

rate proportional to zooplankton biomass�
 while at high zooplankton concentration
 both plateau and

behave similarly to the constant form �i�e� with an invariant speci�c rate�� Both may be interpreted as

representing satiable predators� This �satiation� may parameterise a number of di�erent ecological pro�

cesses� Following Holling�s original derivation
 it may represent handling time
 the minimum period of

time which a predator spends processing each food item before it can catch another one� Alternatively


it may represent a limit on predator density
 either caused by some other factor in the environment

�e�g� availability of suitable mating sites�
 or by direct interference between the predators themselves

�deliberate or accidental��

���



The sigmoidal form di�ers from the hyperbolic form in its behaviour at very low zooplankton concen�

tration� At these densities �and with the same half�saturation constant�
 the sigmoidal response leads

to lower rates of predation than the hyperbolic form� However
 as zooplankton density increases
 the

sigmoidal response leads to a more�than�linear increase in predation rate� This is why the form is re�

ferred to as sigmoidal or �S�shaped�� One of the ways such a response may occur in a biological system

is where the predator �switches� between di�erent prey types �Begon
 Harper � Townsend
 ������ Al�

ternatively
 the lowering of predation rate at low zooplankton density may parameterise a predator with

a prey threshold concentration� Below a certain prey concentration the predator reduces its searching

e�orts to save resources until prey density becomes su�cient to make a net gain for e�ort expended�

Some models �e�g� Kremer � Nixon
 ����� Evans � Parslow
 ����� Frost
 ����� Moloney � Field
 �����

utilise a �refuge� concentration
 below which predation ceases
 to achieve a similar e�ect�

While these latter two functional forms allow modellers to specify a more complex response
 clearly such

forms of predation require much more information about the predators they aim to implicitly model�

The former models
 by contrast
 require only that predator numbers are either independent of prey
 or

increase with them� Steele � Henderson ������ note that the more complex forms are often used to

model situations for which no data for predation is available� The 
 and k parameters are then used to

�ne�tune the model so that it �ts the data which is actually available� Since a wide range of response

curves are possible from these forms
 that these models can be made to �t the available data is perhaps

unsurprising�

However
 as illustrated by table 	��
 all of the functional forms are used in modelling studies of plankton

systems� In their review of predation terms
 Steele � Henderson ������ attempted to summarise the

ranges of behaviour di�erent terms produced in simple ZPN models� The following section compares the

response of the full model to each of the four terms above
 and compares the results found with those

of Steele and Henderson ������ and Edwards � Brindley �������

��
�� Four closure terms and a nutrient index

Each of the four predation terms was incorporated separately in a version of the full model� In the �rst

instance
 simulations were performed for each of the four resulting models over a range of the maximum

loss rate
 
� �note that in the linear case 
� does not represent the maximum loss rate
 since for values

of Z � �
 the loss rate is higher than 
��� In the hyperbolic and sigmoid cases
 the half�saturation

constants were kept at the baseline value of ��� mmol N m��� As previously
 the simulations had con�

stant forcing �OWS �India�
 day ���� and were run until either a stable equilibrium was reached
 or the

behaviour could be established from the system trajectory� Aside from the cross�thermocline mixing

rate
 m
 being set to ��� m d�� �in accordance with previous simulations�
 all parameters were set to

their baseline values�

���



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2

P 
eq

ui
lib

ri
um

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2
Z

 e
qu

ili
br

iu
m

(i) Constant Z mortality

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

μ2

N
n 

eq
ui

lib
ri

um

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2

P 
eq

ui
lib

ri
um

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2

Z
 e

qu
ili

br
iu

m

(ii) Linear Z mortality
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(iii) Hyperbolic Z mortality

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

μ2

N
n 

eq
ui

lib
ri

um

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2

P 
eq

ui
lib

ri
um

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

μ2

Z
 e

qu
ili

br
iu

m

(iv) Sigmoid Z mortality
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Figure 	��� Phytoplankton
 zooplankton and nitrate equilibria across ranges of maximum

zooplankton mortality rate
 
�
 for each of the four functional forms� Solid lines indicate

stable equilibrium solutions
 dotted lines indicate the range of limit cycle amplitude
 and

dashed lines mark the baseline value of 
� used in Fasham ������ Concentrations in mmol

N m���
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Figure 	�� shows the resulting equilibria of these simulations for the phytoplankton
 zooplankton and

nitrate compartments� The most signi�cant di�erence between the four rows of plots is the occurrence

of limit cycles with the constant mortality term� These cycles occur just below the baseline value of 
�

����	 � 
� � �����
 and have periods which decrease from ��� to ��� days as 
� is increased�

Aside from the limit cycle behaviour of the constant form
 the four terms show somewhat similar be�

haviour in response to increasing 
�� In all four forms
 the zooplankton equilibria increase with 
� to

a point just below the baseline value� After this point
 the equilibria all decline to lower values� In the

case of the constant form this decline is extreme
 and for values of 
� � ����
 the zooplankton equilibria

fall below ������ mmol N m��� In the other three cases the equilibria fall
 but to a much lesser degree�

This shared response to increasing 
� is also found with the phytoplankton and nutrient compartments


which show opposite trends to increasing 
��

The oscillation results are broadly in agreement with those of Steele � Henderson ������
 whose sim�

ulation results suggest that shorter term oscillations ������ days� are easily obtained with a constant

zooplankton mortality term
 while are absent when a linear mortality term is used� The simulations

described in Steele and Henderson�s ������ work di�er from those presented in this chapter since the

ZPN models are forced by a sinusoidal phytoplankton growth rate� This creates repeating ��� day

cycles in a similar fashion to those in the previous chapter� The short term oscillations found are super�

imposed on these seasonal cycles� However
 more recent work by Edwards � Brindley ������ found the

wide occurrence of oscillatory behaviour in the ZPN model of Steele � Henderson ������
 which has a

linear mortality term� This work was extended in Edwards ������ to include a model with a constant

mortality term
 and this was found to exhibit limit cycle behaviour across a wider range of parameter val�

ues� While no limit cycles were found here when the linear term was used
 the exploration of parameter

space was considerably narrower than that examined by Edwards � Brindley ������ and Edwards �������

In the case of the hyperbolic and sigmoid mortality forms
 although no limit cycles were found in the

range of 
� examined
 it is easy to see from the equations themselves that at k� � �
 both terms collapse

to the constant mortality term� To examine the signi�cance of the parameter k� on the behaviour of

the model
 a second pair of simulations exploring ranges of 
� and k� for both mortality terms were

performed� As previously
 both pairs of simulations were performed with constant forcing �OWS �India�


day ���� and with otherwise baseline parameter values �except cross�thermocline mixing rate
 m
 which

again was set to ��� m d����

Figure 	��	 shows the phytoplankton
 zooplankton and nitrate equilibria found by these simulations�

For both terms
 as k� � �
 oscillatory behaviour was found� The hyperbolic term only yielded such

behaviour at values of k� � ����
 a value one tenth that of the baseline value use by Fasham ������

The sigmoid term found oscillations up to values of ����
 only slightly lower than the baseline�

���



0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

2.5

μ2k6

P 
eq

ui
lib

ri
um

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

2.5

μ2

(iii) Hyperbolic Z mortality

k6

Z
 e

qu
ili

br
iu

m

0

0.5

1 0

0.5

1
0

5

10

k6
μ2

N
n 

eq
ui

lib
ri

um

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

2.5

μ2k6

P 
eq

ui
lib

ri
um

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

2.5

μ2

(iv) Sigmoid Z mortality

k6

Z
 e

qu
ili

br
iu

m

0

0.5

1 0

0.5

1
0

5

10

k6
μ2

N
n 

eq
ui

lib
ri

um

Figure 	��	� Phytoplankton
 zooplankton and nitrate equilibria across ranges of maximum

zooplankton mortality rate
 
�
 and mortality half�saturation constant
 k�
 for the hyper�

bolic and sigmoid functional forms� Baseline values of predation parameters � 
� � ����

d��
 k� � ��� mmol N m��� Note that the plots of nitrate equilibria have been rotated

clockwise by ��� for the purposes of clarity� Concentrations in mmol N m���

Other than the di�erence in the range of values over which limit cycles occur
 both mortality terms

show very similar equilibrium densities across parameter space� As k� is increased
 predation on the

zooplankton decreases leading to greater grazing pressure on the phytoplankton �and other prey species�

and consequently reduced nitrate uptake� As suggested already
 a relatively wide range of equilibrium

densities for the state variables can be obtained by a careful choice of the values of the mortality param�

eters�

The reason for the di�erence in extent of limit cycle regions can be seen from the shapes of the two

response curves �see �gure 	����� For the same half�saturation constant and for zooplankton concen�

trations above that constant �which
 in the case of this model and its baseline parameter values
 is

normal for the summer zooplankton population�
 the sigmoid term results in greater levels of predation

on zooplankton �i�e� levels of predation closer to those of the constant term� than the hyperbolic term�

Resultingly
 the region of 
��k� space in which limit cycle behaviour occurs is larger for the sigmoid

than for the hyperbolic form�

One of the general conclusions drawn by Steele � Henderson ������ regarding di�erent functional forms

for zooplankton mortality dealt with the nutrient status of the equilibrium states obtained under di�erent

mortality forms� They found that when the ratio of N� �nutrient equilibrium� to k �the phytoplankton

nutrient uptake half�saturation constant
 in this case k�� was considered
 the functional forms could be

��



ranked �

constant � linear � hyperbolic

N�

k
� � N�

k
� � N�

k
� �

The implication of this conclusion is that di�erent functional forms for predation may directly and

generically in�uence the equilibrium state of plankton systems� Table 	�� shows the values of N��k

they obtained from their models
 and those obtained using from simulations of the full model with the

appropriate mortality form� In the case of the full model simulations
 the ones obtained at baseline

values of 
� and k� were used�

Mortality term Steele � Henderson �����	 This work

Constant ��� ����

Linear � ���

Hyperbolic ��� �	�

Sigmoid � ��	��

Table 	��� Values of N��k for each mortality term� The values estimated by Steele �

Henderson ������ for their models are shown for comparison�

While the value of N��k produced by the full model with constant mortality is not quite as low as that

found by Steele � Henderson ������
 it does still fall below �� The values produced by the other forms

fall markedly above �
 and rank in the same order as Steele � Henderson ������ found� The range

of N��k values found between the di�erent forms of mortality is slightly narrower
 but in general the

comparison between the results is favourable�

Figure 	��� shows ranges of N��k that were calculated from the nitrate equilibria of each mortality

form� Where limit cycle behaviour was encountered
 the nitrate equilibrium was set to the midway point

between the oscillation maximum and minimum�

These results show how sensitive the N��k ratio is to the choice of zooplankton maximum mortality

rate� Although at the baseline value of 
� the constant mortality form has a ratio slightly less than �

�and ratios for the other forms are � ��
 the ratio sharply increases with falling 
� �this occurs with all

of the mortality forms
 with each one having a slightly di�erently shaped curve��

Although at the baseline value of 
� �and with OWS �India� forcing conditions at the height of sum�

mer� the constant form of mortality does predict a N��k ratio clearly di�erent from those of the other

mortality forms �except perhaps the sigmoid form�
 when forced simulations are considered
 the picture

becomes less clear�

��	
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(iv) Sigmoid Z mortality

Figure 	���� Plots of the ratio of N�

n to k across a range of maximumzooplankton mortality

rate for each of the four functional forms� The half�saturation constants of the hyperbolic

and sigmoid forms were held constant at ��� mmol N m�� �the baseline value��

Figure 	��� shows the results of normally forced simulations at OWS �India� for each of the four mor�

tality terms� Baseline values for both of the mortality parameters were used� In each case
 the annual

cycles of phytoplankton
 zooplankton and nitrate concentrations are shown�

The most signi�cant di�erence is �again� with the constant mortality� The constantly high predation on

zooplankton almost entirely extinguishes the population during the winter months when there are no

prey to consume� This allows an extremely large phytoplankton population to bloom in the spring and

causes almost zero nitrate concentrations for a signi�cant fraction of the summer� Even with a constant

mortality rate half of the baseline value
 sizeable zooplankton populations at OWS �India� only make a

brief appearance late in the autumn �results not shown�� By contrast
 the other three mortality forms

produce annual cycles which have considerably lower phytoplankton densities �well within the range of

OWS �India� observations� and with more reasonable zooplankton concentrations� The sigmoid form

shares the familiar phytoplankton�zooplankton oscillations of the usual hyperbolic form
 while the linear

form�s oscillations are con�ned to an indistinct spring bloom which merges with the summer population�

These results suggest that for zooplankton mortality to be represented by a constant form in the full

Fasham ����� model
 the constant rate needs to be set at a lower value than for comparable simulations

with the other three mortality forms �the replacement of the constant mortality term in the model of

���



0 100 200 300
0

1

2

3

4

5

6

7

Time (days)

P 
co

nc
en

tr
at

io
n

0 100 200 300
0

0.5

1

1.5

Time (days)

Z
 c

on
ce

nt
ra

tio
n

(i) Constant Z mortality
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(ii) Linear Z mortality
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(iii) Hyperbolic Z mortality
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(iv) Sigmoid Z mortality
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Figure 	���� Simulated annual cycles of phytoplankton
 zooplankton and nitrate at OWS

�India� for each of the four zooplankton mortality terms� Note that the scale on the phy�

toplankton plot of the constant mortality row is more than four times that of the other

phytoplankton plots� Concentrations in mmol N m���
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Fasham
 Ducklow and McKelvie
 ����
 by the hyperbolic term in the �updated� model of Fasham
 ���


was related to this problem�� This may be a problem where the rate has been assigned from measure�

ments� Alternatively
 the rate may be treated as yet another forcing function and allowed to vary across

the year� However
 this would raise both practical �i�e� di�cult measurements of predation would be

required throughout the seasonal cycle� and theoretical �i�e� another empirical forcing function would

reduce the �robustness� of the model across a geographical range� objections�

Signi�cantly
 changing the value of 
� for models using the constant mortality term to prevent zooplank�

ton extinction drastically increases the N��k ratio
 and this contradicts Steele � Henderson�s ������

conclusions about the signi�cance of this ratio�

��
�� Conclusions

In this section the e�ects of varying the form of the higher predation term of zooplankton mortality have

been examined through simulations of four versions of the full model which incorporate di�erent forms�

While evidence of limit cycle behaviour has been sought in line with the work of Steele � Henderson

������
 Edwards � Brindley ������ and Edwards ������
 some of the conclusions of Steele � Henderson�s

������ work have also been examined�

In addressing the former question
 it was found that only the constant form of mortality exhibited cycles

across a range of the maximum zooplankton loss rate� However
 by varying the half�saturation constant

of mortality
 limit cycles could be obtained in both the hyperbolic �the default in Fasham
 ���� and

sigmoid forms� Although Edwards � Brindley ������ found that the use of a linear mortality term in

their ZPN model produced a rich structure of Hopf bifurcations to stable limit cycles
 no such behaviour

was found when the linear term was used in the full model�

Steele � Henderson ������ found that the nutrient equilibria reached by models using di�erent mortality

forms could indicate systems in which phytoplankton are either nutrient� or grazer�limited� The results

obtained from the full model simulations support this conclusion
 although the equilibria found using

di�erent mortality forms were strongly dependent on the actual value of the maximum mortality rate�

Fitting models that di�er only in the form of their zooplankton loss terms to the same data sets can

necessitate choosing maximum loss rates which are very di�erent� This suggests that Steele � Hender�

son�s ������ conclusions regarding N��k ratios should be examined closely when models are formulated

to represent the limiting features of speci�c ecosystems�

���



���� Summary

This chapter set out to determine the nature of the oscillatory behaviour of the full model during the

summer months at OWS �India�� While oscillations in a model�s behaviour may only be a feature or

artifact of that model
 time�series measurements of chlorophyll from OWS �India� lend support to the

notion that such oscillations may actually be occurring in the real world�

The question was tackled in a number of ways� Initially
 simple numerical solutions were performed

which
 after a period of normal forcing
 had their forcing �frozen�� Their behaviour after this event was

then followed to determine whether the oscillations found continued� This turned out not to be the case�

Nitrate limitation �which normally is curtailed by the end of the favourable summer conditions� became

important and only low
 stable equilibria of phytoplankton and zooplankton resulted� The oscillations

found in the normal simulations are transients towards a low
 stable equilibrium�

However
 the repetition of this work with the implicit nitrate model �c �which cannot run out of nitrate�

showed that
 where nitrate never became limiting
 both high
 stable equilibria and stable oscillatory be�

haviour could result� Since two model parameters directly control nitrate supply to the modelled mixed

layer
 an investigation of these parameters was undertaken�

Because of the complexity of the full model
 rigorous analysis proved too di�cult
 and a numerical

approach was used to study the behaviour of the full model across parameter space� A program was

written which used the trajectories of numerical solutions to determine the behaviour of the full model

under given parameter or forcing regimes� While this is a non�standard approach
 the complexity of the

problem at hand favoured it� In a similar investigation of Steele � Henderson�s ������ �simple plankton

model�
 Edwards � Brindley ������ and Edwards ������ make use of the numerical tools AUTO and

LOCBIF �see references within Edwards � Brindley
 ����
 for details��

Use of this program established that stable oscillatory behaviour occurred across regions of m�N� pa�

rameter space� While this behaviour did occur within the literature ranges of these parameters
 it did

so only at more extreme values� The assumptions these parameters make include some which make

extreme values potentially untenable� To this end
 explorations of the parameter space of each of the

other model parameters ��� of them� were undertaken to determine whether oscillatory behaviour could

be more easily found�

The equilibria produced across ranges of these parameters were determined
 and �ve parameters were

found to produce oscillatory behaviour� Of those
 the detrital sinking velocity
 V 
 produced such be�

haviour well within its literature range� Repetition of the previous explorations of m�N� space
 but with

���



a reduced value of V 
 extended the size of the region of limit cycle behaviour to much more reasonable

values of m and �particularly� N��

Examination of the whole seasonal cycle found that
 at appropriate non�baseline values of m and V 
 the

forcing functions moved the model�s equilibria from low
 stable equilibria in the winter to high
 stable

equilibria and stable oscillatory behaviour in the summer� For the parameter values used here
 a � day

window of limit cycles was produced during the summer months�

Recent work by Steele � Henderson ������ has drawn attention to the essentially arbitrary use of di�er�

ent zooplankton mortality terms to �close� models
 and the consequences for model behaviour of their

use� Their results were compared with those from similar work performed using the full model
 and their

conclusions were re�examined� While some of the results found in work here supported those of Steele

� Henderson ������
 the generalisations they drew concerning the mortality form and its role in equi�

librium nutrient status appeared quite fragile� As Steele � Henderson�s ������ paper is comparatively

well known in the �eld
 it is probably important that researchers are cautious in their application of its

�ndings�

���



���� Discussion

Predator�prey cycles have a long history in ecology stretching back to the neutrally stable oscillations of

the Lotka�Volterra model �Lotka
 ����� Volterra
 ����� see Chapter � for further details�� In the context

of the present work
 their appearance in the behaviour of a model
 particularly when it coincides with

apparently similar behaviour in data from the real world
 provides an opportunity to use dynamical

behaviour
 as well as quantitative model output
 to test that model� To a degree
 limit cycle behaviour

in a model constitutes a �risky prediction�
 which may aid in the model�s comparison with the real world�

The work here has predicted such cycles under particular parameter and forcing regimes� Although

primarily centred on OWS �India�
 the predictions are most likely to be testable in an environment with

the appropriate forcing
 but which remains relatively stable for longer periods of time� The work here

has shown that although stable oscillatory behaviour is possible
 transient oscillatory behaviour �such

as that produced by the baseline parameter values� may obscure stable oscillations� While Bermuda

Station �S� provides an example of a more stable forcing environment �mixed layer depth is less than

�� m for ��� days of the year� enough time for more than 	 of the oscillations predicted in Bermuda

Station �S� runs�
 its baseline parameter regime is quite far removed from that required to generate

stable oscillations� Regions where mixing with deeper
 nutrient�richer water is greater are more likely

to supply the necessary regimes �e�g� upwelling regions
 tidal regions��

In Chapter 
 attention was drawn to the redundancy of the bacteria compartment in reduced models�

In an interesting parallel
 the work in this chapter which examined the behaviour of model equilibria

across ranges of di�erent parameters found that these equilibria �even those of the bacteria compartment

itself� were very insensitive to changes in most bacterial parameters�

Although only brie�y mentioned during the explorations of parameter space
 transient oscillations to a

stable equilibrium are a common type of behaviour� Because of the di�culty in quantifying damping

times
 et cetera for such behaviour �due to the importance of initial conditions�
 only stable equilibria

and stable limit cycles have been sought here� A more rigorous study �particularly if it were concerned

with the use of dynamical behaviour to test model predictions� would need to examine the importance

of such behaviour in the model�

An issue not raised in the work in this chapter is that of the role of space in oscillations� While the

OWS �India� chlorophyll data ostensibly represents a time series of phytoplankton density
 it is possible

that in reality it represents the passage of distinct blooms in space past the measuring station� However


while it is di�cult to reject this statement without further data
 the work of McCauley � Murdoch

������ lends a small degree of support to the existence of true limit cycles �albeit ones in a freshwater

���



environment��

Despite these latter di�culties
 it is hoped that the work in this chapter may provide a background to

any more serious attempts to compare the Fasham ����� model with ocean measurements�

���



Chapter �

Sensitivity analyses and stochastic

parameterisation

God does not play dice�

� Albert Einstein �����������

	
	



��� Introduction

In Chapter �� the behaviour of model equilibria across ranges of each of the model parameters was

determined While the aim was to determine whether any of the parameters produced stable oscillatory

behaviour� it was also noted that several of the parameters� noticeably the attenuation coe�cient� kw�

caused the stable equilibria found to shift signi�cantly near the baseline values of these parameters

These results suggested that di�erent parameters could be of quite di�erent signi�cance to the model

solutions� and that emphasis should perhaps be placed to determining more accurate values for the most

�sensitive� model parameters As most parameters require di�cult or time�consuming experiments�

knowing which parameters most strongly in�uence model behaviour can optimise the development of a

model

Fasham� Ducklow � McKelvie ����
� performed such a parameter sensitivity analysis with the original

version of the model used in this thesis In this chapter� their work is reprised together with two stochas�

tic approaches to parameter sensitivity studies The latter of these two approaches is also explored in

depth to examine aspects of its implementation and behaviour
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��� Model uncertainties

In models such as Fasham ������ there are several potential sources of uncertainty in the formulation

and solution of the model

�i� Model structure

The representation of the real world included in the structure of the model� and the form of the

terms within the model �e�g� phytoplankton� zooplankton� nutrients� et cetera�

�ii� Initial conditions

The values of the state variables used to initialise the model �e�g� P �
� � x�

�iii� Forcing functions

The in�uence of variable factors not explicitly included as dynamic variables in the structure of

the model �e�g� daily�seasonal cycles of mixed layer depth and irradiance�

�iv� Model parameters

The parameters �or coe�cients� which usually quantify the various relationships between the model

state variables �e�g� rates� half�saturation constants� ingestion fractions� et cetera�

�v� Numerical implementation

The computational system by which the model is put into e�ect �e�g� numerical integration scheme�

iteration step length� accuracy of state variable representation� et cetera�

Although the sensitivity of the Fasham ������ model to its various parameters is the focus of this chap�

ter� the other sources of uncertainty merit brief discussion

At the very deepest level� there is uncertainty in the actual structure of the model and the forms of

the terms within it Chapter 	 gave a brief overview of the variety in these aspects across the plankton

modelling literature� and Chapters � and � contain versions of the Fasham ������ model which aim to

examine the sensitivity of the model�s behaviour to di�erent structures and functional forms Addition�

ally� as pointed out in Chapter �� even modelling systems as ODEs �or di�erence equations� or PDEs�

or CMLs� et cetera� carries with it assumptions and� therefore� uncertainties

As raised in Chapter �� the initial conditions of the state variables are only usually of any consequence

in the �rst ���
 years of a model solution By the end of this period the model solution has normally

converged onto an annual cycle which is repeated inde�nitely Note though that this repeating cycle is

actually transient behaviour� for the state variables are constantly �chasing� the forcing functions The

stable equilibrium values of the state variables for a given day�s forcing conditions can consequently be

	
�



very di�erent from their actual values on that day for a normally forced solution

Unlike initial conditions� forcing functions play a strong role in the dynamics of the Fasham ������ model

This can be seen in the di�erence in the model behaviour at the forcing locations of OWS �India� and

Bermuda Station �S� �see Chapters � and ��� and when mixed�layer depth forcing is varied �see Chapter

��

The numerical integration scheme used in the implementation of the models in this thesis is �th order

Runge�Kutta� a standard one used by many modellers Other integration methods ��rd order Runge�

Kutta� �rd order Runge�Kutta � Nystrom formulation� �th order Runge�Kutta � Fehlberg formulation�

were examined in the early stages of the work in this thesis� but as they produced indistinguishable

results and o�ered no considerable bene�ts over the standard Runge�Kutta IV scheme� they were not

adopted Numerical experiments with the integration step length �detailed in Chapter �� found that

hourly integration was more than su�cient to produce a stable solution

��� A sensitivity analysis of the full model

Fasham� Ducklow � McKelvie ����
� performed a parameter sensitivity analysis for 	� of the param�

eters in the full model This analysis consisted of performing pairs of deterministic runs for each of

these model parameters� one for a low value of the parameter in question� and one for a high value

Each of these runs was then compared to the normal deterministic solution to determine the normalised

change in the solution caused by a change in the parameter For the purposes of this analysis� Fasham�

Ducklow � McKelvie ����
� used annual net primary productivity �NPP� and the annual f�ratio �total

new primary production divided by NPP� as comparative statistics Since the authors were interested

in the situation at Bermuda Station �S� the numerical solutions were determined for the forcing regime

there

This analysis found that NPP was most strongly in�uenced by parameters kw� �� �� ��� N� and k��

while the annual f�ratio was additionally strongly a�ected by g The authors acknowledged that other

sensitivity techniques could equally have been used� and drew attention to the problem of accounting

for interactions between the model parameters in sensitivity studies

In this chapter� two alternative techniques� Monte Carlo and stochastic parameters� are introduced and

applied to a parameter sensitivity study of the full model Since the analysis of Fasham� Ducklow �

McKelvie ����
� dealt with an earlier version of the full model�� the technique they used in their analysis

�The version of the full model used by Fasham� Ducklow � McKelvie ������ di	ers from that used by Fasham ����
�

primarily in its handling of the mortality terms for phytoplankton and zooplankton� In both cases� constant rates are

used for these processes� and in the case of zooplankton mortality� the �ows from this process are proportioned slightly
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has been re�applied to the full model from Fasham ������ to provide a comparison Also� since work

in this thesis has focussed more heavily on model behaviour at OWS �India�� the initial parameter

sensitivity studies have been performed with the forcing regime from this location

��� Techniques for sensitivity analysis

In contrast to the deterministic approach taken by Fasham� Ducklow � McKelvie ����
� in their analysis

of the full model�s sensitivity to its various parameters� the two additional techniques applied in this

chapter employ stochastic approaches In doing so they incorporate uncertainty into the model parame�

ters� and aim to determine the consequences of this uncertainty on the model�s behaviour With both of

the techniques� model parameters are assigned values at random� from some speci�ed probability distri�

bution� and then these parameters are used within simulations As both techniques involve simulating

the model� they do not require any simpli�cation of it This contrasts with other techniques for including

parameter uncertainty into a model First Order Variance Propagation Analysis� for instance� requires

that the model be approximated to �rst order equations �i�e� non�linear terms modi�ed or removed�

The use of Random Di�erential Equations is usually similarly con�ned to simpler models �which are

more amenable to rigorous analysis� The two techniques used here di�er mechanically in the timing of

the parameter stochasticity� but also� and more signi�cantly� in their underlying assumptions about the

nature of the model parameters

����� Monte Carlo simulations

The technique referred to in this chapter as Monte Carlo� �MC� is one commonly used in modelling

studies �e�g� Loehle� ����� The parameter �or parameters� in question is �rst assigned a value at ran�

dom from a known distribution This distribution may base its mean and variance on measurements of

the parameter from �eld observations or experiments Next� the model is simulated deterministically� as

usual� and the run statistics are collected The procedure of assigning parameter values at random and

then running model simulations is then repeated again and again until� normally� the mean and variance

of the Monte Carlo simulations have converged This procedure may be applied to single parameters or

to groups of parameters

The Monte Carlo technique essentially assumes that parameters in the real world are fundamentally

di	erently into the ammonium and DON compartments� The version of the full model detailed in Fasham ����
� instead

favours densitydependent MichaelisMenten relationships for these processes�
�In the context of computer simulations� the term �random� usually means that a deterministic �random� number

generating algorithm or a lookup table is used to provide numbers for use by the computer program� The work in this

thesis makes use of a �nonlinear additive feedback random number generator� which returns successive pseudorandom

numbers in the range � to ������� ��� with a period of approximately ��������� ���
�Note that the term �Monte Carlo� is applied to many other techniques in modelling where elements of chance enter

into analyses or simulations�
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constant� but that their values �for whatever reason� are known only poorly

As an aside� unlike the work in this chapter� the Monte Carlo technique is commonly used in simulations

where multiple parameters are allowed to vary In such cases the volume of parameter space from which

the parameters are assigned values can be very large� and the technique is often augmented by a process

known as Latin hypercube sampling� which aims to minimise the number of model runs required by more

systematically exploring the available parameter space

����� Stochastic parameter simulations

Kremer ������ introduced a technique� known as stochastic parameters� in which model parameters�

instead of remaining constant during a given simulation� are allowed to vary randomly throughout

its duration Similarly to the Monte Carlo technique described above� parameters are initially assigned

random values from a known distribution However� at �xed intervals during the simulation� the stochas�

ticity algorithm is applied again and the model parameter �or parameters� in question is assigned a new

value

In contrast to the Monte Carlo technique� Kremer�s stochastic parameters approach assumes that pa�

rameters are not constant� and that they may be represented as being variable in time

Since the biological state variables of many ecological models �and almost all plankton models� including

those in this thesis� are intended to cover a diverse and changing mix of species� it is unlikely that the

model parameters� which are proxies for physiological and interactive processes� are best modelled as

constants� Furthermore� even when only a single species is considered� it is unlikely that all individ�

ual members of that species will share a common parameter value Genetic di�erences and in�uences

from the life history of each individual are likely to make the modelled population heterogeneous with

respect to its parameters� and this heterogeneity is liable to be variable in time �because of shifts in

the population genetics� and because of organisms responding to their environments� Consequently�

Kremer ������ argues that� at least empirically� stochastic parameters provide a means of incorporating

temporal variability and uncertainty into the parameterisation of ecological models

��� Parameter sensitivity at OWS �India�

In this section the sensitivity of the Fasham ������ model to 	� of its parameters is assessed For various

reasons� several model parameters have not been included in this analysis� and several others have been

handled in particular ways Because of di�culty in formulating a satisfactory algorithm for assigning

values to the parameters � and � �where � � � � ��� this pair of parameters has been excluded from this

�As Kremer ����
� points out� although this point being wellknown among modellers� model parameters are still often

anomalously referred to as �rate constants��
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analysis Parameters ��� �� and �� are treated as a single parameter� � Zooplankton feeding preference

p� is allowed to vary� with p� and p� each assuming values of �� � p���	 With the exception of these

exclusions and treatments� all other model parameters are handled identically in the analysis

Unlike the results from Chapter �� in which the equilibrium solution of the model under �xed forcing was

calculated across ranges of each of the model parameters� in this chapter the model is simulated with

normal forcing� and the consequences of changes to the model parameters assessed over a full simulation

year This approach potentially allows a more accurate assessment of the importance of a given model

parameter to the model�s predictions

An important consideration in examining the sensitivity of a model to its various parameters is the

criterion by which the e�ects of the di�erent parameters are assessed Fasham� Ducklow � McKelvie

����
� use the annual NPP and f�ratio Fasham ������ uses the timing and magnitude of the annual

spring bloom Kremer ������ �though not interested directly in individual parameters� uses �nal phy�

toplankton biomass� and time series variance of phytoplankton biomass normalised to that from the

baseline deterministic solution For the majority of this work the approach taken by Fasham� Ducklow

� McKelvie ����
� is followed� and the annual NPP and f�ratio used to assess model sensitivity

����� Simulation methods

Deterministic techniques

For each parameter four sets of simulations were performed Two of these followed the deterministic

procedure used by Fasham� Ducklow � McKelvie ����
�� where parameters were assigned values above

and below their baseline value� and then deterministic solutions were calculated for each of those two

values The choice of values for these upper and lower limits is discussed in the following section on the

stochastic techniques As usual for such numerical solutions� the model was allowed to run for �
 years

to equilibriate to a constant annual cycle

Stochastic techniques

Except in the timing of the assignment of parameter values� the two stochastic approaches were handled

very similarly Firstly� a deterministic period of �
 years was allowed to provide initial conditions for

January the �st These initial conditions were used to start each stochastic run After this determin�

istic initialisation period� both Monte Carlo and stochastic parameters approaches assigned the chosen

parameter a new random value The model simulations then proceeded forwards In the case of Monte

Carlo runs� the chosen parameter retained this new value for the duration of the run In the case of

stochastic parameters� a timer changed the parameter�s value at �xed intervals throughout the run

Figure �� shows a diagrammatic representation of the two stochastic techniques

In all of the work presented in this chapter� the distribution of parameter values for stochastic simula�
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Simulation time

Stochastic simulationDeterministic initialisation

Monte Carlo simulation

Stochastic parameters simulation

Figure ��� Diagrammatic representation of the Monte Carlo and stochastic parameters

techniques Timing of stochastic transformations of parameters indicated by lightning sym�

bols In both cases� stochastic simulations are preceded by a normal deterministic period

�with baseline parameter values� to provide initial conditions for the stochastic simulations

tions was assumed to be uniform around the baseline value While a normal distribution may be more

intuitively appealing� it was not used since several of the model parameters ��� p������ ������ and 	� are

fractions �i�e� bounded between 
 and ��� and thus awkward to treat as normally varying quantities

Additionally� in order that the results between di�erent parameters could be directly compared� the

range of values for all of the model parameters was �xed at the baseline � �
� Although the range

of possible values this permits is not in agreement with all of the ranges of values measured for the

model parameters� for most parameters this distribution is fairly congruent with the ranges described by

Fasham� Ducklow � McKelvie ����
� �note though that� because of the paucity of data or assumptions

made by the model� more than a third of the parameters examined by Fasham� Ducklow and McKelvie

were assigned nominal values of double and a half that of the baseline�

As already mentioned� the stochastic parameters technique involves changing the value of the parameter

in question throughout a given simulation run In the real world� variability in the properties which are

modelled as parameters is �presumably� continuous� depending upon hundreds of processes occurring

across a range of scales �e�g� variation in the weather at the large scale� down to variation in the fortunes

of individuals within populations� However� as models almost invariably homogenise the populations

they study� variability is not normally modelled as precisely as it occurs in nature As Kremer ������

observes� models presume some limit in the temporal resolution of variability below which it is ignored

This limit is then the time scale at which uncertainty is allowed to alter the trajectory of the determin�

istic model Depending on the nature of the processes modelled� this time scale may vary from minutes

to hours to days Following Kremer�s ������ algal model� in this work the time scale of stochastic peri�

odicity has been set to � day �although this choice is examined later in the chapter�

Also related to the periodicity of transformations in the stochastic parameters technique is the actual
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Figure �	� The seasonal behaviour of phytoplankton coe�cient of variance �CoV� for two

stochastic parameters simulations which di�er in the number of transient years used prior to

sampling �see text for full description� The solid line represents the CoV produced when no

transient years are allowed for the simulation� the dashed line that produced when a single

transient year is used prior to the sampled simulation year Note that the former simulations

have a much lower CoV in the �rst four months as the stochastic trajectories slowly diverge

from that of the deterministic trajectory Phytoplankton CoV is dimensionless

timing during a given day As indicated above� most of the work presented here has made use of a

transformation period of � day In order to ensure that no biasing of results occurs during runs as a

consequence of parameters always being assigned a new value at the same time of each simulated day

�e�g� parameters only change at midday or midnight�� in each individual run� the second stochastic trans�

formation is made to occur at a �uniform� random fraction of a day �the transformation period� after

the initial transformation Subsequent transformations are spaced at regular� �xed intervals Similarly�

when the periods of transformations are high �weeks to months�� this procedure prevents transformations

always occurring on the same days in di�erent simulation runs �e�g� parameters only change at the start

of each month� or on day 	�� of a simulated year�

Since Monte Carlo runs are essentially deterministic �albeit with stochastically assigned parameter val�

ues�� like normal numerical solutions they move towards an equilibrium annual cycle which is repeated

inde�nitely As such� although the initialisation of the state variables aims to place each given simu�

lation closer to its equilibrium cycle than randomly assigned values� several transient years were found

to be required to allow each Monte Carlo simulation to equilibriate to its annual cycle Preliminary

work �combined with that described previously for normal deterministic solutions� found that a period

of at least � years was required after the transformation of the parameter in question for this cycle

to be reasonably accurately attained Ideally periods much longer than this would be used to better
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Figure ��� The behaviour of annual NPP and f�ratio means and standard deviations as the

number of Monte Carlo simulations used to calculate them is increased Model parameter

g �zooplankton maximum ingestion rate� treated stochastically � �
 d�� � �
� Annual

NPP in mmol N m�� y�� The annual f�ratio is dimensionless

characterise the Monte Carlo simulations However� as many individual Monte Carlo simulations are

required to produce consistent estimates of the mean and variance of simulations using the technique�

the number of preliminary years allowed before the sampled year weighs heavily on the computational

load of a given run Consequently� only � transient years were used prior to sampled years for Monte

Carlo simulations

A similar problem a�icts stochastic parameters simulations As �gure �	 shows� for a period shortly

after the start of the stochastic simulations� the variability in the simulated phytoplankton population is

considerably narrower than that towards the end of the �rst simulated year This is an artifact caused by

all of the simulations starting with the same initial conditions and then only slowly diverging from them

However� unlike Monte Carlo simulations� preliminary work found than only a single transient year

was required before the stochastic parameters technique produced consistent estimates of daily means

and variances� and the work presented here made use of simulations in which only a single transient

occurred �Later work in which the period of the stochastic transformations was increased up to ��


days found that a single transient year was often insu�cient Such simulations are identi�ed in the text�

Both Monte Carlo and stochastic parameters techniques are used here to produce distributions of the
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Figure ��� The behaviour of annual NPP and f�ratio means and standard deviations as

the number of stochastic parameter simulations used to calculate them is increased Model

parameter g �zooplankton maximum ingestion rate� treated stochastically � �
 d�� � �
��

with transformation period of � day Annual NPP in mmol N m�� y�� The f�ratio is

dimensionless

outcomes that result when parameters are allowed to vary stochastically In order that these distri�

butions can be described accurately� multiple runs are required As each run takes computer time to

produce� the fewer runs required the better Figures �� and �� show the behaviour of the means and

standard deviations of annual NPP and the annual f�ratio as the number of runs used to calculate

them increases from a single run to �

 runs For both techniques� the means and standard deviations

calculated for both measures are highly variable when less than �

 runs are used Below 	

 runs there

is still variability in some of the statistics shown� and consequently �

 runs were used for both Monte

Carlo and stochastic parameters techniques to produce distributions of results

As an aside� �gures �� and �� also illustrate the standard graphical format for summary statistic plots

in this chapter Markers �e�g� squares� circles� triangles or stars� indicate actual simulations Dotted

lines connecting markers aim to ease interpretation of such plots Note also that Monte Carlo and

stochastic parameters simulations are always indicated by square and circle markers respectively
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����� Simulation results

Using the methods described above� simulationswere run for 	� of the Fasham ������ model�s parameters

The results of these simulations were processed in several ways In the �rst instance� the annual NPP

and f�ratio calculated from the baseline solution were compared to those calculated for each of the

parameters at their upper and lower limits� and to the means produced by the stochastic techniques

The results from the sensitivity techniques were standardised to those from the baseline solution� and

the model parameters were ranked in accordance to the deviation from the baseline solution they caused

Parameter sensitivity ranking

Tables �� and �	 show the results of the ranking process for annual NPP and the annual f�ratio re�

spectively Parameters which produce very little deviation from the baseline solution have a value close

to �
� while values some distance from �
 indicate parameters with a more profound in�uence over

the model�s behaviour with respect to the measure in question The results from the four approaches

revealed some interesting agreements and disagreements

With respect to annual NPP� the four approaches broadly agreed on the importance� or otherwise� of

most model parameters The least important parameter in all four cases was the cross�thermocline

mixing rate� m This result is perhaps surprising considering the prominence given to the parameter

in Chapter � However� as indicated by the work in Chapter �� the importance of m to the model

lies mostly with situations in which nitrate starvation of the mixed layer occurs Forced simulations at

OWS �India� do not normally reach this situation� and the importance of m is diminished� The four

approaches di�er on the most important parameter� although they all broadly agree on the importance

of phytoplankton and zooplankton parameters in the �top �
� The parameters of greatest importance

are those pertaining to phytoplankton photosynthesis �kw� �� � and Vp� and zooplankton grazing �g�

�� k� and p�� Fasham� Ducklow � McKelvie ����
� found a similar result with the photosynthesis

parameters kw� � and �� but found the zooplankton parameters less important Additionally they found

that model solutions at Bermuda Station �S� were sensitive to parameters k�� N� and �� The impor�

tance of these latter parameters is� however� likely to be reduced in the work here� since OWS �India�

�even accounting for the range of possible N� values� is considerably further from nitrate starvation than

Bermuda Station �S� � and �� is now part of a hyperbolic term rather than the linear one in the model

of Fasham� Ducklow � McKelvie ����
� �as the results presented in Fasham� ����� and in Chapter �

indicate� this change has more than halved the importance of the P � D natural mortality pathway�

Away from the most important parameters� the four approaches also agree on the model�s broad insen�

sitivity to bacterial and detrital parameters �e�g� Vb� k�� ��� �� and V � From the equilibrium work in

�Note also that the range of values permitted to m in this analysis was considerably narrower than that in Chapter

�� This indicates a potential �aw in the results of this parameter sensitivity study� However� as it is di�cult to obtain

accurate limits for parameter values �Fasham� Ducklow � McKelvie� ����� used a nominal range for m for instance�� the

approach here of assuming � 
�� is defensible as a conservative approach�
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Table ��� Sensitivity of annual NPP at OWS �India� to model parameters for deterministic�

Monte Carlo and stochastic parameters techniques The baseline deterministic solution

�annual NPP � ��
	 mmol N m�� y��� is compared to solutions produced by deterministic

runs at lower �Det� L�� and upper �Det� U�� ends of parameter range� and to the mean

solutions produced by stochastic techniques �Monte Carlo and Stochastic parameters�

This produces a table of relative di�erences to the baseline solution �� ��
� which is then

ranked Sensitivity of the model to parameters increases towards the bottom of the table
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Table �	� Sensitivity of the annual f�ratio at OWS �India� to model parameters for de�

terministic� Monte Carlo and stochastic parameters techniques The baseline deterministic

solution �annual f�ratio � 
�
�� is compared to solutions produced by deterministic runs at

lower �Det� L�� and upper �Det� U�� ends of parameter range� and to the mean solutions

produced by stochastic techniques �Monte Carlo and Stochastic parameters� This

produces a table of relative di�erences to the baseline solution �� ��
� which is then ranked

Sensitivity of the model to parameters increases towards the bottom of the table
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Chapter �� this insensitivity is not unexpected

As table �	 shows� the sensitivity of the annual f�ratio to model parameters is very similar to that

of annual NPP The model is most sensitive to phytoplankton photosynthesis and zooplankton grazing

parameters� and least sensitive to bacterial and detrital parameters Contrary to the �ndings of Fasham�

Ducklow � McKelvie ����
�for Bermuda Station �S�� but in keeping with the results already found here�

the annual f�ratio is fairly insensitive to parameters k�� N� and ��

Sensitivity and stochastic distributions

While the results produced by deterministic solutions at upper and lower parameter limits consist of only

a single value for both annual NPP and the annual f�ratio� both stochastic approaches produce many

such values� of which only the mean values were used to produce tables �� and �	 Figures �� to ��

show the distributions of both annual NPP and the annual f�ratio produced for each model parameter by

both the Monte Carlo and stochastic parameters techniques In each case� a histogram of the distribution

produced is shown together with the mean of the distribution and the deterministic baseline value of the

measure in question Because of space considerations� the results for parameter k� are not shown The

summary results for this relatively minor parameter are still included in all of the relevant tables however

The most obvious feature of these distributions is the di�erence between the Monte Carlo and stochastic

parameters techniques The latter produces distributions which are normal in shape� and usually sym�

metrical about the mean By contrast� all of the Monte Carlo simulations have non�normal distributions

Most are fairly uniform distributions� usually with a mild slope from one edge of the distribution to the

other However� some parameters �e�g� � and N� for annual NPP� �� kw� ��� g and N� for the annual

f�ratio� have skewed distributions� with relatively narrow regions containing a disproportionate number

of simulation results

Another di�erence between the two techniques is the range of results produced While individual Monte

Carlo runs have annual NPP ranging from around �

 to ��

 mmol N m�� y��� stochastic parameter

runs only range from around ��� to �


 mmol N m�� y��

Di�erences in distribution and range between the Monte Carlo and stochastic parameters techniques

were similarly reported by Kremer ������ with his algal model However� as his work used a two species

competition model which� for Monte Carlo simulations� invariably led to the extinction of one of the

algal species� it is di�cult to discern whether these di�erences in the distribution of system measures

were caused by di�erences in the techniques used� or by the extinction�prone structure of the model itself

In the context of parameter sensitivity� the distributions reveal that simple comparisons between simu�

lation means and the deterministic baseline solution can miss the e�ects of important parameters For

example� the results of Monte Carlo simulations for parameters k� and g� and stochastic parameters sim�
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Figure ��� Frequency distributions of annual NPP for each model parameter produced

by Monte Carlo simulations at OWS �India� The dotted line marks annual NPP for the

deterministic solution with baseline parameter values The dashed line marks mean annual

NPP from the stochastic simulations Note the change in vertical scale on the histograms

of model parameters �� and � Annual NPP in mmol N m�� y��
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Figure ��� Frequency distributions of annual NPP for each model parameter produced by

stochastic parameter simulations at OWS �India� The dotted line marks annual NPP for

the deterministic solution with baseline parameter values The dashed line marks mean

annual NPP from the stochastic simulations Annual NPP in mmol N m�� y��
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Figure ��� Frequency distributions of the annual f�ratio for each model parameter produced

by Monte Carlo simulations at OWS �India� The dotted line marks the annual f�ratio for

the deterministic solution with baseline parameter values The dashed line marks mean

annual f�ratio from the stochastic simulations Note the change in vertical scale on the

histograms of model parameters kw� k�� ��� g and N� The f�ratio is non�dimensional
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Figure ��� Frequency distributions of the annual f�ratio for each model parameter produced

by stochastic parameter simulations at OWS �India� The dotted line marks the annual f�

ratio for the deterministic solution with baseline parameter values The dashed line marks

mean annual f�ratio from the stochastic simulations Note the change in vertical scale on

the histograms of model parameters k� and �� The f�ratio is non�dimensional

		




ulations for � and g� show that a parameter can have a strong in�uence on the range of simulation results

but leave little trace of this in the simulationmean These parameters appear less signi�cant in tables ��

and �	 but become among the most important when the range of results are considered Table �� shows

an alternative ranking of the results from Monte Carlo and stochastic parameters simulations in which

the standard deviations of the distributions are instead used to quantify model sensitivity to parameters

While these new rankings do not cause any major revisions of the results already discussed �the same

photosynthesis and grazing parameters dominate� while the same bacterial and detrital parameters are

still of minor importance�� they underline the fact that analyses should take account of more than just

mean behaviour of simulations Parameter g� for instance� is ranked ��th in signi�cance when mean an�

nual NPP in stochastic parameters simulations is used for ranking When its e�ects on the distribution

of annual NPP are considered it becomes the most important parameter Figure �� shows the compar�

ison between deviation of the stochastic mean from the baseline deterministic solution and stochastic

standard deviation In three of the four cases shown� the parameter which causes the greatest standard

deviation is not the same as the parameter which shows the greatest deviation in its stochastic mean

from the deterministic solution As would be expected� parameters which produce deviance from the

deterministic solution in their stochastic means tend to have greater standard deviations �since param�

eters are stochastically assigned values from a continuous distribution�� but the reverse is clearly not

true Given that the parameters here are assigned stochastic values symmetrically about their baseline

value� and that the response of the model equilibrium to changes in the parameter value is not necessarily

symmetrical �see �gures �� to ��� in Chapter ��� then results such as this are not unexpected �although

they may be di�cult to predict given the complexity of the model�

A marked di�erence between results for annual NPP and the annual f�ratio� which is re�ected in the

simulations of both stochastic techniques� is that although di�erent parameters a�ect these two system

measures di�erently� there is a fairly continuous range of parameter sensitivities with annual NPP�

whereas with the annual f�ratio� the model is acutely sensitive to a single parameter ��� and considerably

less sensitive to all of the others Both techniques �nd that modelled annual NPP is most sensitive to

parameter g� but �nd that it is relatively closely followed by a string of other parameters to which the

model is almost as sensitive In contrast� with the annual f�ratio both techniques �nd that parameter �

is the most in�uential� but that its rivals lag considerably behind it in importance In the case of Monte

Carlo simulations� its nearest rival� Vp� induces less than a sixth of the variability that � produces �with

stochastic parameters� the closest rival� g� induces only slightly more than a third of the variability of

�� This extreme sensitivity to � is particularly curious since the parameter has no direct dealings with

either nitrate or ammonium �unlike parameters k�� k� or ��

Sensitivity of state variables

All of the work so far has focussed on the sensitivity of two major system measures to changes in pa�

rameter values Annual NPP measures the total quantity of nitrogen absorbed by model phytoplankton�
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Table ��� Sensitivity of annual NPP �NPP� and the f�ratio �f�ratio� to model parameters

at OWS �India�  Stochastic simulations performed using both Monte Carlo and stochastic

parameters techniques� and sensitivity assessed by ranking of parameters by standard devi�

ation Sensitivity of model to parameters increases towards the bottom of the table Note

that both sets of f�ratio standard deviations have been multiplied by a factor of �


 for

clarity Annual NPP in mmol N m�� y�� The f�ratio is dimensionless
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Figure ��� Comparing the standardised deviation of stochastic means from the deterministic

solution with the standard deviation of the stochastic distributions Annual NPP �top row�

and the annual f�ratio �bottom row� considered for both Monte Carlo �left� and stochastic

parameter �right� techniques Each marker indicates a di�erent model parameter Note that

the scales on each pair of graphs is constant� and that standard deviations are plotted on

a logarithmic scale Means of both measures standardised to those from the deterministic

solution �i�e� deterministic baseline value � �
�

and available for their growth processes �or to those of the zooplankton which graze upon them� The

annual f�ratio quanti�es the fraction of modelled annual NPP which is supported by nitrate uptake

��new� production�� and this fraction of total production is considered important because it is coupled

to the transfer of biomass to the deep ocean and� potentially� its burial in sediments on the ocean �oor

��regenerated� production involves the use of nitrogen from organic sources recycled in the mixed layer�

as it has already been recycled� such organic material clearly cannot be buried on the ocean �oor�

These system measures are important to the issue of climate change� since they relate to biogeochem�

ical pathways which play an important role in the regulation of carbon dioxide in the earth�s atmosphere

However� in the validation of models where� for instance� the importance of speci�c model compart�

ments� rather than global measures� may be signi�cant� examining the sensitivity of other measures may

be more appropriate To this end� tables of the sensitivity of each of the model�s state variables �plus

Total N� the total concentration of nitrogen in the modelled mixed layer� to each of its parameters were

constructed from the results of the Monte Carlo and stochastic parameters techniques These tables used

		�



annual means of daily standard deviation for each of the state variables� and then ranked the importance

of each parameter to these measures Tables �� and �� show the results of this procedure Comparable

tables using the deterministic solutions produced at upper and lower parameter limits were not con�

structed� primarily because the choice of deviation metric �from the baseline solution� was not simple�

but also because the previous sensitivity results broadly agreed with those of the stochastic approaches

0 100 200 300
0

0.5

1

1.5

2

2.5

3

Time (days)

Ph
yt

op
la

nk
to

n 
co

nc
en

tr
at

io
n

Monte Carlo

0 100 200 300
0

0.5

1

1.5

2

2.5

3

Time (days)

Ph
yt

op
la

nk
to

n 
co

nc
en

tr
at

io
n

Stochastic parameters

0 100 200 300
0

0.2

0.4

0.6

0.8

Time (days)

Ph
yt

op
la

nk
to

n 
st

an
da

rd
 d

ev
ia

tio
n

0 100 200 300
0

0.2

0.4

0.6

0.8

Time (days)

Ph
yt

op
la

nk
to

n 
st

an
da

rd
 d

ev
ia

tio
n

Figure ��
� Variability in the seasonal cycle of phytoplankton concentration for Monte Carlo

�left� and stochastic parameters �right� techniques Parameter g variable in both cases ��


d�� � �
�� transformation period of � day for stochastic parameters� The top row of plots

show the daily mean �solid�� and minimumand maximum �dotted� concentrations produced

by the two techniques Concentrations �and standard deviations� in mmol N m��

The parameter sensitivity results again show broad agreement with those already presented Most model

compartments �especially phytoplankton and zooplankton� are sensitive to the same parameters as an�

nual NPP and the annual f�ratio Phytoplankton photosynthesis and zooplankton grazing parameters

dominate� but certain compartments show greater sensitivity to other parameters With both stochastic

techniques� nitrate and total nitrogen are very sensitive to N�� the concentration of subthermocline ni�

trate As this parameter is critical in controlling the quantity of nitrogen in the modelled system �most of

which remains as nitrate in the short OWS �India� summers� this result is unsurprising In Monte Carlo

simulations� this rise in importance is slightly matched by that of m� the cross�thermocline mixing rate�

which also plays a role in supplying nitrate to the mixed layer However� as entrainment of nitrate from

the deep ocean by seasonal wind�mixing is very important at OWS �India�� cross�thermocline mixing
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Monte Carlo

P Z B D Nn Nr Nd Total N

m m m m k� m m k�

�� k� k� k� m �� k� Vb

k� �� �� k� k� �� �� m

�� k� k� �� 	 k� N� k�

k� �� 	 k� Vb k� k� 	


 k� V �� �� k� V k�

k� 	 �� 	 k� p� 
 ��

	 Vb N� 
 �� 	 	 ��

V 
 
 Vb �� 
 �� 


Vb k� k� �� 
 Vb kc ��

N� V kc N� V �� k� kc

�� �� p� p� kc k� � V

� N� � � k� k� p� k�

k� � k� k� k� k� k� �

kc k� k� k� p� V � k�

p� p� �� kc � N� �� p�

k� kc Vb V kw � g kw

Vp �� Vp Vp � kc k� �

� k� � � � �� Vp �

� kw � � Vp Vp �� Vp

kw � kw kw k� kw k� k�

k� � k� k� �� � � ��

�� Vp �� �� g � � g

� � � g � g kw �

g g g � N� � Vb N�

Table ��� Sensitivity of each of the model compartments at OWS �India� to model pa�

rameters for Monte Carlo simulations Parameters ranked according to the mean annual

standard deviation of each compartment Sensitivity of the compartments to parameters

increases towards the bottom of the table
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Stochastic parameters

P Z B D Nn Nr Nd Total N

m m m m m m m m

N� k� N� N� k� k� N� k�

�� �� k� 	 	 	 k� 	

k� N� k� k� k� N� k� Vb

k� 	 �� k� �� �� V k�

k� k� �� k� Vb k� �� k�

	 k� 	 Vb k� k� 
 ��

�� Vb V �� �� Vb �� ��

Vb �� �� �� �� �� � 



 �� kc 
 
 �� k� ��

V V 
 �� V V kc kc

�� 
 k� k� k� 
 �� V

kc kc k� kc k� k� k� k�

k� k� k� k� kc kc 	 k�

k� k� � � p� k� p� �

� � Vb V � � �� kw

kw kw p� p� kw kw Vp p�

p� p� kw kw � p� k� �

� � � � � � � �

� � � � Vp � � Vp

Vp Vp Vp Vp k� Vp � k�

k� k� k� k� �� k� g ��

�� �� �� �� g �� k� g

� � � g N� � kw �

g g g � � g Vb N�

Table ��� Sensitivity of each of the model compartments to model parameters for stochastic

parameter simulations Parameters ranked according to the mean annual standard deviation

of each compartment Sensitivity of the compartments to parameters increases towards the

bottom of the table
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plays a less important role �though its role is likely to be much greater at locations like Bermuda Station

�S�� where seasonal mixing is less extreme� Another marked shift in the importance of parameters

occurs with the DON compartment Although this compartment is strongly coupled to the phytoplank�

ton and zooplankton compartments because of their inputs to it� bacterial parameters Vb and k� �and�

in Monte Carlo simulations� ���� hitherto considered minor from their annual NPP and annual f�ratio

results� become of much greater importance This result stems from the role bacteria play as the sole

sink for DON In contrast� the bacterial compartment itself is by far most sensitive to the phytoplankton

and zooplankton parameters already mentioned �the insensitivity of the bacterial compartment to its

own parameters was also remarked upon in Chapter ��

Aside from the di�erences already mentioned� the results of the Monte Carlo and stochastic parameters

simulations are relatively similar The Monte Carlo results show more variability in the precise plac�

ing of parameters on the sensitivity tables �by contrast� with the stochastic parameters technique� four

compartments share exactly the same �top �� parameters�� but aside from this minor di�erence� it is

di�cult to distinguish any further shifts in the sensitivity to di�erent parameters between the techniques

Although the work in this section has focussed on mean variance of the state variables across a simulated

annual cycle� variance is not constant across this period Figure ��
 shows the results of variability in

parameter g �zooplankton maximum ingestion rate� one of the most in�uential parameters in the earlier

analysis� on the daily range and standard deviations of phytoplankton concentrations for both Monte

Carlo and stochastic parameters techniques

Both techniques �nd that variance around the mean solution is seasonal� with greatest variance during

the summer months �this pattern is also re�ected in the coe�cient of variation� although to a lesser

degree� results not shown� Both techniques also produce very similar patterns of mean concentration

across the year� both to each other� and to the deterministic solution In particular� the summer oscil�

lations appear strongly in both the means and variance produced by the two techniques

The two techniques di�er in the magnitude of the variance they produce� with Monte Carlo often

producing daily standard deviations more than double those of the stochastic parameters technique The

variance of the Monte Carlo simulations also hints at a slight �fourth oscillation� during the autumn

months The daily ranges of results between the two techniques also di�er The Monte Carlo range

is smooth� probably because it represents the solutions produced by values of g at the extremes of the

parameter�s range By contrast� the range produced by �

 runs of the stochastic parameters technique

is jagged� presumably because of the daily parameter transformation
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����� Conclusions

This section has detailed an examination of the sensitivity of the Fasham ������ model to 	� of its

parameters under OWS �India� forcing The deterministic approach outlined in Fasham� Ducklow �

McKelvie ����
� and two stochastic approaches were used� principally to determine the sensitivity of

two key system measures� annual NPP and the annual f�ratio� to variations in the values of the model

parameters under question In addition to the parameter comparisons themselves� the signi�cance of

the choice of measure by which to compare the parameters was also examined

In performing their deterministic analysis� Fasham� Ducklow � McKelvie ����
� found that parameters

kw� �� �� ��� N�� g and k� strongly in�uenced the model�s behaviour at Bermuda Station �S� Although

the analysis here focussed on OWS �India�� most of these parameters were still found to be important

The parameter sensitivities of both system measures were dominated by phytoplankton photosynthesis

and zooplankton grazing parameters Parameters dealing with other model compartments �in particular

those pertaining to bacteria� were of much lesser importance Despite the variety in the techniques used

to study parameter sensitivity� there was broad agreement on which were the most� and least� signi�cant

parameters When sensitivity studies were extended to variability in model compartments across the

year� very similar results were found� although some otherwise low importance parameters were found

to be important to particular compartments

Examination of the distribution of the two system measures in question found that the two stochastic

approaches di�ered greatly in their results Stochastic parameters produced normal�like curves� while

Monte Carlo produced near�uniform or strongly skewed distributions The variance of these results also

illustrated that the results of stochastic techniques should be assessed by their standard deviations as

well as their means

��	 Parameter sensitivity at Bermuda Station �S�

The previous section examined the sensitivity of the Fasham ������ model to each of its parameters

under the OWS �India� forcing regime In this section the procedure is repeated� but for the Bermuda

Station �S� forcing regime Since the di�erent approaches to measuring parameter sensitivity in the last

section broadly agreed on which parameters the model was most sensitive to� for this section only the

stochastic parameters technique is reprised

Simulations for each of the model parameters were performed as described previously The baseline

parameter values used were those used previously for Bermuda Station �S� simulations �i�e� identical

to those for OWS �India�� with the exception of parameters Vp and N�� Uniform � �
� distributions

around the baseline values of each of the parameters were used to generate stochastic values every sim�
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Figure ���� Frequency distribution of annual NPP for each model parameter produced by

stochastic parameter simulations at Bermuda Station �S� The dotted line marks annual

NPP for the deterministic solution with baseline parameter values The dashed line marks

mean annual NPP from the stochastic simulations Annual NPP in mmol N m�� y��
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Figure ��	� Frequency distributions of the annual f�ratio for each model parameter pro�

duced by stochastic parameter simulations at Bermuda Station �S� The dotted line marks

annual NPP for the deterministic solution with baseline parameter values The dashed line

marks mean annual NPP from the stochastic simulations The f�ratio is non�dimensional
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��� � �
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Table ��� Sensitivity of annual NPP and the f�ratio to model parameters at Bermuda

Station �S� Stochastic simulations performed using the stochastic parameters technique

Parameters ranked for both system measures by di�erence of stochastic mean to determin�

istic solution �Mean�� and by standard deviation of stochastic simulations �St� dev��

Sensitivity of the model to parameters increases towards the bottom of the table Note that

the f�ratio standard deviations have been multiplied by a factor of �


 for clarity Annual

NPP in mmol N m�� y�� The f�ratio is dimensionless

	��



ulated day for �

 separate runs Each run was initialised with state variable values calculated from

a �
 year deterministic solution� and consisted of a single transient year followed by a single sampled year

Figures ��� and ��	 respectively show the distributions of annual NPP and the annual f�ratio pro�

duced by these simulations Table �� shows the ranked parameter sensitivities of both of these measures

Parameter ranking is both by deviation of the stochastic mean from the baseline solution and by the

standard deviation of the stochastic simulations

With respect to the distributions produced� there are only mostly minor di�erences between the results

from the two locations As with OWS �India� simulations� parameter sensitivity is dominated by phyto�

plankton photosynthesis parameters and zooplankton grazing parameters �although� with annual NPP�

the photosynthesis parameters are of greater importance than the grazing ones� The largest di�erence

between the locations occurs in the importance of N� At OWS �India� N� was of relatively minor

importance� mostly because the forcing regime includes a long period of deep mixing and a relatively

short summer period� the e�ects of which prevent nitrate starvation Bermuda Station �S�� by contrast�

undergoes long periods in the summer during which nitrate is at limiting levels Consequently� variation

in subthermocline nitrate is more liable to a�ect primary production Though less so� the annual f�ratio

is also more sensitive to N� at Bermuda Station �S� than at OWS �India�  As at OWS �India�� pa�

rameter � dominates variability at Bermuda Station �S�

Fasham� Ducklow � McKelvie ����
� found that parameters �� �utilised slightly di�erently in their

model� and k� also strongly a�ected the model In the case of the former parameter� its lack of importance

in the earlier work at OWS �India� was put down to the change in functional form of the phytoplankton

loss term between the models of Fasham� Ducklow � McKelvie ����
� and Fasham ������ However�

as �gures ��� and ��� indicate� the phytoplankton loss term is of considerably greater importance at

Bermuda Station �S�and� correspondingly� this is re�ected in the rise in importance of �� in the results

here Although only rising from ��th to ��th position in the annual NPP rankings �and ��th to �th in

the annual f�ratio rankings�� �� more than doubled its variability between the two stations �noteworthy

since the variability of most other important parameters fell substantially between the stations� The

same changes occurred with parameter k�� which both rose in position and absolute variability between

OWS �India� and Bermuda Station �S� �in the case of the annual f�ratio� k��s variability rose by almost

an order of magnitude�

The only other major di�erence between simulations at the two locations is the shift in mean annual

f�ratio for parameters kw and k� In both cases Bermuda Station �S� simulations predict lower mean

f�ratios than the baseline solution� while at OWS �India� both parameters predict higher means than

their corresponding baseline solution Aside from these �relatively major� shifts� other parameters predict

means relative to the baseline solution similarly between the two locations

	�	



����� Conclusions

This section attempted to determine any di�erences in the sensitivities of parameters when the model

was run under di�erent forcing conditions The results �from only the stochastic parameters technique

in this instance� were similar to those from OWS �India�� but additionally found that parameters ��� k�

and �especially� N� became more important because of changes in the forcing regime The promotion

of these parameters is partially in line with their status in Fasham� Ducklow � McKelvie ����
�

��
 Exploring stochastic approaches

In the previous sections� stochastic techniques were used to determine sensitivity rankings for each of

the Fasham ������ model�s parameters In this section the two techniques are explored to determine the

behaviour of the model in response to variation in the size of parameter variability and variation in the

period of parameter transformations
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Figure ���� The behaviour of annual NPP and f�ratio means and standard deviations as the

variability about the parameter mean is increased Simulations apply Monte Carlo technique

to model parameter g �zooplankton maximum ingestion rate� Variability around parameter

mean increased from 

� �� ��� to �
 �� �

�� Annual NPP in mmol N m�� y�� The

annual f�ratio is dimensionless
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Figure ���� The behaviour of annual NPP and f�ratio means and standard deviations as the

variability about the parameter mean is increased Simulations apply stochastic parameters

technique to model parameter g �zooplankton maximum ingestion rate� Variability around

parameter mean increased from 

� �� ��� to �
 �� �

�� Annual NPP in mmol N m��

y�� The annual f�ratio is dimensionless

In the earlier parameter sensitivity studies a constant variability �mean � �
�� was used for all param�

eters examined In this section simulations were performed in which the variability of g �zooplankton

maximum ingestion rate�� the model parameter which induced the most variability in annual NPP with

both the Monte Carlo and stochastic parameters techniques� was increased from � �� �range � 
�� to

�
� d��� up to � �

� �range � 

 to 	
 d���

Both Monte Carlo and stochastic parameters techniques were used as previously Simulations were per�

formed with OWS �India� forcing All model parameters �except g� were held constant at their baseline

values The distribution of stochastic values of g were uniform around its baseline value Stochastic

parameters simulations transformed the value of g with a period of � day Preliminary simulations found

that for extreme parameter variability � ���� �

 runs were not su�cient to produce reliable means

and standard deviations� and consequently �


 runs were performed for all simulations in this section

As previously� each simulation run was initialised with state variable values calculated during a �
 year

deterministic solution� and consisted of a transient period �Monte Carlo � � years� stochastic parameters

� � year� followed by a single sampled year
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Figures ��� and ��� show the results of the simulations for Monte Carlo and stochastic parameters

techniques respectively In both cases the behaviour of the means and standard deviations of annual

NPP and the annual f�ratio are shown

The Monte Carlo simulation results show a number of interesting �and unexpected� features While the

mean annual f�ratio shows a fairly constant� curved increase as parameter variability is increased� mean

annual NPP rises at �rst until a parameter variability around � �
�� then falls sharply as variability is

increased to � �

� �see �gure ���� Both measures show increasing variability as parameter variability

is increased However� while variability in annual NPP increases in a hyperbolic form with parameter

variability� variability in the annual f�ratio increases in a sigmoid fashion� with the greatest increases in

variability occurring as parameter variability is increased from around � �
� to � �
�

By contrast� the stochastic parameters simulations produce much simpler results The mean annual

f�ratio increases in a similar fashion to that already found in the Monte Carlo simulations �although the

magnitude of increase is considerably smaller� Mean annual NPP� while being somewhat erratic in its

trend with increasing parameter variability �possibly an even greater number of simulations are required

to smooth this trend�� generally increases with parameter variability �although again the magnitude of

increase is considerably smaller than that found with Monte Carlo simulations� The variability found

in both of these measures increases almost perfectly linearly with increasing parameter variability �see

�gure ���� This contrast with the results of the Monte Carlo simulations is perhaps explained by the

signi�cant di�erence in magnitude of variability between the two stochastic techniques Although vari�

ability in the Monte Carlo simulations takes hyperbolic and sigmoid forms with increasing parameter

variability� at values of annual NPP and f�ratio variability comparable in absolute terms with those

produced during stochastic parameters simulations� both measures do not have such obviously curved

relationships between parameter variability and measure variability Curved relationships between pa�

rameter and measure variabilitymay only occur in stochastic parameters simulations where much greater

parameter variability is used �at least for parameter g�

����� Period of stochastic transformations

The periodical nature of the parameter transformations in stochastic parameters simulations e�ectively

introduces another parameter which otherwise comparable Monte Carlo simulations lack Kremer ������

found that as the period of transformations was increased� variability of the system measure studied also

increased His results suggested a non�linear relationship between transformation period and variance�

but only simulations using a few di�erent periods were performed

In this section� the e�ect of varying the frequency of stochastic transformations is investigated by in�

creasing the period of transformations from � to ��
 days �i�e� from daily to essentially annual parameter

variability� As previously� parameter g was used in simulations with stochastic variability � �
� Sim�

ulations were performed with OWS �India� forcing Simulation details were otherwise identical to those
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Figure ���� The behaviour of annual NPP and f�ratio means and standard deviations as

the period of the parameter transformations in stochastic parameter simulation is increased

The circles represent stochastic parameters simulations� the squares represent a compara�

ble Monte Carlo simulation Annual NPP in mmol N m�� y�� The annual f�ratio is

dimensionless

in section ���

Figure ��� shows the annual NPP and annual f�ratio results for these simulations For the purposes of

comparison� the results from a Monte Carlo simulation with the same parameter variability have also

been plotted on the graphs �the assignment of ��� days as the period of the Monte Carlo simulation

is purely for graphical purposes� In all four cases� as the period of the stochastic transformations is

increased �i�e� the transformations occur less often�� the stochastic parameters results converge towards

that of the Monte Carlo simulation However� the means of both measures begin at values below that

of the Monte Carlo simulation� and rise to values above it before falling back towards it In the case of

the mean annual f�ratio� its maximum value is attained at a clearly de�ned peak with a transformation

period of 	
 days The results of mean annual NPP are considerably more variable �as was also found

in the previous section�� with the maximum value being attained at a transformation period of �
 days

However� barring this value� and another potential outlier at 	

 days� the maximum appears to be

attained at a much lower period �approximately �
 days�

The standard deviation results of both measures show much clearer� but considerably di�erent� trends
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Figure ���� Plots of the annual means of the daily standard deviations of each of the model

compartments as the period of the parameter transformations is increased The circles

represent stochastic parameters simulations� the squares represent a comparableMonte Carlo

simulation Note that the scale of the vertical axes vary between plots Standard deviations

in mmol N m��

While variability in annual NPP rises hyperbolically with increasing transformation period �almost

reaching the variability of the Monte Carlo simulation by period ��
 days�� variability in the annual

f�ratio peaks at low period �approximately �
 days� and meanders around a plateau of variability as

transformation period increases �Monte Carlo variability is slightly lower than this plateau�

Figure ��� shows comparable plots of the annual means of the daily standard deviations of each of

the model compartments �except detritus� which produced a plot very similar to that of phytoplankton�

zooplankton and bacteria� In all of the compartments bar nitrate� variability peaks when a transforma�

tion period of 	
 days is used Variability in the nitrate compartment� by contrast� behaves similarly to

annual NPP with increasing transformation period In all cases� as period is increased beyond 	
 days�

variability tends towards that found in the comparable Monte Carlo simulation

Although these results �nd that the variability in nitrate �when averaged across the entire year� behaves

qualitatively di�erently to that of the other model compartments in response to parameter transforma�

tions� when individual days during the year are considered this picture is more complicated Figure ���

shows the results from two signi�cant days during the forced year � day ��� �spring bloom maximum��

and day ��� �minimum mixed layer depth� In the case of day ���� the patterns of variability are very

similar �if even more exaggerated� to those already shown ��gure ���� However� in the case of day ����

the patterns of variability of the phytoplankton and zooplankton concentrations are quite di�erent to
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Figure ���� Frequency distributions of annual NPP for stochastic parameter simulations

with increasing transformation period The dotted line marks annual NPP for the determin�

istic solution with baseline parameter values The dashed line marks mean annual NPP from

the stochastic simulations The �nal graphs shows the comparable frequency distribution

produced by the Monte Carlo technique Annual NPP in mmol N m�� y��
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Monte Carlo

Figure ���� Frequency distributions of the annual f�ratio for stochastic parameter simula�

tions with increasing transformation period The dotted line marks the annual f�ratio for the

deterministic solution with baseline parameter values The dashed line marks mean annual

f�ratio from the stochastic simulations The �nal graphs shows the comparable frequency

distribution produced by the Monte Carlo technique The annual f�ratio is dimensionless
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Figure ���� Variation in the patterns of standard deviation with stochastic transformation

period for the phytoplankton �left�� zooplankton �centre� and nitrate �right� compartments

The two rows of plots show standard deviations for each of the three compartments for

days ��� �spring bloom maximum� and ��� �minimum mixed layer depth� respectively

The circles represent stochastic parameters simulations� the squares represent a comparable

Monte Carlo simulation Standard deviations in mmol N m��

those of both day ��� and the annual average

Figures ��� and ��� further illustrate the consistent trend for the results of stochastic parameters sim�

ulations to tend towards those of Monte Carlo simulations as the period of transformations is increased

The distributions of both annual NPP and the annual f�ratio shift from near�normal curves at low trans�

formation period� towards the near�uniform �annual NPP� and skewed �annual f�ratio� distributions of

Monte Carlo simulations Since stochastic parameters simulations use a single transient year before

the sampled year� simulations with transformation periods of ��� days experience two transformations

during an individual simulation �in addition to the transformation at its start�� and so are not directly

comparable to a Monte Carlo simulation

����� Transformation timing of stochastic parameters

As introduced by Kremer ������� in the stochastic parameters technique� model parameters� when trans�

formed� are allowed to take any value within a given range However� the timing of the transformation

events themselves is rigidly �xed� with a constant period between events In this section� this aspect of

the technique is modi�ed to allow the timing of parameter transformation itself to become a stochastic

process
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N daysx x x x x x x =

y1 y2 y3 y4 y5 y6 y = N days

Fixed period parameter transformations

Stochastic period parameter transformations

Simulation time

Figure �	
� Diagrammatic representation of the �xed period and stochastic period ap�

proaches to stochastic parameter transformations In the former case� the time between

each parameter transformation is a constant N days In the latter case� the timing of

parameter transformations is a stochastic process itself� with a mean period of N days

Figure �	
 shows a diagrammatic representation of both the �xed period and the stochastic period forms

of the stochastic parameters technique In the �xed period form �the one used up until this point�� trans�

formation events �indicated by the lightning symbols in the �gure� occur with a constant period� x� of N

days In the stochastic period form of the stochastic parameters technique� the time between each param�

eter transformation� y� is allowed to vary stochastically� but such that it has an average period of N days

Computationally this is achieved by calculating the probability of a stochastic transformation event

occurring during a given model iteration� and then �rolling the dice� to decide whether or not the

transformation occurs The probability of a transformation event occurring is ���N �� where � is the

duration of each iteration �e�g� 

� days for a simulation using 	� iterations per day�� and N is the

average period of the stochastic transformations Since the closer the value of � �a feature of the model�s

implementation� to N �a model parameter�� the more this approach resembles the �xed period approach

�when � � N � the procedure described here triggers a stochastic transformation with a �xed period � �

The e�ects on simulation results of varying � were investigated� and �gure �	� shows the results of three

such simulations where di�erent numbers of daily iterations were used In the three cases shown� the

results were very similar� suggesting that 	� iterations per day are su�cient for the stochastic period

approach outlined above

As the stochastic period approach a�ects the timing of stochastic transformations the work from the

previous section was repeated� and a series of simulations were performed across a range of average

transformation periods �� day to ��
 days� As previously� parameter g used in simulations with vari�

ability � �
� Simulations were performed under OWS �India� forcing Otherwise� simulation details

identical to those in section ���
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Figure �	�� Frequency distributions of annual NPP produced by stochastic period stochastic

parameters simulations as the number of daily model iterations is increased Simulations

performed with average transformation period of � day Note that the scale on all three

plots is identical Annual NPP in mmol N m�� y��

0 100 200 300 400
940

950

960

970

980

990

Period of stochastic transformation

M
ea

n 
an

nu
al

 N
PP

0 100 200 300 400
0

50

100

150

200

250

Period of stochastic transformation

St
an

da
rd

 d
ev

ia
tio

n 
an

nu
al

 N
PP

0 100 200 300 400
0.504

0.506

0.508

0.51

0.512

0.514

0.516

Period of stochastic transformation

M
ea

n 
an

nu
al

 f
−

ra
tio

0 100 200 300 400
0

0.002

0.004

0.006

0.008

0.01

0.012

Period of stochastic transformation

St
an

da
rd

 d
ev

ia
tio

n 
an

nu
al

 f
−

ra
tio

Figure �		� The behaviour of annual NPP and f�ratio means and standard deviations as the

period of the parameter transformations in stochastic parameter simulations is increased

Plots show the results from both �xed period stochastic parameters �circles� and stochastic

period stochastic parameters �stars� Squares represent results from a comparable Monte

Carlo simulation Annual NPP in mmol N m�� y�� The annual f�ratio is dimensionless

Figure �		 shows the behaviour of the means and standard deviations of annual NPP and the annual

f�ratio as mean transformation period is increased For the purposes of comparison� in each case the

results from comparable �xed period simulations are also shown �and� as previously� the result from a

Monte Carlo simulation� With the exception of slightly raised values at low transformation period �in

stochastic period simulations with periods below around 	
 days�� it is di�cult to discern any di�erence
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Figure �	�� The behaviour of the annual means of the daily standard deviations of the

phytoplankton �left�� zooplankton �centre� and nitrate �right� compartments as the period

of the parameter transformations in stochastic parameter simulations is increased Plots

show the results from both �xed period stochastic parameters �circles� and stochastic period

stochastic parameters �stars� Squares represent results from a comparable Monte Carlo

simulation Standard deviations in mmol N m��

between the behaviour of the means of both measures between stochastic and �xed period simulations

Both types of simulation result in scattered annual NPP at medium to high period In the case of the

annual f�ratio� both approaches produce a slowly declining mean after an initial peak �which is slightly

higher with �xed period transformations� as transformation period is increased

Although the variance of the annual f�ratio repeats this pattern of a slight di�erence between the

two approaches at low period �variance is slightly greater with stochastic period transformations�� the

di�erence is noticeably greater when the variance of annual NPP is considered Until transformation

periods of around 	

 days� variance of annual NPP in stochastic period simulations is consistently

greater than that in �xed period simulations This di�erence between the two approaches is repeated in

the results of mean annual standard deviation of nitrate concentration� as shown in �gure �	� However�

this is not repeated in the simulations of the other model compartments �phytoplankton and zooplankton

shown�� although they do �nd that for periods of less than �
 days� stochastic period simulations again

show greater variance than otherwise comparable �xed period ones This is also shown in the annual

cycles of variability of phytoplankton concentration in �gure �	� Both the range of results observed

and the daily standard deviations �nd that stochastic period simulations are more variable than �xed

period simulations �at least for the low transformation period used in these simulations�

����� Conclusions

In this section� simulations have explored the consequences of changing the variability of a parameter

about its mean� increasing the period between parameter transformations in the stochastic parameters

technique� and modifying the stochastic parameters technique such that parameter transformations oc�

cur at stochastic intervals rather than the �xed intervals
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Figure �	�� Variability in the seasonal cycle of phytoplankton concentration for �xed period

�left� and stochastic period �right� approaches to the stochastic parameters technique The

top row of plots show the daily mean �solid�� and minimum and maximum �dotted� concen�

trations produced by the two techniques Period of stochastic transformations in both cases

is � day ��xed and average respectively� Concentrations and standard deviations in mmol

N m��

The �rst series of simulations increased the variability of parameter g from � �� to � �

�� and ex�

amined the consequence of this for both the Monte Carlo and stochastic parameters techniques Both

techniques found that �unsurprisingly� the higher the range of possible parameter values� the greater

the variability in the model output In the case of stochastic parameters� a fairly linear correlation be�

tween parameter variability and model variability resulted However� the Monte Carlo results were more

complex with the two system measures examined responding di�erently to di�erent levels of parameter

variability

Section ��	 examined the results of simulations in which the periodicity of the parameter transforma�

tions in the stochastic parameters technique was varied between � day and ��
 days While this work

mostly found that increasing the transformation period increased variability� several of the measures

used found that variability either reached a maximum at quite low periods �� �
 days� or peaked at low

periods and fell o� as periods were further increased As the period between transformations increased�

stochastic parameter simulations were found to increasingly resemble those of Monte Carlo simulations

�at least in terms of overall variability�
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Finally� an alternative version of the stochastic parameters technique was developed in which the inter�

vals between parameter transformations were themselves allowed to be stochastic processes� rather that

the �xed length intervals of the normal technique This modi�cation to the technique slightly increased

variability at low transformation periods �� 	
 days� for most measures� but increased the variability in

annual NPP noticeably for periods of up to 	

 days

��� Multiple parameters and variability

In all of the previous sections� parameter variability has been con�ned to a single parameter for each

simulation While this procedure allows the sensitivity of the model to each individual parameter to

be estimated� variability in the real world processes which the parameters represent is ubiquitous In

this section� the e�ects on model variability as multiple parameters are allowed to vary are explored

using the stochastic parameters technique �with �xed transformation period� Although Kremer ������

allowed � model parameters to vary during the same simulations� he never investigated the e�ects of

either individual parameters or combinations of parameters on model variability

There are several ways in which multiple parameter simulations could be implemented � parameters asso�

ciated with the same state variable �e�g� phytoplankton or zooplankton physiological parameters� could

be co�varied� parameters could be added one�by�one to simulations in a nominal order� or parameters

could even be all made stochastic and their contribution to overall variability assessed by making them

constant and calculating any reduction �or� conceivably� gain� in variability In the work here� table ���s

parameter ranking �which is based upon the variability of annual NPP� was used to provide an order in

which parameters could be added In the �rst instance� simulations began with the parameter g� which

annual NPP is most sensitive to� and then added a parameter at a time to simulations Parameters were

added according to their position on table ��� with � then �� following g This procedure was continued

to the �
th most sensitive parameter A �nal series of simulations established the variability produced

when all 	� parameters were allowed to vary stochastically The procedure was then reversed� starting

from the �
th most important parameter� �� and working towards g

As previously� parameter values were transformed with a uniform distribution of � �
� around their

baseline values� and with a period of � day All parameters to be transformed were re�assigned values

simultaneously Each simulation run was initialised with state variable values calculated during a �


year deterministic solution� and consisted of a transient period followed by a single sampled year

Figures �	� and �	� show the behaviour of the means and standard deviations of annual NPP and the

annual f�ratio as the number of stochastic parameters is increased On both sets of plots a triangle is

used to indicate the results when all 	� parameters of interest are varied stochastically In both series of

	��



0 2 4 6 8 10 12
880

900

920

940

960

Number of parameters

M
ea

n 
an

nu
al

 N
PP

0 2 4 6 8 10 12
0

10

20

30

40

50

Number of parameters

St
an

da
rd

 d
ev

ia
tio

n 
an

nu
al

 N
PP

0 2 4 6 8 10 12
0.504

0.505

0.506

0.507

0.508

0.509

0.51

Number of parameters

M
ea

n 
an

nu
al

 f
−

ra
tio

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

Number of parameters

St
an

da
rd

 d
ev

ia
tio

n 
an

nu
al

 f
−

ra
tio

Figure �	�� The behaviour of annual NPP and f�ratio means and standard deviations as

the number of stochastic parameters in each simulation used to calculate them is increased

Parameter g is the �rst to be treated stochastically The others are made stochastic in

ranked order� from the 	nd ��� to the �
th ��� most sensitive The triangles mark the

results when all 	� model parameters are made stochastic Annual NPP in mmol N m��

y�� The annual f�ratio is dimensionless

simulations the means of both measures shift erratically and substantially �considering previous results�

in response to the addition of more stochastic parameters In all cases� the means of these measures are

shifted by the bias of each added parameter For instance� in the case of mean annual NPP in �gure

�	�� parameters � and �� �	nd and �rd� drag mean annual NPP down slightly as they are added As

evidenced in table ��� both also individually shift mean annual NPP slightly downwards Likewise�

when parameters k�� Vp� � and �� �th� �th� �th and �th� are added� mean annual NPP shifts sharply

downwards and� correspondingly� these parameters can also be seen in table �� to cause relatively large

downward shifts in mean annual NPP �in fact� these four parameters are the most important in terms of

changing mean annual NPP� The rise in mean annual NPP as parameters kw� p� and � ��th� �th and

�
th� are turned stochastic re�ects the increases in mean annual NPP caused by each of these parameters

individually This in�uence over mean annual NPP is repeated with the annual f�ratio and also occurs

when the parameters are added in reverse order

With a few minor exceptions� increasing the number of stochastic parameters increases variability in the

system measures shown �see also �gures �	� and �	�� Variability of annual NPP in �gure �	� follows
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Figure �	�� Frequency distributions of annual NPP for a series of simulations in which

the ten parameters with the greatest e�ect on annual NPP are made stochastic one by one

Parameter g �the parameter which annual NPP is most sensitive to� is the �rst to be treated

stochastically The others are made stochastic in ranked order� from the 	nd to the �
th

most sensitive The �nal graph shows the result when all 	� model parameters are made

stochastic Annual NPP in mmol N m�� y��

a hyperbolic course as the number of stochastic parameters rises Each addition adds progressively less

variability to the total While this might be expected considering the order in which parameters were

added� the variability added by successive parameters is usually considerably lower than the variability

detailed in table �� �i�e� total variability is not additive� The pattern of variability increase is not
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Figure �	�� The behaviour of annual NPP and f�ratio means and standard deviations as

the number of stochastic parameters in each simulation used to calculate them is increased

Parameter � is the �rst to be treated stochastically The others are made stochastic in

ranked order� from the �th �p�� to the �st �g� most sensitive The triangles mark the results

when all 	� model parameters are made stochastic Annual NPP in mmol N m�� y�� The

annual f�ratio is dimensionless

repeated in �gure �	�� where the most important parameters are added last This reversal tends to

make each parameter add roughly similar variability to total variability

Variability in the mean annual f�ratio results of both series of simulations is dominated by parameter

� As remarked previously� while the sensitivity of mean annual NPP to di�erent parameters is fairly

continuous� mean annual f�ratio is acutely sensitive to this parameter and� in both �gures �	� and �	��

its addition causes a marked rise in total variability The addition of other model parameters is of minor

note by comparison

��	�� Conclusions

While previous sections dealt entirely with situations in which only a single parameter varied during a

simulation� this section aimed to determine the consequences to model behaviour of simultaneous vari�

ability in multiple parameters The question was addressed by performing series of simulations in which

parameters were added one by one in increasing or decreasing order of model sensitivity
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Figure �	�� Frequency distributions of annual NPP for a series of simulations in which the

ten parameters with the greatest e�ect on annual NPP are made stochastic one by one

Parameter � �the parameter which annual NPP is �
th most sensitive to� is the �rst to be

treated stochastically The others are made stochastic in ranked order� from the �th to the

�st most sensitive The �nal graph shows the result when all 	� model parameters are made

stochastic Annual NPP in mmol N m�� y��

While the addition of more stochastic parameters to a simulation almost always increased overall vari�

ability� the contribution of each parameter to total variability �i�e� the di�erence in variability between

a simulation with that parameter stochastic and one where it was constant� was found to depend on

the order of addition Total variability of annual NPP was found to saturate as parameters were added�
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while the annual f�ratio was still dominated by the in�uence of parameter �

��� Variability and the reduced models

At the start of this chapter it was noted that another source of uncertainty in models was the actual

form of the model equations and the terms within them In Chapter � a series of reduced models were

introduced that aimed to explore the importance of structural elements in the full model An important

part of this work was examining the response of each of the models to di�erent forcing regimes� to

determine whether they shared the response of the full model or deviated from its response� possibly

revealing a �aw in doing so In this section� stochastic parameters simulations of each of the reduced

models were performed to determine how each of them responded to the addition of variability to their

parameters

Two series of simulations were performed In the �rst series� only parameter g was allowed to vary �since

all of the reduced models are at least PZ models� this parameter is used in all of them� The second series

allowed the �top eight� parameters �again� as assessed by their impact on mean annual NPP at OWS

�India� in the full model� to vary in all of the reduced models Since the reduced forms exhibit a range

in the total number of parameters they possess� this second series of simulations aimed to determine if

there were any di�erences between models in which di�erent fractions of their parameters were varying

�i�e� model 	c has only �� parameters� whereas model �c� has more than double this number� Models

with fewer parameters might be expected to be more a�ected when a greater proportion of these are

varied Only eight of the �top ten� parameters were used because entries � and �
 in the ranking �p�

and � respectively� are not used in several of the reduced models

As previously� simulations were performed for each of the reduced models at OWS �India� Parameter

values were transformed with a uniform distribution of � �
� around their baseline values� and with

a period of � day Where multiple parameters were varied� all were re�assigned values simultaneously

Each simulation run was initialised with state variable values calculated during a �
 year deterministic

solution� and consisted of a transient period followed by a single sampled year

Figures �	� and ��
� and table �� contain results from the �rst series of simulations Table �� sum�

maries the results from the second series of simulations Figure �	� shows the mean daily concentrations

of phytoplankton� and the range of concentrations found during the simulations� for each of the reduced

models Results for the full model appear at the top left of the tableau of plots Figure ��
 shows the

daily standard deviations of phytoplankton concentration found for each of the reduced models Both

tables �� and �� summarise annual NPP and annual f�ratio results for each of the reduced models

As �gure �	� shows� in all of the models �including the full model� the seasonal patterns of mean daily
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Figure �	�� Plots of the daily mean �solid line� and range �dotted lines� of phytoplankton

concentrations produced by stochastic parameter simulations of each of the reduced models

Simulations stochastic with respect to model parameter g �zooplankton maximum ingestion

rate� Note the change of vertical scale on the plot for model �c Concentrations in mmol

N m��
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Figure ��
� Plots of the daily standard deviation of phytoplankton concentrations produced

by stochastic parameter simulations of each of the reduced models Simulations stochastic

with respect to model parameter g �zooplankton maximum ingestion rate� Note the change

of vertical scale on the plot for model �c Standard deviations in mmol N m��
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Table ��� The deterministic values� stochastic means and stochastic standard deviations

of the annual NPP and f�ratios of the full model and its reduced forms from Chapter �

Stochastic parameters technique applied to parameter g �zooplankton maximum ingestion

rate� Note that the f�ratio standard deviations have been multiplied by a factor of �




for clarity Annual NPP in mmol N m�� y�� The f�ratio is dimensionless

phytoplankton concentration are very similar to the deterministic solutions as shown in �gure ��� The

range of daily results about these means is relatively narrow about the spring bloom produced by each

model but broadens during the summer and early autumn This is particularly noticeable in models

	c� �c and �c�� all three of which have a particularly pronounced third bloom in the late summer In

�gure ��
 this is particularly clear� with each bloom showing more variability than the last Another

di�erence between certain of the reduced models and the full model is the coherence of this third bloom

in the variability about the mean This can be seen in the range of values about the mean� but is again

clearer in the daily standard deviations of �gure ��
 Models �c	� �c� �c�� �c	� �c�� �c� and �c all show

this bloom strongly in their variability� while models �c	 �one of the favourites from Chapter ��� �c	 and

�c� show� in common with the full model� a much less distinct third bloom This distinction does not

follow previously mentioned di�erences in the models �e�g� presence�absence of bacteria compartment�

bacterial access to detritus as a growth substrate�� nor does it appear to relate to the period of the

summer oscillations �see table �	�
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Table ��� The deterministic values� stochastic means and stochastic standard deviations

of the annual NPP and f�ratios of the full model and its reduced forms from Chapter �

Stochastic parameters technique applied to the top � model parameters �as de�ned earlier�

Note that the f�ratio standard deviations have been multiplied by a factor of �


 for clarity

Annual NPP in mmol N m�� y�� The f�ratio is dimensionless

Table �� shows a number of interesting results Variation in parameter g causes� at most� a shift in

mean annual NPP of approximately �� from the deterministic solution �model �c�� Almost all of the

reduced models �except models �c�� �c and� notably� the full model�� show a very slight increase in mean

annual NPP from that in deterministic solutions Although models �c	 and �c�� favourites from Chapter

�� have standard deviations closest to that of the full model� the standard deviations of the other models

are mostly fairly similar �between around �� to 	� mmol N m���� with no obvious patterns between

models The mean annual f�ratios show similarly small shifts in their mean values from deterministic

solutions However� there are greater di�erences in the standard deviations calculated Models �c�� �c�

and� particularly� �c� have deviations close to that of the full model� but the remaining models ��c�� �c�

and �c� have deviations more than double that of the full model

The results of table �� broadly support those found using only the full model in section �� With the

�top eight� parameters varying together� mean annual NPP falls in all models� while the mean annual

	��



f�ratio slightly rises �see �gure �	� for comparison� The standard deviations of both measures increase

for all models In the case of annual NPP� deviations roughly double The standard deviations of the

annual f�ratios increase by about �
 � �
��� undoubtedly mostly due to the addition of parameter

� However� contrary to the suggestion made earlier� neither annual NPP nor the annual f�ratio data

suggest that smaller models are more greatly a�ected by having a greater fraction of their parameters

varying

��
�� Conclusions

In this section� the reduced models of Chapter � were re�introduced� and work performed to determine

whether the di�erent structures of the models led to any di�erences in their response to stochastic pa�

rameters The models were simulated with either a single parameter or the �top eight� parameters

stochastically varying

While there were di�erences between the outputs of the models� the only major di�erences between

lay in seasonal patterns of variability �most notably with �excitable� models� 	c� �c and �c�� Most

models exhibited variability close to that of the full model� and no obvious relationships between the

complexity of the models and their variability were discerned Several models ��c�� �c� and �c� were con�

sistently more variable than the others� but with no obvious common structures which could explain this

��� Summary

This chapter initially set out to determine the sensitivity of the Fasham ������ model to its various

parameters Using an earlier version of the model� Fasham� Ducklow � McKelvie ����
� performed a

deterministic analysis of parameter sensitivity at Bermuda Station �S�  The work here supplemented

this approach with two stochastic techniques� and initially moved focus to OWS �India� �to complement

the research in Chapter ��

The parameter sensitivity analyses of OWS �India� all agreed on the dominance of phytoplankton pho�

tosynthesis �kw� �� � and Vp� and zooplankton grazing parameters �g� �� k� and p�� These parameters

consistently appeared in the �top ten� rankings produced by all of the sensitivity techniques employed

Several of these were previously identi�ed as important by Fasham� Ducklow � McKelvie ����
� in their

analysis� but the analysis here found that N�� k� and �� were considerably less sensitive than found

by Fasham� Ducklow � McKelvie ����
� Comparisons of di�erent system measures found that there

was mostly agreement about important parameters However� the analysis also found that rankings of

stochastic analyses which used means of measures frequently missed parameters which caused signi�cant

variability but no shift in the mean
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This initial analysis was followed by a re�analysis of parameter sensitivity at Bermuda Station �S� to

determine if di�erent parameters dominated at this location The parameters identi�ed as important at

OWS �India� were also mostly dominant at Bermuda Station �S� However� parameters k�� �� and �par�

ticularly� N�� previously identi�ed as important by Fasham� Ducklow � McKelvie ����
�� were found to

play a more signi�cant role at this location N��s dominance re�ects the oligotrophic nature of Bermuda

Station �S� �i�e� the importance of N� may vary inversely with its baseline value�

The sensitivity analyses performed at OWS �India� and Bermuda Station �S� made assumptions regard�

ing both variability in the parameters and use of the stochastic techniques One of these assumptions

was that all parameters varied � �
� around their baseline �deterministic� values A series of simu�

lations explored the e�ects of a range of variability of parameter g �one of the most signi�cant model

parameters� on the outputs of both Monte Carlo and stochastic parameters runs Perhaps unsurprisingly�

increased parameter variability was found to induce greater variability in the system measures examined

However� the two stochastic techniques di�ered in the form of this variability Stochastic parameters

simulations found an almost linear relationship between parameter variability and variability in model

output� but Monte Carlo simulations found more complicated hyperbolic and sigmoidal relationships

�depending upon the system measure in question� The lack of such these more complex relationships

in the results of stochastic parameters is believed to be due to the much lower variability encountered

in the system measures of such simulations

A major �nominal� assumption in the use of the stochastic parameters technique was that parameters

varied with a periodicity of � day �i�e� every day parameters were assigned a new stochastic value�

The e�ects of this assumption were examined in a series of simulations in which the period between

transformations was ranged from � to ��
 days Variability of annual NPP was �again� found to increase

hyperbolically with transformation period However� variability in the annual f�ratio� plus that in most

of the state variables� was found to display a more complex pattern In the former case� variability

reached a plateau at relatively low periodicity� while in the latter cases� variability often peaked at low

period �	
 days� before falling with increasing transformation period For all of the measures examined

however� increasing transformation period shifted the results of stochastic parameters simulations to�

wards those of Monte Carlo simulations Since Monte Carlo simulations can be viewed as an extreme

case of stochastic parameters �i�e� parameters have a transformation period of ��� this trend is some�

what expected

A feature of the description of stochastic parameters by Kremer ������ was the �xed periodicity of

parameter transformations As another exploration of the stochastic parameters technique� the process

of timing the transformations was modi�ed such that it became a stochastic process itself Instead of

parameters transforming every N days� they were transformed at stochastic intervals� on the average

once every N days To explore any di�erences between normal stochastic parameters and this modi��

cation� a repetition of the last section �varying the periodicity of the stochastic parameters technique�
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was performed This work found that the di�erences between the two techniques varied between the

measures examined On the whole though� the stochastic period approach resulted in slightly greater

variability than the �xed period approach� particularly when transformation periods were low �� 	


days� In the case of annual NPP� this di�erence continued for periods of up to 	

 days However� the

di�erences between the two approaches were considerably lower than the di�erence between the Monte

Carlo and stochastic parameters techniques

The e�ect of multiple stochastic parameters on model variability was then examined Broadly the results

found that variability increased as more and more parameters were added �although the variability added

by a given parameter was not simply related its contribution to variability when the only stochastic pa�

rameter� However� in both measures examined� variability was found to approach a plateau Where

parameters were added starting with the most important� this plateau was reached relatively quickly

In the case of the annual f�ratio� total variability was still dominated by parameter �� whenever it was

added

The �nal section in this chapter re�introduced the reduced models from Chapter � and aimed to deter�

mine whether� a� the di�erent structures of the models resulted in any di�erent or distinguishing patterns

of variability� and b� in a multiple parameter simulation� did having a greater or lower fraction of their

parameters stochastic result in any di�erences between the models While di�erences between certain

of the models and the full model were noted �particularly the more �excitable� models�� most of the

models shared similar patterns of variability with the full model� and there were no obvious correlations

between the performance of a reduced model and its complexity

���� Discussion

Uncertainty and variability play a large role in ecological studies but their incorporation into plankton

models is only occasionally addressed �fewer than half of the models discussed in Chapter 	 raise or

study such issues� Kremer ������ introduced one technique by which variability can be introduced into

a model� and this chapter has both utilised his approach� and explored variants of it

An issue which has been treated only lightly in this chapter is whether or not it is reasonable to repre�

sent parameters in the manner in which they are treated here Although attention has been drawn to

the potential failings of the Monte Carlo approach�� its representation of parameters as poorly known

but constant makes fewer �and more justi�able� assumptions The stochastic parameters technique� by

contrast� makes a number of assumptions Firstly it assumes that parameters are variable across time

As already discussed though� this is known to be true �although this is far from saying that the variabil�

ity of parameters is understood or well�documented� Secondly it assumes that parameter variability

�See also the Addendum following this section�
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can be reasonably approximated by allowing parameter values to change randomly This is far from

clear� and data sets which may support or reject this assumption are non�existent at present �T Platt�

Bedford Institute of Oceanography� Dartmouth� Canada� pers comm� Finally� the technique assumes

a characteristic periodicity of parameter changes Kremer ������ points out that real variability is likely

to be continuous� but the implementation of parameter variability forces periodicity and necessitates a

choice for its value

As noted in the section on multiple parameters� the addition of a further stochastic parameter to a sim�

ulation usually contributes much less to total variability than the addition of that parameter when all of

the other parameters are constant Since most of the parameters are variable in real life� an alternative

approach to assessing the importance of a parameter would be to note the decline in total variability if

that parameter were to become the only constant one Also related to parameters� and touched upon

at several points during the thesis� is the signi�cance of relationships between model parameters This

chapter has �as Chapter � before it� treated each parameter as if it were independent of all others At

this time� relating parameters is not commonplace among modelling studies� though as knowledge about

such relationships increases� studies such as this one will have to account for this

After the initial parameter sensitivity study� a considerable fraction of the work in this chapter made use

of only parameter g to explore the e�ects of various changes to the techniques used As this parameter

was chosen speci�cally because of its e�ects on key system measures� the results of this latter work

should not be interpreted as applying across all parameters Indeed� as the sensitivity study found� the

annual f�ratio was much more profoundly in�uenced by parameter �� and may respond quite di�erently

should this parameter be handled in a similar manner to that of g Any further studies which use the

techniques in this chapter should establish whether or not all parameters behave in a similar manner to

that of g

Section ��� found marked disparity between the results from Monte Carlo simulations and from those

of stochastic parameters The disparity was suggested to be caused by the considerably lower variability

in the stochastic parameters simulations An avenue� unapproached here� which could test this sugges�

tion would be to increase variability in appropriate stochastic parameters simulations by increasing the

period of transformations Since the periodicity results already suggest a trivial link between the two

stochastic techniques� this work may prove fruitful

In the sections on variation in the periodicity of transformations attention focussed on periods of a

day or more In his work� Kremer ������ examined situations in which transformations occurred with

periods of less than one day Although� as Kremer ������ found �and the results reported here suggest��

variability is lower for shorter and shorter transformation periods� con�rmation of this would complete

this facet of the work here
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���� Addendum � Response to Annan ����
�

Much of the work in this chapter makes use of the technique used originally by Kremer ������ to study

a two species phytoplankton model In a recent paper� Annan ������ presents an re�analysis of this

technique and questions the appropriateness of its use The re�analysis accounts for one of the more

signi�cant di�erences Kremer ������ found between simulations using the conventional Monte Carlo

approach and those using stochastic parameters As the conclusions of Annan�s analysis cast doubt on

the applicability of stochastic parameters to ecological problems �e�g� the work in this chapter�� his

analysis and conclusions are examined here

Kremer ������ used a simple model in which two algal species with identical parameter values competed

with one another for nutrients for growth Since both species were the same in every respect� the model

resulted in both species reaching an identical concentration at equilibrium However� when stochastic

approaches were used� Kremer found quite di�erent results The stochastic parameters technique pro�

duced time series in which both species co�existed at concentrations which shifted stochastically around

means close to the deterministic equilibrium In stark contrast� the Monte Carlo simulations almost

always resulted in the extinction� of one of the algal species and the dominance of the other

Annan ������ focuses on this particular result �that Monte Carlo simulations result in extinction� and

presents an argument for its occurrence Extinctions in the model are a consequence of one of the algal

species being �dealt� an inferior set of parameter values at the start of a given Monte Carlo simulation

The other algal species is then able to grow faster than its rival� uptake more of the available nutrient� and

ultimately drive its competitor towards extinction Since the stochastic parameters technique constantly

varies parameters �Kremer used a period of � day�� any advantage �or disadvantage� in its parameter val�

ues given to one species is usually short�lived From simulations of his own� Annan notes that the closer

together the parameter values of the two species� the longer it takes for one to become extinct �in both

Kremer�s and Annan�s work� extinction was de�ned as the point at which an algal species� concentration

fell below its initial concentration� Since� in the case of the stochastic parameters technique� parameter

values are re�assigned multiple times during a given simulation� they better approximate the mean of

the distribution they are chosen from than they do during a Monte Carlo simulation� in which they are

only chosen once As a result� the time�averaged parameter values of both species are likely to be closer

to one another during a stochastic parameters simulation� and consequently extinction is liable to take

a longer period of time Annan contests that the absence of extinction in Kremer�s work with stochastic

parameters is merely a consequence of the simulations proceeding for insu�cient time Annan further

proposes that to make Monte Carlo simulations more correctly comparable to those with stochastic

parameters� the distribution from which parameters are randomly chosen for a Monte Carlo simulation

�Since the model used continuous variables to describe the algal populations� extinction per se was not possible �see

Chapter ��s discussion of the continuity assumption�� However� algal populations often became vanishingly small during

Kremer�s ����
� Monte Carlo simulations�
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should be narrower �i�e� have a lower standard deviation� than that used to specify parameter values

during an analogous stochastic parameter simulation The narrowing of the distribution should scale

with the number of number of times parameters are re�assigned values during a stochastic parameters

simulation Annan concludes that �

By analyzing the behaviour of the model more thoroughly we explain the reasons for

!extinctions"� and show that in fact when !Monte Carlo" is carried out correctly� there is

little or no di�erence in model output between the two types of simulation�

� � �

Although there may well be some circumstances when !stochastic parameters" would be

useful there is no justi�cation for it here�

This analysis raises and justi�es a valid objection to Kremer treating Monte Carlo and stochastic pa�

rameter simulations as qualitatively di�erent �as section ��	 already demonstrated� as the period of

transformations is increased� stochastic parameters simulations tend towards Monte Carlo simulations�

Additionally it proposes an interesting alternate approach to assigning parameter values for Monte Carlo

simulations However� the analysis fails to justify the conclusions drawn by Annan on several levels� and

these conclusions should be treated cautiously This failure to justify the dismissive conclusions stems

primarily from Annan�s over�simpli�cation of the problem that Kremer was addressing

In the �rst instance� Kremer was not primarily interested in the extinctions that resulted during Monte

Carlo simulations One of Kremer�s primary concerns was in the time series produced by the di�erent

techniques Whichever technique is used� Kremer argues that the time series of an individual simulation

should be an acceptable output �i�e� should resemble an observed time series from real world measure�

ments� In the context of Kremer�s work� Monte Carlo simulations �even ones corrected in the manner

described by Annan� will always tend towards extinction at any given point during the simulation �even

if extinction is a long way o� in the future� Stochastic parameter simulations� although ultimately

ending with the extinction of one of the species� do not tend to that end point throughout a simulation

At a given point during a stochastic parameters simulation it may not be possible to ascertain its end

point This is in direct contrast to a Monte Carlo simulation where its end point can be predicted at

any point during a simulation

Annan�s proposed �correction� to Monte Carlo simulations to make them comparable with those of

stochastic parameters simulations raises an additional problem for his conclusions The mean and distri�

bution of parameter values used in stochastic parameters �or Monte Carlo� simulations would normally

be drawn from �eld measurements The act of �correcting� these distributions for a Monte Carlo simula�

tion �which� in the case of the work here� would involve a sharp constriction of the variability around the

mean� puts into question the relevance of such simulations by only permitting a fraction of the variability

measured in the �eld �irrespective of the origin of the parameter variability� Turning the problem on
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its head� and increasing the variability of parameters in stochastic parameters simulations instead� then

forces these simulations to use values for parameters well outside the measured range Either way� the

purported �correction� would appear to render one or other of the techniques of questionable merit Fur�

thermore� on a purely methodological basis� Annan�s �correction� to parameter variability presupposes a

comparison between Monte Carlo and stochastic parameters If only Monte Carlo simulations are to be

performed� just how much should the variability from �eld measurements be trimmed to accommodate

the technique 

Fundamentally� Annan ������ misconstrues the philosophical underpinnings of Kremer�s work Kremer

was not merely proposing stochastic parameters as a rival sensitivity technique to Monte Carlo simula�

tions �although� as evidenced in Kremer� ����� and within this chapter� it is clearly a contender for use

in sensitivity analyses� Stochastic parameters was advanced as a technique to incorporate real temporal

variability of parameters� rather than presumed uncertainty� into dynamic models

Although Annan�s analysis concisely explains the occurrence of extinctions in Kremer�s Monte Carlo

simulations and their absence in his stochastic parameters simulation� this latter point nulli�es his nega�

tive conclusions regarding the potential role of stochastic parameters simulations in ecological modelling

However� it does underline the need for modellers to always clarify the exact nature of any uncertainty

introduced into a model
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Chapter �

Deep chlorophyll maxima� two layer

plankton models and Fasham ������

Keep on the lookout for novel ideas that others have used successfully� Your idea has to be

original only in its adaptation to the problem you�re working on�

� Thomas Edison ����������	
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��� Introduction

One of the simpli�cations made by all of the models so far discussed is that of a single vertically�

homogenised mixed layer� All of the components of the plankton models are assumed to be at the

average concentration down through this mixed layer and �with the exception of nitrate or general

nutrient	 at zero concentration in the deeper ocean layers below it�
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Figure ���� A vertical pro�le of chlorophyll concentration collected at OWS �India� on

August the 
�th ���
� The squares represent the chlorophyll concentrations measured from

water bottles at those depths� The dotted line refers to the mixed�layer depth interpolated

from Levitus ����
	 on the same day� Chlorophyll concentration in mg chl� m�� depth in

m� �Data courtesy of R� Williams and Dr� Mike Fasham	�

Whilst some studies do bear this assumption out for certain locations and for certain times of the year

�e�g� see �gure ���	 many other studies �Menzel � Ryther ����� Hayward ����� Brock Sathyendranath

� Platt ����� Estrada et al� ����� Taylor � Stephens ����� McManus � Dawson ����� Gayoso �����

Jochem ����� Longhurst ����	 reveal a common pattern of phytoplankton distribution in which the

concentration of phytoplankton �usually inferred from chlorophyll �uorescence	 peaks at some subsur�

face maximum� These regions of relatively greater chlorophyll concentration are referred to as deep

chlorophyll maxima �DCM	� They are also often the regions of highest primary production �Gieskes �

Kraay ����� Brock Sathyendranath � Platt ����� Jochem ����	� Figure ��
 shows a diagrammatic

representation of a DCM in relation to the prevailing nutrient and thermal pro�les�

DCM are found permanently in oligotrophic tropical waters and are observed seasonally in temperate
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Figure ��
� Schematic diagram of the typical vertical pro�les of temperature nitrate and

chlorophyll in the tropical latitudes� This pattern is usually referred to as the Typical Trophic

Structure �Banse ����	� After Mann � Lazier �����	�

waters �Mann � Lazier ����	� Their appearance in temperate waters usually occurs during the sum�

mer months where a shallow mixed layer combined with relatively high irradiance leads to conditions

similar to those in the oligotrophic tropics�

It has been proposed �Riley Stommel � Bumpus ����	 that the occurrence of a DCM in the summer

is the result of phytoplankton cells produced in the surface waters during the spring bloom sinking to

greater depth� Clearly though this cannot explain the situation in the tropics where the DCM persists

throughout the year� In their study of community composition and physiological di�erences between

mixed layer and thermocline phytoplankton Gieskes � Kraay �����	 list several other older �and less

favoured	 hypotheses of DCM formation� These include the di�erential degradation of photosynthetic

pigments with depth and the accumulation of cellular debris in the density gradient at the base of the

mixed layer� While these hypotheses are not incorrect they now appear to be less signi�cant processes�

More recently two hypotheses have been put forward that include processes which may explain the

formation of DCM� The �rst is that the sinking rates of phytoplankton cells are in�uenced by depth �or

irradiance	� A decrease in sinking rate with depth for example would cause cells to increase in concen�

tration with depth� Experimental work �Bienfang Syper � Laws ����� Lecourt Muggli � Harrison

����	 has found that a decrease in irradiance �such as would occur with increasing depth	 can result in
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decreases in sinking rates in some species lending support to this hypothesis�

The second hypothesis rests more on the processes of mixing in the upper ocean� As depth increases

turbulent mixing �from wind�driven and convective processes	 declines� Together with solar heating of

the upper waters of the ocean this leads to a warmer more buoyant layer overlying a cooler less buoy�

ant layer �as described in Chapter �	� The region between these where the water forms a temperature

gradient between the two layers is known as the thermocline� In tropical locations or during temperate

summers irradiance is at levels which permit high phytoplankton growth� However uptake of nutrients

from the upper mixed layer to supply this growth and the subsequent loss of these nutrients from the

layer through various pathways �sinking zooplankton faecal pellets detrainment et cetera	 depletes the

layer� Nutrient entry to the upper mixed layer then relies on low mixing and di�usive processes across

the thermocline� Given this low rate of nutrient supply and su�ciently high levels of irradiance �even at

the depth of the thermocline	 populations of phytoplankton can thrive in the thermocline region giving

rise to a DCM�

The structure of the model used in this work essentially assumes the physical processes involved in the

latter hypothesis� Several of the results lend support �perhaps unsurprisingly	 to the latter hypothesis

but the formulation of sinking processes of phytoplankton here do not permit a fair examination of the

former hypothesis�
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��� Model equations

As in earlier chapters the full model from Fasham �����	 has been used as the base model�
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Figure ���� Diagrammatic representation of the structure of the two layer model� Only

nutrient phytoplankton and zooplankton are illustrated but the model contains pairs of

each of the full model�s compartments�

The new model retains the mixed layer from the base model but adds a second layer beneath it to

represent the thermocline layer� The mixed layer�s depth M  is variable and is modelled as before by a

series of daily values� The thermocline layer T  is assumed to remain a constant thickness throughout

the year� Following Taylor et al� �����	 unless stated otherwise this has been set to �� m� All model

compartments are represented separately in both layers �except in the case of one zooplankton model� see

later	 and both layers are assumed to be well�mixed� As before all compartments �with the exception

of nitrate	 are assumed to be at zero concentration below the bottom layer� This arrangement follows

the format of several other two layer models �Peng et al� ����� Taylor ����� Taylor et al� ����� Taylor

� Stephens ����� Ross et al� ����� Ross et al� ����	�

Figure ��� shows a simpli�ed diagram of the model� Nitrate �shown as nutrient in the diagram	 mixes

between the layers and from a constant deep ocean supply� Phytoplankton �as well as several of the other

model compartments	 mix between the layers and can be lost to the deep ocean from the thermocline
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layer� As before the zooplankton are not lost to the deep ocean� Whilst the diagram shows mixing of

zooplankton between the two layers the choice of how to represent them in a two layer model is not

entirely clear and this is discussed more fully later�

The model equations remain essentially unchanged with the exception of the mixing�entrainment terms�

These terms now have to account for exchanges between the layers as well as with the deep ocean be�

neath the modelled system� The equations below detail the necessary changes�

In order to distinguish mixed layer from thermocline populations compartment notation has been mod�

i�ed with a subscript� M is used for mixed layer populations and T for thermocline populations� For

example phytoplankton P  are now represented by PM in the mixed layer and PT in the thermocline

layer� The notation for the three model compartments nitrate ammonium and DON which already

possess subscripts has been modi�ed similarly to distinguish mixed layer from thermocline layer con�

centrations� For example nitrate Nn is now represented by Nn�M and Nn�T �

����� Phytoplankton

Although no additional processes are involved in the phytoplankton mixing�entrainment term the formu�

lation now has to account for exchange between two layers with non�zero populations of phytoplankton

as well as exchange with the empty deep ocean layer�

In the mixed layer population of phytoplankton the mixing�entrainment term becomes

dPM

dt
� � � � �

m�

M
�PT � PM	 �

h��t	

M
�PT � PM	

� � � � �
�m� � h��t		

M
�PT � PM	 ����	

where

h�t	 �
dM

dt
���
	

h��t	 � max�h�t	� �	 ����	

This term is identical to the comparable one in the single layer model except that now the processes

occur between the mixed layer and the thermocline layer rather than the mixed layer and an empty

deep ocean layer�

As in the single layer model a shallowing of the mixed layer whilst actually detraining phytoplankton

from the layer does not a�ect the concentration of cells� A deepening by contrast will a�ect the cell

concentration by entraining water from the thermocline layer which may have a di�erent cell concentra�

tion� This is incorporated in the de�nition of h��t	�
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The mixing�entrainment term for the phytoplankton in the thermocline layer becomes

dPT

dt
� � � � �

m�

T
�PM � PT 	 �

m�

T
��� PT 	 �

h�T �t	

T
�PM � PT 	 �

h��t	

T
��� PT 	

� � � � �
�m� � h�T �t		

T
�PM � PT 	�

�m� � h��t		

T
PT ����	

where

h�T �t	 � max��h�t	� �	 ����	

This term is more complicated than the previous one since the thermocline layer communicates with

both the mixed layer and the deep ocean�

Although the thermocline is assumed to have a �xed thickness �T 	 shallowing of the mixed layer moves

it up the water column and detrains its contents from its lower margin with the deep ocean� Unlike the

mixed layer however its concentration may change during shallowing since it entrains water from the

mixed layer above� This is parameterised by de�ning h�T �t	 which takes the value of the rate of mixed

layer depth change when it is shallowing but becomes zero when it is deepening �this is essentially the

opposite of h��t		�

When the mixed layer deepens the thermocline layer loses phytoplankton which become entrained in

the mixed layer and has its concentration of phytoplankton cells diluted by entrainment of water from

the deep ocean� The former loss leads to no change in the concentration of cells so does not appear

in the equation �although it does appear in the equation for mixed layer phytoplankton	� The latter

process dilutes the cell concentration and so is parameterised �as in the single layer model	 by h��t	�

In both equations mixing between layers is parameterised as normal by a constant rate m� Since

mixing now occurs across two boundaries �mixed layer to thermocline thermocline to deep ocean	 two

parameters have been created m� and m�� However unless otherwise stated both have been assigned

the same value in the work presented here�

The photosynthetic processes of phytoplankton in the thermocline layer are modelled in the same way

as those in the mixed layer� Equation ��� uses Beer�s law from chemistry to calculate the amount of

irradiance which reaches the top of the thermocline layer after passing through the mixed layer� This

equation is the same as the one which is used to provide depth�integrated irradiance in the irradiance�

limited portion of phytoplankton growth�

IT � I� expf��kw � kcPM	Mg ����	

Although the mixing�entrainment terms above deal speci�cally with the phytoplankton equation they

are also applied to the bacterial ammonium and DON equations which comprise similarly passive

particles or molecules� Because there are no other changes to the equations of these three compart�

ments outside of the modi�cations to the mixing�entrainment terms they have not been repeated here�
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However the detritus nitrate and zooplankton equations require di�erent changes to accommodate

di�erences in their mixing�entrainment terms�

����� Detritus

In addition to the mixing and entrainment changes already described in the phytoplankton terms above

the detritus terms also have to account for sinking of particles� In the mixed layer this only means sink�

ing loss as before� However in the thermocline layer this means accounting both for particles sinking

out of the layer and particles sinking into the layer from the mixed layer above�

The equations then become

dDM

dt
� � � � �

m�

M
�DT �DM 	 �

h��t	

M
�DT �DM 	 �

V�

M
DM

� � � � �
�m� � h��t		

M
�DT �DM 	�

V�

M
DM ����	

dDT

dt
� � � � �

m�

T
�DM �DT 	 �

m�

T
���DT 	 �

h�T �t	

T
�DM �DT 	

�
h��t	

T
���DT 	 �

V�

T
DM �

V�

T
DT

� � � � �
�m� � h�T �t		

T
�DM �DT 	 �

V�

T
DM �

�m� � h��t	 � V�	

T
DT ����	

As with the mixing constants described earlier V� and V� refer to the sinking velocities of particles in

the di�erent layers� They have been assigned the same value in all of the work presented here�

����� Nitrate

The mixing�entrainment terms used in the equations for the two layers are almost identical to those

described earlier for phytoplankton� The only di�erence is that the term for nitrate concentration in the

thermocline layer includes exchanges with a non�zero concentration of nitrate �N�	 in the deep ocean�

dNn�M

dt
� � � � �

m�

M
�Nn�T � Nn�M	 �

h��t	

M
�Nn�T � Nn�M	

� � � � �
�m� � h��t		

M
�Nn�T �Nn�M 	 ����	

dNn�T

dt
� � � � �

m�

T
�Nn�M �Nn�T 	 �

m�

T
�N� �Nn�T 	

�
h�T �t	

T
�Nn�M �Nn�T 	 �

h��t	

T
�N� � Nn�T 	

� � � � �
�m� � h�T �t		

T
�Nn�M �Nn�T 	 �

�m� � h��t		

T
�N� � Nn�T 	 �����	

����� Zooplankton

In the single layer model presented in Fasham �����	 the zooplankton are assumed to be motile organ�

isms and are neither mixed nor detrained from the mixed layer� When the layer shallows they concentrate
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into a smaller volume and when the layer deepens they are diluted across a larger volume�

Given these assumptions the modi�cation of the zooplankton equation to accommodate a two layer

model structure presents several problems �

� When the mixed layer shallows do mixed layer zooplankton remain within the mixed layer or do

they allow themselves to be detrained into the thermocline layer�

� Similarly when the mixed layer deepens do thermocline zooplankton remain within the thermo�

cline or do they allow themselves to be entrained into the mixed layer�

� And since they are motile is their any communication of zooplankton between the two layers

independent of mixed layer movement�

Four di�erent formulations of zooplankton movement were derived to address these points� All four

preserve the assumption that the zooplankton do not allow themselves to be detrained into the �abiotic�

deep ocean but di�er in their treatment of exchange between the two upper layers� They are �

�i	 �Faithful�� non�mixing zooplankton compartments

The zooplankton in this formulation remain �faithful� to the layer in which they originate� There

is no mixing between the layers�

dZM

dt
� � � � �

h�t	

M
ZM �����	

dZT

dt
� � � � � ��� ����
	

This formulation treats both zooplankton equations as if they were still in single layer models� The

mixed layer zooplankton are concentrated and diluted in exactly the same way as the zooplankton

in the single layer model are� The thermocline zooplankton are entirely una�ected by changes in

mixed layer depth since T is constant and the organisms track the movement of their layer�

�ii	 �Faithful�� mixing zooplankton compartments

As above but the zooplankton are slightly less �faithful� and mix between the layers�

dZM

dt
� � � � �

m�

M
�ZT � ZM 	 �

h�t	

M
ZM �����	

dZT

dt
� � � � �

m�

T
�ZM � ZT 	 �����	

This formulation is the same as above except that it permits mixing between the two upper layers�

The mixing takes the same form as in the passive model compartments�

�iii	 �Unfaithful�� mixing zooplankton compartments

As the depth of the mixed layer rises and falls the zooplankton lag behind and are transferred
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between the two layers� However they still cannot be detrained from the two layer system�

dZM

dt
� � � � �

m�

M
�ZT � ZM 	 �

h��t	

M
�ZT � ZM 	

� � � � �
�m� � h��t		

M
�ZT � ZM 	 �����	

dZT

dt
� � � � �

m�

T
�ZM � ZT 	 �

h�T �t	

T
�ZM � ZT 	 �

h��t	

T
��� ZT 	

� � � � �
�m� � h�T �t		

T
�ZM � ZT 	�

h��t	

T
ZT �����	

The zooplankton in the mixed layer behave here in the same way as passive compartments in the

mixed layer� They are detrained by its shallowing mixed across its margin with the thermocline

layer and absorb entrained thermocline zooplankton when it deepens� The thermocline zooplankton

mix with and absorb detrained mixed layer zooplankton and are diluted �as well as detrained to

the mixed layer	 when the mixed layer deepens�

�iv	 Single zooplankton compartment

Whilst the previous three formulations split the total zooplankton population between the two

modelled layers the zooplankton in this formulation remain in a single population which spans

both modelled layers�

dZ

dt
� � � � �

h�t	

�M � T 	
Z �����	

The single zooplankton compartment here is concentrated and diluted in the same way as in the

single layer model� The only di�erence is that the layer is now thicker because it includes the

thermocline�

In the �rst three formulations above the remaining portions of the zooplankton equations �grazing and

mortality	 take the same form as in the single layer model �albeit that the zooplankton in a given layer

graze only on phytoplankton bacteria and detritus from that same layer	�

However the �nal formulation requires that the zooplankton graze on compartments in both layers�

This involves directing �ows from two layers into a single layer� Since the layers are usually of di�erent

thicknesses and since all of the terms deal in concentrations rather than absolute quantities this means

that the grazing inputs to the single zooplankton compartment need to be scaled according to the dif�

ferent layer thicknesses� The following �grossly	 simpli�ed example provides an illustration�

Considering only the �evaluated	 phytoplankton losses to zooplankton grazing �

dPM

dt
� � ��� mmol N m�� d��� M � �� m�

Z M

�

dPM

dt
dz � � �� mmol N d��

dPT

dt
� � ��� mmol N m�� d��� T � �� m�

Z M�T

M

dPT

dt
dz � � �
 mmol N d��

Therefore ignoring transfer ine�ciencies between compartments the zooplankton compartment�s gains
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are �
Z M�T

�

dZ

dt
dz � �� � �
 mmol N d��

� 
� mmol N d��

The concentration change required for such an absolute change in zooplankton is then �


� mmol N d�� �

�

��
mmol N m�� d��

This change is obtained by re�scaling the grazing rates on the phytoplankton populations in the two

layers by the thicknesses of their respective layers �

dZ

dt
� ���

M

M � T
� ���

T

M � T
mmol N m�� d��

� ���
��

��� � ��	
� ���

��

��� � ��	
mmol N m�� d��

�
��

��
mmol N m�� d��

The grazing terms in the phytoplankton equations �as well as those in the bacterial and detrital equa�

tions	 and their scaled forms in the single zooplankton equation then look as follows �

dPM

dt
� � � � � G��M � � � � �����	

dPT

dt
� � � � � G��T � � � � �����	

dZ

dt
�

M

�M � T 	
��G��M �

T

�M � T 	
��G��T � � � � ���
�	

Inputs to the detritus compartments of the two layers due to zooplankton feeding ine�ciencies remain

unscaled since the losses are assumed to occur at the time of feeding� Thus in a given layer material

consumed by zooplankton which is lost in this fashion is lost to the detritus compartment in the same

layer�

dDM

dt
� � � � � ��� ��	G��M � � � � ���
�	

dDT

dt
� � � � � ��� ��	G��T � � � � ���

	

In studying the diel migratory behaviour of sub�Antarctic copepods Atkinson Ward � Murphy �����	

found two species which underwent daily migrations which took them across the thermocline Metridia

lucens and Pleuromamma robusta� Since these species only fed at night in the upper mixed�layer their

food intake had a diel signal� However their gut evacuation did not show diel periodicity allowing

these species to export material from the upper mixed�layer� This is contrary to the assumption of

synchronicity made here� However in the geographical area examined the authors found that these two

species were too scarce for this export pathway to be signi�cant�

Note that zooplankton mortality �essentially the reverse of grazing since the losses from the single

zooplankton compartment �ow into sets of compartments in two layers	 does not require any re�scaling

since it is assumed to occur at a constant homogeneous rate down the water column�


�




����� Assigning parameter values between the layers

In this work where a parameter is meaningful in both modelled layers that parameter has been assigned

the same value in both� There are several good reasons to suspect this is not likely to be the case for

biological parameters and studies have found di�erences between the surface and DCM phytoplankton

communities �Murphy � Haugen ����� Gieskes � Kraay ����	� However because of the problems of

trading�o� biological parameters against one another this work has not explored this particular avenue�

In a later section of this chapter though independent ranges of the two mixing parameters m� and m�

are examined�
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��� Choosing a zooplankton model

Since all four of the zooplankton formulations are plausible given the assumptions made about zooplank�

ton models incorporating each of them were simulated at OWS �India� and Bermuda Station �S� to

establish if the choice of formulation led to any signi�cant di�erences in the behaviour of the modelled

system�

Figures ��� and ��� and tables ��� and ��
 show the results of simulations for each of the four zooplank�

ton models� The �gures show the annual patterns of the major model compartments and the tables

present major summary statistics from the simulations�

Statistic Model �i	 Model �ii	 Model �iii	 Model �iv	

PM max ����� ����
 
���
 
��
�

PM time ��� ��� ��� ���

PT max ����� ����� ����� ��

�

PT time ��� ��� ��
 ���

NPPM ����� ����� ����� ���



NPPT ���
� ���
� ����� �����

NPP ratio ����� ����� ����
 �����

f�ratioM ���
� ���
� ����� ���
�

f�ratioT ����� ����� ����� ����


Table ���� Model statistics from simulations performed at OWS �India� for the four zoo�

plankton models� Mixed layer statistics are denoted by a subscripted M  thermocline statis�

tics by a subscripted T � P max is the maximum concentration of phytoplankton predicted

during the simulated year �mmol N m��	� P time is the day of the year this maximum

occurs on� NPP is the annual net primary production in each layer �mol m�� y��	� NPP

ratio is the ratio of annual net primary production in the mixed layer to total net primary

production in both layers� f�ratio is the mean annual f�ratio�

At Bermuda Station �S� all four models show the same �double�peaked� mixed layer phytoplankton

pattern and similar annual patterns of abundance of thermocline phytoplankton� All four models ex�

haust nitrate in almost exactly the same fashion during the summer months and have zooplankton

abundances which peak just behind the spring bloom�

At OWS �India� by contrast whilst models �i	 and �ii	 show very similar behaviour �and mixed layer
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(i) Faithful, non−mixing zooplankton
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(ii) Faithful, mixing zooplankton
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(iii) Unfaithful, mixing zooplankton
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(iv) Single zooplankton compartment
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Figure ���� Simulated annual cycles of phytoplankton zooplankton and nitrate concen�

tration at OWS �India� for each of the formulations of zooplankton two�layer behaviour�

Mixed layer concentrations are represented by a solid line thermocline layer concentrations

by a dashed line� In the case of formulation �iv	 �the bottom set of diagrams	 zooplankton

are represented by single compartment spanning both model layers so no thermocline layer

is plotted� Concentrations are in mmol N m���
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(i) Faithful, non−mixing zooplankton
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(ii) Faithful, mixing zooplankton
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(iii) Unfaithful, mixing zooplankton
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(iv) Single zooplankton compartment

0 100 200 300
0

0.5

1

1.5

2

Time (days)

N
n 

co
nc

en
tr

at
io

n

Figure ���� Simulated annual cycles of phytoplankton zooplankton and nitrate concentra�

tion at Bermuda Station �S� for each of the formulations of zooplankton two�layer behaviour�

Mixed layer concentrations are represented by a solid line thermocline layer concentrations

by a dashed line� In the case of formulation �iv	 �the bottom set of diagrams	 zooplankton

are represented by single compartment spanning both model layers so no thermocline layer

is plotted� Concentrations are in mmol N m���
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Statistic Model �i	 Model �ii	 Model �iii	 Model �iv	

PM max ����� ����� ����
 �����

PM time ��
 ��
 ��� ���

PT max ��

� ��

� ��
�� ��
��

PT time ��� ��� ��� ���

NPPM ����� ����� ����
 �����

NPPT ����� ����� ����� �����

NPP ratio ����
 ����
 ����� �����

f�ratioM ����� ����� ����
 �����

f�ratioT ����� ����� ����� �����

Table ��
� Model statistics from simulations performed at Bermuda Station �S� for the four

zooplankton models� Mixed layer statistics are denoted by a subscripted M  thermocline

statistics by a subscripted T � P max is the maximum concentration of phytoplankton

predicted during the simulated year �mmol N m��	� P time is the day of the year this

maximum occurs on� NPP is the annual net primary production in each layer �mol m��

y��	� NPP ratio is the ratio of annual net primary production in the mixed layer to total

net primary production in both layers� f�ratio is the mean annual f�ratio�

behaviour very similar to that from single layer model simulations	 models �iii	 and �iv	 show consid�

erably larger spring blooms of phytoplankton� After this larger spring bloom model �iii	 falls into the

normal �with respect to the single layer model	 pattern of damped predator�prey oscillations during the

summer� Model �iv	 instead has a much larger and longer spring bloom followed by very small sum�

mer oscillations �noticeably only observed in the phytoplankton abundances	 and then a relatively large

autumn bloom before the system falls to low winter abundances� The reasons for these two patterns are

discussed below�

During the shallowing of the mixed layer in springtime model �iii	�s zooplankton are detrained from

the mixed layer and entrained into the thermocline layer� This can be seen in the zooplankton plot of

�gure ��� and more clearly in the detailed time series of �gure ���� This latter plot shows the fraction of

total depth�integrated zooplankton biomass which is in the mixed layer� As the mixed layer shallows

zooplankton are transferred into the deeper thermocline layer� This contrasts with model �i	 �also shown

in the �gure	 where the zooplankton remain �faithful� to the layer they �nd themselves in and track

its shallowing and deepening� The reduction of zooplankton in the mixed layer in model �iii	 allows the

phytoplankton population there to escape grazing for longer and consequently have a much larger spring

bloom maximum �see table ���	� Once the mixed layer zooplankton population has recovered though

model �iii	 behaves very similarly to models �i	 and �ii	 through the remainder of the summer�
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Figure ���� A detail showing the fraction of total mixed layer and thermocline zooplankton

biomass in the mixed layer during the shallowing of the mixed layer in springtime �the dotted

vertical lines mark the start and �nish of the shallowing period	� The simulated results of

models �i	 �dashed line	 and �iii	 �solid line	 are shown�

Model �iv	 behaves somewhat similarly to model �iii	 insofar as a reduced zooplankton population in the

spring is unable to control an escaping phytoplankton bloom� However the reason for the reduced pop�

ulation is quite di�erent� Unlike the other models where the zooplankton population is divided into two

subpopulations which are treated separately zooplankton in model �iv	 are assumed to be distributed

homogeneously through the entire depth of the mixed and thermocline layers� In the case of OWS

�India� where the prey concentration in the mixed layer is considerably higher than in the thermocline

layer the formulation of model �iv	 reduces the ability of the zooplankton population to �keep up with�

the phytoplankton population in two ways� Firstly higher gains to the zooplankton from grazing in the

mixed layer are distributed through both layers e�ectively reducing the population growth rate of the

zooplankton in the mixed layer� Secondly the �buoying�up� of zooplankton concentrations in the ther�

mocline layer by inputs from their brethren in the mixed layer exposes this fraction of the zooplankton

population to a greater rate of loss than the lower concentrations of thermocline zooplankton in the

other three models experience� These two consequences of the model �iv	 formulation e�ectively burden

the whole zooplankton compartment with a lower population growth rate whereas the mixed layer gains

and thermocline layer losses are partitioned in the models with two zooplankton compartments� Figure

��� shows the di�erence in the balance of zooplankton grazing and predation �uxes between model �iv	

and the mixed layer zooplankton of model �i	� The smaller positive balance of model �iv	 at the start of

the spring bloom prevents it from controlling the bloom as e�ectively as the zooplankton in model �i	�

As a result the mixed layer phytoplankton bloom is much greater and lasts much longer�
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Figure ���� A detail showing the balance of zooplankton �uxes coming from grazing and

going to predation during the spring bloom� The simulated results of ZM from model �i	

�dashed line	 and Z from model �iv	 �solid line	 are shown� Fluxes in mmol N m�� d���

In addition to the greater mixed layer phytoplankton blooms found with models �iii	 and �iv	 the ther�

mocline layers have much lower and much earlier phytoplankton maxima� In the case of model �iii	 this

occurs because zooplankton entrained in the thermocline layer from the mixed layer are able to control

the phytoplankton there more easily� In model �iv	 the higher mixed layer phytoplankton concentra�

tions reduce the availability of light in the thermocline and �stunt� growth there� In both cases these

processes lead to primary productivity in the mixed layer being even more signi�cant than that in the

thermocline layer �see tables ��� and ��
	�

Another consequence of the single zooplankton compartment in model �iv	 is that ammonium levels be�

come signi�cantly higher in the thermocline layer where phytoplankton grow too slowly to fully exploit

it� This is then re�ected in a much lower f�ratio in the thermocline layer �the exhaustion of nitrate in

the mixed layer during the high spring bloom shifts the mixed layer f�ratio similarly downwards	�

The di�erent models of zooplankton therefore di�er dynamically in several ways� These di�erences are

fairly minor at Bermuda Station �S�  where the change of mixed�layer depth across the year is lower

but they become signi�cant at OWS �India�� Models �i	 and �ii	 behave almost identically and produce

seasonal patterns of abundance similar to those observed at OWS �India�� Models �iii	 and �iv	 by

contrast behave quite di�erently both from the other two models from the single layer model and from

the observations at OWS �India��

For these reasons models �iii	 and �iv	 were discarded in favour of models �i	 and �ii	� Since zooplankton

are well known to move vertically in the water column the less �faithful� zooplankton of model �ii	 were
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chosen over their rigidly �faithful� model �i	 counterparts� For the rest of the work detailed in this

chapter model �ii	 was used to represent the zooplankton�

����� Evolutionary considerations

The decision to choose model �ii	 to represent the zooplankton in this chapter was based on the greater

congruence of this model with observations at OWS �India�� Another potentially reasonable way to de�

cide could have been to run the models in competition against one another� Whichever model produced

the higher annual biomass could then be chosen as the �victor��

However as with �evolving� values for model parameters this technique su�ers from a lack of knowledge

of the various feedbacks and links between di�erent model terms� A motility strategy in this model

which may maximise consumption of phytoplankton may ignore the e�ects on predation losses the same

strategy may have in the real world� The most successful model strategy is likely �in the absence of good

knowledge about the full e�ects of di�erent strategies in the real world	 to be precisely that the most

successful model strategy� Hence success here has been restricted to the greatest agreement with data�
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��� Latitudinal variation in the importance of DCM

As could be seen previously with the simulations performed at OWS �India� and Bermuda Station �S�

the importance of the thermocline layer �in terms of primary production	 is not constant� At OWS �In�

dia�  the layer contributed about �
� of total net primary productivity whereas at Bermuda Station

�S� the layer produces almost 
�� of the total �tables ��� and ��
	�
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Figure ���� Annual cycles of mean daily sea�surface irradiance �left	 and mixed�layer depth

�right	 at each of the four simulated latitudes� The Smith � Dobson �����	 model of

atmospheric transmittance of irradiance was used with a cloud cover of � oktas� Mixed�

layer depth data re�scaled from Bermuda Station �S� data using limits in Taylor et al�

�����	� Irradiance in W m��� Mixed�layer depth in m�

However OWS �India� and Bermuda Station �S� only represent two locations� In order to simulate

plankton dynamics at other latitudes the approach from Taylor et al� �����	 was used� Taylor and

his co�workers ran their two layer model �a considerably simpler phytoplankton�nutrient model	 with

the mixed�layer depth data for Bermuda Station �S� but re�scaled it to the maximum and minimum

depths found at four di�erent latitudes ��� ��� ��� and ��� N	� Several other model parameters were

also given latitude�speci�c values� Their resulting simulations reproduced most of the signi�cant fea�

tures of phytoplankton abundance at the latitudes examined�

Figure ��� shows the seasonal cycles of sea�surface irradiance and mixed�layer depth at the four simulated

latitudes� Table ��� lists the latitude�speci�c parameter values �from tables �a and �b in Taylor et al�

����	� With the exception of these changes the two layer model simulations were run as normal�

����� Comparison with Taylor et al� ��		�


The simulated annual cycles of phytoplankton zooplankton and nitrate at each of the four latitudes are

shown in �gure ���� Since both this two layer model and Taylor et al��s phytoplankton�nutrient model
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Parameter Symbol Unit �� N 
�� N ��� N �� N

Minimum mixed�layer depth Mmin m 
��� ���� ���� ����

Maximum mixed�layer depth Mmax m ���� ����� ����� �����

Thermocline thickness T m ���� ���� ���� ����

Mixing rates m� m� m d�� ��
� ���� ���� ����

Attenuation coe�cient kw m�� ���� ���� ���� ����

P maximum growth rate Vp d�� 
��� 
��� 
��� 
���

Subthermocline nitrate N� mmol N m�� 
��� ���� ���� ����

Table ���� Parameter value changes used for simulations performed at the four latitudes

�following Taylor et al� ����	� The listed phytoplankton maximum growth rate applies

to the phytoplankton populations in both modelled layers� All other model parameters

remained at the standard values listed in Fasham �����	�

produce similar kinds of output their simulation results can be compared with one another as well as

with real data from the appropriate latitudes�

�� N

At ��� N the model shows similar behaviour to that already shown for OWS �India�� The seasonal cycle

shows high phytoplankton concentrations in the summer and very low concentrations during the winter�

The annual phytoplankton maximum occurs during the spring bloom and the phytoplankton in the

mixed layer are entirely dominant across the year� This pattern of activity is broadly in agreement with

the data collected from OWS �India� �recounted in � Fasham ����� Taylor et al� ����	� The maximum

chlorophyll concentration predicted is ��� mg chl� m�� which is slightly lower than the 
�� mg chl� m��

observed at OWS �India� in ���
�� Total annual primary production is predicted at ���� g C m�� y��

slightly less than the maximum ���� g C m�� y�� recorded at OWS �India�� These agreements are

somewhat closer than those with Taylor et al��s model which over�estimates the magnitude of the spring

bloom ���� mg chl� m��	 and the total annual production ����� g C m�� y��	� Taylor et al��s model

also predicts much lower summer nutrient levels than are commonly found at OWS �India� �Fasham

����	�

��� N

As latitude falls through ��� to �� � N the spring bloom is predicted to arrive earlier and earlier� This

pattern was found by Strass � Woods �����	 in their analysis of the horizontal variation of mixed�

layer chlorophyll� The predicted importance of the thermocline layer also rises and this prediction is

somewhat supported by Strass � Woods� �����	 �nding that the depth of the DCM increases �i�e� the

�The conversion of mmol N m�� to mg chl� m�� uses the standard Red�eldC�N molar ratio of ����� and a C�chlorophyll

mass ratio of ��	 this equates 
�� mmol N m�� with 
��� mg chl� m���
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Figure ���� Annual cycles of phytoplankton zooplankton and nitrate concentration at each

of the simulated latitudes� Mixed layer concentrations are represented by a solid line ther�

mocline layer concentrations by a dashed line� The nitrate plots are scaled such that the

top of the graph marks the concentration of the subthermocline nitrate level �N�	� Concen�

trations are in mmol N m���
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DCM gets deeper	 at lower latitudes� However the importance of the thermocline layer in the late

summer �������� mg chl� m��	 is under�estimated by the model ���� mg chl� m��	� Taylor et al��s

model more accurately predicts the late summer importance of the thermocline at ��� N �although it

again over�estimates the signi�cance of the spring bloom	�


�� N

By ��� N both models predict that the thermocline layer dominates the summer months� This agrees

with Menzel � Ryther�s �����	 �ndings� However both models disagree with the magnitude of phyto�

plankton concentration at di�erent times of the year� Again Taylor et al��s model over�estimates the

magnitude of the spring �bloom�� Menzel � Ryther �����	 found concentrations between ��� and ��� mg

chl� m�� �as did the two layer version of Fasham ����	 while Taylor et al� predicted concentrations of

almost 
�� mg chl� m��� During the summer months the accuracy of the models was reversed with the

two layer version of Fasham �����	 predicting considerably higher phytoplankton concentrations �� ���

mg chl� m��	 in both layers than were found by Menzel � Ryther �� ��
 mg chl� m��	 and predicted

by Taylor et al��

These higher summer concentrations are partially explained by the markedly higher mixing rates as�

sumed in this work� Whilst Fasham �����	 assumed a cross�thermocline mixing rate of ���� m d��

Taylor et al� chose a rate of ���� m d�� which allows much more nitrate to enter the modelled system

from below the thermocline� However even at this much reduced mixing rate mixed layer phytoplank�

ton remain at relatively high concentrations ���������� mg chl� m��� results not shown	�

Despite these discrepancies in phytoplankton concentration the two layer version of Fasham �����	

predicts a pattern of production �see �gure ����	 very similar to that found by Menzel and Ryther

�����	 and estimates a total annual production of ���
 g C m�� y��� This compares very favourably

with the value of �� g C m�� y�� reported by Smith Jickells � Knap ������ as cited in Fasham Ducklow

� McKelvie ����	�

�� N

The predicted community structure at �� N was agreed upon by both models� The thermocline phy�

toplankton entirely dominate the whole year although both populations exist at very low almost un�

changing concentrations� This pattern is referred to as the Typical Trophic Structure �Banse ����	�

Whilst the models predict di�erent phytoplankton concentrations both predictions fall within the range

found by Banse �����	 for the equatorial Gulf of Guinea �������� mg chl� m��	�

����� Patterns of biological production

Figure ���� and table ��� respectively show the annual patterns of production and the major statistics

from the four latitude simulations�
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As before with decreasing latitude the spring production maximum comes earlier and earlier and the

signi�cance of the thermocline layer becomes greater and greater� Between ��� and ��� N the timing

of the spring bloom advances almost �� days� Across the same range of latitude the fraction of total

production which occurs in the thermocline layer rises from less than �� to almost ��� and at the

equator this fraction almost reaches ���� Another trend with decreasing latitude is the increasing re�

liance on regenerated nutrient for production� This occurs in both layers although it is a particularly

strong trend in the mixed layer�

Statistic �� N 
�� N ��� N �� N

PM max ����� ����� ����� ���
�

PM time �� ��
 �
� ���

PT max ��
�
 ����� ����� ��
��

PT time �� ��� �
� ���

NPPM ����� ���
� ����
 �����

NPPT ��
�� ����� ����� �����

NPP ratio ����� ����� ����� �����

f�ratioM ����� ����� ����� �����

f�ratioT ����� ����� ����� �����

Table ���� Model statistics from simulations performed at the four latitudes� Mixed layer

statistics are denoted by a subscripted M  thermocline statistics by a subscripted T � P

max is the maximum concentration of phytoplankton predicted during the simulated year

�mmol N m��	� P time is the day of the year this maximum occurs on� NPP is the annual

net primary productivity in each layer �mol m�� y��	� NPP ratio is the ratio of annual

net primary production in the mixed layer to total net primary production in both layers�

f�ratio is the mean annual f�ratio�
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Figure ����� Annual cycles of net primary productivity the f�ratio and the proportioning

of net depth�integrated production in the two modelled layers at each of the simulated

latitudes� Mixed layer results are represented by a solid line thermocline results by a

dashed line� Since the latter column of results represents a proportion between the two

layers only a single solid line is shown� Net primary productivity is in mmol N m�� d���

The f�ratio and the production ratio are dimensionless�
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��� Taylor�s common model properties

Taylor �����	 de�ned a simple two�layer two component plankton model to explore the general prop�

erties of such vertically structured models� This model�s two�layer structure is identical to that detailed

previously in the modi�ed form of Fasham �����	 but consists only of phytoplankton and a general

nutrient� The model equations are detailed below� Several of the terms and parameters used have been

renamed here to give greater parity with the Fasham �����	 model�

dPM

dt
�  J�I�	Q�NM 	� ��

v

M
!PM �

m�

M
�PT � PM	 ���
�	

dNM

dt
� �� J�I�	Q�NM 	� 	�!PM �

m�

M
�NT � NM 	 ���
�	

dPT

dt
�  J�IM 	Q�NT 	 � �!PT �

v

T
�PT � PM	 �

m�

T
PT �

m�

M
�PM � PT 	 ���
�	

dNT

dt
� �� J�IM 	Q�NT 	 � 	�!PT �

m�

T
�N� �NT 	 �

m�

T
�NM � NT 	 ���
�	

As before the mixed layer is denoted by the M subscript and the thermocline layer by the T subscript�

these are also the parameters representing the thicknesses of the two layers� Sea�surface irradiance I�

is attenuated down the water column to the top of the thermocline layer to IM  in the same manner as

before�

Phytoplankton growth is de�ned by the product of light�limited J�I	 and nutrient�limited Q�N 	

functions� A single constant loss rate � represents grazing and other mortality� The phytoplankton

cells sink out of the modelled system at a constant rate v and are transferred between the modelled

layers and the deep ocean by the mixing rates m� and m��

Nutrient concentrations are depleted by phytoplankton growth �the modi�er � is the nutrient concen�

tration of the cells	 replenished by recycling �where 	 is the recycling e�ciency	 and mixed between the

two modelled layers �in the same way as the phytoplankton cells	� A deep�ocean reservoir of nutrient

at a constant concentration N� communicates with the thermocline layer�

To determine general properties Taylor further simpli�ed the model to allow it to be examined alge�

braically� It was assumed that the nutrient concentration in the mixed layer is su�ciently low that the

phytoplankton growth function in the layer could be rewritten as �MNM  where �M is a constant which

depends solely on irradiance at the sea surface� Additionally it was assumed that vertical strati�cation

is su�ciently weak that nutrient concentration in the thermocline layer is never limiting for the phyto�

plankton cells there and that their growth function could be rewritten as a constant 
T  which depends

only on irradiance at the sea surface� Seasonal variation in irradiance and mixed�layer depth forcing

was also ignored� These simpli�cations were used to help derive algebraic expressions relating various

terms in the model�
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Similar work with a more complicated three compartment model �phytoplankton nitrate and am�

monium	 and a more detailed ecosystem model �the Mixed Upper�Layer Ecosystem Simulation or

MULES model of Parsons � Kessler ����	 supported the results of the initial analysis of Taylor�s two

compartment system�

The results of the analysis and simulation of these three model systems indicated several common features

in the behaviour of these models which could in principle be searched for in observational data� Taylor

�����	 proposed four such properties but to simplify later discussion his �nal property is divided into

the latter two here� The �ve properties are then �

�i	 The nutrient concentration of the mixed layer is independent of the e�ciency of recycling and the

concentration of nutrient below the thermocline whilst the abundance of phytoplankton increases

with both of these

�ii	 The phytoplankton concentrations in each of the two vertical layers show a common response to

changes in � e�ciency of recycling subthermocline nutrient concentration the Michaelis�Menten

parameters and the loss term rates

�iii	 Raising the growth of phytoplankton in the thermocline �e�g� by increasing the surface irradiance	

results in a decrease in growth of phytoplankton in the upper mixed layer

�iv	 The ratio of upper mixed layer to thermocline production and the ratio of �new� nutrient entering

the layer to nutrient recycled back into it do not depend on the concentration of nutrient below

the thermocline

�v	 The ratio of the production in the two layers also does not depend on the e�ciency of recycling

Although the two layer version of Fasham �����	 lacks several of the processes present in the models

Taylor examined �e�g� respiratory losses phytoplankton sinking variable cell quota� some of which are

modelled implicitly in Fasham�s model	 it does model several others more explicitly �e�g� grazing loss

nitrogen regeneration processes	 and overall permits examination for the �ve properties since it shares

the same foundation as the models examined by Taylor�

However the complexity of the two layer form of Fasham �����	 prevents any similar algebraic analysis

of these common model properties unless sacri�ces of model complexity are made� Since Taylor�s work

has dealt with comparatively simpler models already and to maximise the use of existing computer

programs the full complexity of the two layer form of Fasham �����	 has been retained� So numerical

solutions were used instead to examine whether Taylor�s properties could be found�

Since Taylor assumes a situation for his analysis in which the mixed layer is nutrient�limited and the

thermocline layer irradiance�limited simulations were run with constant forcing from Bermuda Station

�S� on day ���� At this latitude and at this time of year these conditions are closely met� Mixed layer
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nitrate is at near�zero concentrations and thermocline phytoplankton have a light�limited maximum

growth rate about half that of mixed layer phytoplankton�

When a range of a parameter was examined the parameter�s value was changed in both layers unless

otherwise stated� Several parameters �e�g� N� mixed�layer depth thermocline thickness	 are only

important to a single layer but most are involved in the model equations in both layers�

����� Testing the predicted properties

Property �i	

The nutrient concentration of the mixed layer is independent of the e�ciency of recycling and

the concentration of nutrient below the thermocline� whilst the abundance of phytoplankton

increases with both of these�

Property �i	 was examined by simulating the model across ranges of N� the subthermocline nitrate con�

centration and �	 � �	 the regenerative terms of zooplankton loss processes� In Fasham �����	 	 and

� refer to the fractions of zooplankton losses which are returned to the modelled system as ammonium

and DON respectively �assigned the values ��� and ��
 in the normal parameter set	� Here they were

kept in constant proportion to one another �	�� ratio of ���	 whilst the fraction of zooplankton losses

which were lost from the system altogether was ranged from total loss �� ���	 to total retention �� ���	�

In these simulations �as well as the others in this section	 the equilibrium��nding program from Chap�

ter � was used to �nd the equilibrium solutions� Only stable equilibrium solutions were found during

this work however� As already stated forcing functions were held constant at those for midsummer at

Bermuda Station �S��
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Figure ����� Simulated model equilibria of phytoplankton �left	 nitrate �centre	 and daily

net primary productivity �right	 across a range of subthermocline nitrate concentrations

�model parameter N�	� The mixed layer is represented by a solid line and the thermocline

layer by a dashed line� The dotted line indicates the baseline value for N� at Bermuda

Station �S�� Concentrations are in mmol N m��� Net primary productivity is integrated

down each layer and is measured in mol N m�� d���
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Figure ���
� Simulated model equilibria of phytoplankton �left	 nitrate �centre	 and phy�

toplankton nitrate uptake limitation �right	 across a more extreme range of subthermocline

nitrate concentrations� The mixed layer is represented by a solid line and the thermocline

layer by a dashed line� Concentrations are in mmol N m��� Nitrate limitation is dimension�

less�

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recycling efficiency

P 
co

nc
en

tr
at

io
n

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Recycling efficiency

N
n 

co
nc

en
tr

at
io

n

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Recycling efficiency

N
et

 p
ri

m
ar

y 
pr

od
uc

tiv
ity

Figure ����� Simulated model equilibria of phytoplankton �left	 nitrate �centre	 and daily

net primary productivity �right	 across a range of recycling e�ciency �model parameters 	

and �	� The mixed layer is represented by a solid line and the thermocline layer by a dashed

line� The dotted line indicates the baseline value of �	 � �	� Concentrations are in mmol

N m��� Net primary productivity is integrated down each layer and is measured in mol N

m�� d���

Figure ���� shows the results of simulations in which N� was ranged from ��� to ���� mmol N m��� This

range encompasses the full range of values from di�erent latitudes given in table ����

In accordance with Taylor�s �ndings the phytoplankton concentrations in both layers rise with increas�

ing N�� However as do the equilibrium levels of nitrate in the two layers� By contrast Taylor found

that nitrate in the mixed layer was independent of N�� However the rise in mixed layer nitrate is very

slight across a relatively wide range of N��

As an aside �gure ���
 shows the results from simulations across a more extreme �and somewhat unre�

alistic	 range of N�� The graphs show that while phytoplankton concentrations in both layers increase

at �rst above N� concentrations of around �
 mmol N m�� the thermocline layer phytoplankton con�

centrations begin to fall� Although this is partially due to increased phytoplankton in the mixed layer
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blocking the penetration of light to the thermocline layer it is also caused by a build up of ammonium

in the thermocline layer �see centre graph	� This leads to an actual reduction in nitrate uptake �see

right right	 due to the inhibitory e�ects of ammonium� However this result does occur at less realistic

subthermocline nitrate concentrations �and will also depend on the choice of ammonium uptake model

� see Chapter �	�

Figure ���� shows the results of simulations in which �	 � �	 was ranged from ��� to ���� The phyto�

plankton results are in agreement with Taylor� As recycling e�ciency is increased the phytoplankton

concentration in both layers increases� As with the results for the N� simulations mixed layer nitrate

is not entirely independent of �	 � �	� Similarly though the change in mixed layer nitrate across the

range examined is relatively slight�

Property �ii	

The phytoplankton concentrations in each of the two layers show a common response to

changes in � e�ciency of recycling� subthermocline nutrient concentration� the Michaelis�

Menten parameters� and the loss term rates�

Property �ii	 was examined by simulating the two layer model over ranges of phytoplankton nutrient

uptake and loss process parameters� Since phytoplankton in Fasham �����	 can uptake both nitrate

and ammonium there are two nutrient uptake half�saturation constants k� and k�� Similarly the loss

processes are more complicated in Fasham �����	 than in Taylor�s work� Phytoplankton su�er grazing

as well as naturality mortality processes both of which have maximum rates �g and �� respectively	 as

well as half�saturation constants �k� and k� respectively	� However the di�erent equations of Fasham

�����	 and Taylor �����	 do still attempt to model the same processes and should be comparable� The

ranges of these six parameters examined included the extremes listed for the parameters in Fasham

Ducklow � McKelvie �����	�

The simulations already described for property �i	 found that the phytoplankton concentrations in each

layer showed a common response to changes in N� and �	 � �	�

Figure ���� shows the results of the simulations across the ranges of the six parameters� The equilibrium

phytoplankton concentrations in both layers are shown and the baseline value of each parameter is

marked to facilitate analysis�

All of the parameters involved in phytoplankton loss processes produce similar responses in the equilib�

rium concentrations of phytoplankton in both layers� Increasing the zooplankton maximum ingestion

rate �g	 causes both phytoplankton equilibria to fall� Similarly the maximum phytoplankton natural

mortality rate ���	� Both the zooplankton ingestion and phytoplankton natural mortality half�saturation

constants �k� and k� respectively	 induce rises in both phytoplankton equilibria as they increase�
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Figure ����� Simulated model equilibria of phytoplankton across ranges of nitrogen uptake

and loss parameters� The mixed layer is represented by a solid line and the thermocline

layer by a dashed line� Concentrations are in mmol N m��� Parameter units have been

described previously�

However the responses of the two phytoplankton equilibria di�er when nutrient uptake half�saturation

constants are considered� In both cases �more noticeably with k� the nitrate parameter	 increases in

the half�saturation constants lead to decreases in the equilibrium concentration of thermocline phyto�

plankton but increases in the equilibrium concentration of mixed layer phytoplankton� Since a decrease

in the uptake of nitrate by thermocline phytoplankton is likely to make more available for mixed layer

phytoplankton this is perhaps not surprising� However it di�ers from the property found by Taylor

in the models he examined� The reason for this di�erence probably stems from the assumption Taylor

made of zero nutrient limitation in the thermocline layer� In the work here nutrient limitation is still

modelled explicitly in both layers so changes in the uptake kinetics of the model can still �lter through

to a�ect the phytoplankton in both layers�

Property �iii	

Raising the growth of phytoplankton in the thermocline �e�g� by increasing the surface irra	

diance
 results in a decrease in growth of phytoplankton in the upper mixed layer�

Since there are several feedbacks in the two layer version of Fasham �����	 property �iii	 can be examined

in a number of di�erent ways� In the �rst instance and following Taylor�s own work it was examined

by raising sea�surface irradiance� The parameters kw and kc which are involved in the attenuation of

irradiance down the water column were also studied� As were the phytoplankton growth parameters

Vp the maximum possible phytoplankton growth rate and � the initial slope of the photosynthesis�

irradiance curve� Finally the thicknesses of both modelled layers were examined� A shallower mixed
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layer should increase the fraction of sea�surface irradiance which makes it to top of the thermocline�

A thinner thermocline layer �by means of the assumption that the thermocline layer is homogeneous	

should have a higher depth�integrated phytoplankton growth rate since the cells are mixed down through

a shallower layer�
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Figure ����� Time series showing the concentrations of phytoplankton �centre	 and nitrate

�right	 across a period during which surface irradiance �left	 is increasing stepwise every ���

days� The mixed layer is represented by a solid line and the thermocline layer by a dashed

line� The dashed line on the irradiance plot is the amount of irradiance reaching the top of

the thermocline layer� Concentrations are in mmol N m��� Irradiance in W m���
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Figure ����� As �gure ���� except for stepwise decreasing surface irradiance�

Figure ���� shows the time series of a single simulation in which sea�surface irradiance was increased

stepwise every ��� days� As can clearly be seen each increase in irradiance leads to an increase in

the equilibrium concentration of thermocline phytoplankton and a concommitant decline in that of the

mixed layer phytoplankton �centre graph	 although in the short term this trend is hidden by transient

behaviour which sees concentrations in both layers rise before the new equilibria are reached� In both

layers nitrate can be seen to fall with each successive rise in irradiance� As an aside �gure ���� shows

the process in reverse as irradiance is decreased every ��� days�

This result con�rms that found by Taylor and lends support to the hypothesis known as the �light

e�ect� �A� H� Taylor Plymouth Marine Laboratory pers� comm�	� This hypothesis suggests that when�

ever more light reaches the thermocline layer the phytoplankton there are able to grow slightly more
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and deprive the mixed layer phytoplankton of slightly more nutrient� This system has the capacity for

slight positive feedback since any reduction of nutrient in�ux to the mixed layer leads to a decline in

the phytoplankton concentration there which leads to a rise in the amount of irradiance reaching the

top of the thermocline which � � � However since irradiance is mostly attenuated by seawater itself and

not by photosynthetic pigments it would be di�cult for runaway positive feedback to occur�
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Figure ����� Simulated model equilibria of phytoplankton across ranges of kw Vp � kc

mixed�layer depth and thermocline thickness� The mixed layer is represented by a solid line

and the thermocline layer by a dashed line� Concentrations are in mmol N m��� Parameter

units have been described previously�

Figure ���� shows the results of the simulations across ranges of the other six parameters� In each case

the equilibrium phytoplankton concentrations and the baseline value of the parameter are shown�

Decreases in the attenuation coe�cient kw of the surrounding seawater �which could be caused by a

reduction in the quantities of suspended particles	 increases in the maximum phytoplankton growth

rate Vp increases in the initial slope of the P�I curve � and decreases in the absorption coe�cient of

chlorophyll kc �which could be caused by an increase in the nitrogen�chlorophyll ratio in the phytoplank�

ton cells	 all lead to rises in the thermocline phytoplankton at the expense of mixed layer phytoplankton�

These results are in agreement with Taylor�s �ndings for property �iii	 �although none are of particularly

large magnitude	�

An increase in the nitrogen�chlorophyll ratio could occur one might imagine in mixed layer phytoplank�

ton cells when nitrogen stress was beginning� Being in competition for nitrogen with other mixed layer

cells any cell which diverted its nitrogen from chlorophyll �which it would need less of anyway because


��



of the low irradiance stress	 to the synthesis of uptake proteins �which would enable the cell to increase

its share of the remaining nitrogen	 would be at an advantage to its neighbours and would increase in

number at their expense� However whilst winning this competition in the mixed layer the cell �and

its line of descendants	 would also be �tightening the noose� around its own neck by increasing the

irradiance to the thermocline layer and further starving the mixed layer of nitrogen�

Moving the values of kw kc Vp and � in the reverse direction produces the expected results� Mixed

layer phytoplankton become more important whilst thermocline phytoplankton decrease in importance�

With parameters Vp and kc the changes are still of low magnitude� However even comparatively small

changes in kw and � can shift the balance between mixed layer and thermocline phytoplankton signi��

cantly� In the case of � such a change is unlikely to occur in nature since thermocline phytoplankton

are if anything only likely to increase � to make the most of their lower irradiance� The attenuation

coe�cient kw however is more variable �see table ���	 and can be in�uenced by biological activity

�Balch Kilpatrick � Trees ����� Balch et al� ����	� Coccolithophore algae for instance can strongly

in�uence the local optical environment through the production and release of coccoliths� These are

organic scales produced by all Prymnesiophyte algae but covered in a layer of calcite �a form of CaCO�	

in the coccolithophorids� This layer causes the coccoliths to scatter light and this phenomenon has

been known to change the ocean�s colour so that it appears a milky turquoise �Balch et al� ����	�

This scattering of light e�ectively increases the attenuation coe�cient and reduces the amount of light

available to phytoplankton in the thermocline layer� It is possible to imagine that this could serve as a

strategy to deal with the �nutrient stranglehold� placed on the mixed layer phytoplankton by those in

the thermocline� However until the trade�o�s of producing coccoliths are fully understood it is unwise

to speculate on their signi�cance in this context�

The results for shallowing mixed�layer depth and a thinning thermocline layer however whilst showing

an increase in thermocline phytoplankton also show an increase in mixed layer phytoplankton contrary

to the decrease found with the other four parameters�

In the case of the shallowing mixed layer this is caused by an increase in the proportion of the mixed

layer which is mixed with the thermocline layer� This tends to homogenise the concentrations of phyto�

plankton and nitrate in the layers more� This is bolstered by the general increase in phytoplankton in

the thermocline layer due to greater quantities of irradiance which reach the top of it�

Where the thermocline�s thickness is decreasing several processes lead to rises in both layers� The

thermocline phytoplankton increase their growth rate mostly through an increase in depth�integrated

light�limited growth �see the light�limited growth plot of �gure ����	 though the narrower thickness of

the layer means that the mixing in of nitrate from the deep ocean is more important �see the nutrient

limitation plot of �gure ����	� In the mixed layer the phytoplankton concentration is raised mostly by

the mixing in of phytoplankton from the thermocline layer but also by a decrease in nutrient limitation
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Figure ����� Maximum light�limited growth rate and nutrient limitation for phytoplankton

across a range of thermocline thicknesses� The mixed layer is represented by a solid line and

the thermocline layer by a dashed line� Maximum growth rate is in d�� nutrient limitation

is non�dimensional�

caused by more nitrate di�using in from the thermocline layer �see the nutrient limitation plot of �gure

����	�

Whilst the results from increasing sea�surface irradiance and the former four model parameters support

Taylor�s property �iii	 changes to the latter two parameters suggest that phytoplankton growth in the

thermocline layer can be increased without a concommitant decrease in the mixed layer�

Property �iv	

The ratio of upper mixed layer to thermocline production� and the ratio of �new� nutrient

entering the layer to nutrient recycled back into it� do not depend on the concentration of

nutrient below the thermocline�

Property �iv	 was examined by simulating the two layer version of Fasham �����	 across a range of

subthermocline nitrate concentrations �as with property �i		� The net primary productivity �NPP	 ratio

between the two layers was calculated by dividing the integrated production of the mixed layer by that

of the thermocline layer� The ratio of �new� nutrient entering a layer to nutrient �recycled� into the

layer was calculated by dividing the quantity of nitrate entering the layer from below by the quantity

of ammonium and DON regenerated through zooplankton loss processes� The role of the bacterial com�

partment in the cycling of nitrogen via ammonium was ignored here since it is of quantitatively minor

importance in the model and is complicated by the uptake of ammonium by bacteria�

Figure ���� shows the results these calculations together with the calculated f�ratio� As before the a

range of N� values including all those from table ��� was examined� The baseline value of N� at Bermuda

Station �S� is marked by a vertical dotted line�

Although the NPP ratio is clearly not independent of N� the ratio changes only slightly across most of

the range examined� It is only at the extreme lows and extreme highs �not shown here	 that the ratio
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Figure ����� Simulated NPP mixed layer�thermocline layer ratio �left	 �new���recycled�

nutrient ratio �centre	 and the f�ratio �right	 across a range of subthermocline nitrate con�

centrations �model parameter N�	� In the latter two graphs the mixed layer is represented

by a solid line and the thermocline layer by a dashed line� The dotted line indicates the

baseline value of N�� Concentrations are in mmol N m��� All three ratios are dimensionless�

shifts markedly towards mixed layer production�

This result is also found with the �new���recycled� nutrient ratio in the mixed layer� Only the extremes

of the range examined show large shifts in the ratio �in this case towards �new� production	� In the

thermocline layer though this ratio decreases with increasing N� across the full range of N��

The f�ratio results show some trivially counter�intuitive results� In the mixed layer the f�ratio is at its

highest at extremely low N� when nitrate is at its most limiting� Whilst in the thermocline layer the

f�ratio falls across the full range of N� values examined despite rising nitrate in the layer� However in

both instances these apparently odd results are easily explicable�

Property �v	

The ratio of the production in the two layers also does not depend on the e�ciency of

recycling�

Property �v	 was examined by simulating the two layer version of Fasham �����	 across a range of

�	 � �	 the regenerative terms of zooplankton loss processes �as with property �i		� Although Taylor�s

property �v	 dealt only with the NPP ratio the �new���recycled� nutrient ratio and the f�ratio were

also calculated�

As �gure ��
� shows the ratio of NPP between the two layers was found to vary across the whole range

of �	 � �	 with the steepest changes occurring near the baseline value� Increasing e�ciency was found

to increase the fraction of production which occurred in the mixed layer�

Unsurprisingly increasing recycling e�ciency decreased both the �new���recycled� nutrient ratio and

the f�ratio as more nitrogen was returned to the useable nutrient pool as ammonium�
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Figure ��
�� Simulated NPP mixed layer�thermocline layer ratio �left	 �new���recycled�

nutrient ratio �centre	 and the f�ratio �right	 across a range of recycling e�ciency �model

parameters 	 and �	� In the latter two graphs the mixed layer is represented by a solid line

and the thermocline layer by a dashed line� The dotted line indicates the baseline value of

�	� �	� Recycling e�ciency is dimensionless� All three ratios are dimensionless�

����� Latitudinal di�erences

The assumptions made in Taylor�s original analysis constrained the application of the derived proper�

ties to a relatively restricted subset of ocean environments� The choice of Bermuda Station �S� as the

location to examine the properties for the two layer version of Fasham �����	 was made with these

assumptions in mind� However to establish whether or not the properties could be sought in data from

other environments each of the properties above was examined additionally at �� ��� and ��� N� The

forcing and parameter values detailed previously were used for each set of simulations�

Figure ��
� shows a selected subsample of the results from these simulations� The columns refer to each

of the three latitudes the rows to each of the �ve properties� As previously the baseline values of the

parameters in question are indicated by dotted lines�

The results from �� N agree well with those found for Bermuda Station �S�� The only exception is with

property �iv	� At Bermuda Station �S� it was found that the NPP ratio only changed signi�cantly at

extremely low N�� At �� N the baseline value of N� falls within the region where signi�cant changes to

the ratio are occurring� This aside it is not surprising that the results are similar to those from Bermuda

Station �S� since both locations �nd the phytoplankton in the mixed layer considerably more nutrient

limited than those in the thermocline layer as per Taylor�s assumptions�

By contrast at ��� and ��� N there is little di�erence in the nutrient�limitation status between the

two layers �both because of the higher baseline N� and the lower lighted�limited growth rates	� Con�

sequently Taylor�s properties almost completely cease to be found� The mixed�layer nitrate levels do

remain almost constant across the full range of �	� �	 and the phytoplankton in both locations do show

a common response to changes in the nutrient uptake Michaelis�Menten and loss process parameters�

However aside from these minor agreements all of the other properties fail to be met� Mixed�layer
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Figure ��
�� Latitudinal di�erences in the response of the two layer version of Fasham �����	

to Taylor�s �ve properties� The columns refer to each of the three latitudes the rows to each

of the �ve properties� Concentrations are in mmol N m��� All three ratios are dimensionless�

Parameter units have been described previously�
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nitrate rises with increasing N� increases in the growth rate of thermocline phytoplankton lead to rises

in the equilibrium concentrations of phytoplankton in both layers and the NPP ratio is strongly a�ected

by changes in both N� and �	 � �	� Again this is not surprising since the assumptions used by Taylor

to derive the common properties are not compatible with the conditions found at ��� and ��� N�

These results suggest that any attempt to �nd Taylor�s properties in observational data needs to be con�

strained to only those regions in which his major assumptions apply� Only in the tropics and sub�tropics

are there regions where mixed�layer phytoplankton experience considerably greater nutrient limitation

than those in the thermocline layer for prolonged periods of time�

As an aside in the simulations performed here parameter changes which increased the growth rate

of thermocline phytoplankton happened to the value of the parameter in both layers� No simulations

were performed in which for example the values of Vp or � were raised only for the thermocline

phytoplankton� Such changes would undoubtedly favour thermocline over mixed�layer phytoplankton�

However they would imply that the two populations were somehow di�erent �community structure�

di�erent acclimation to ambient conditions� et cetera	� Whilst this can be the case in nature �Gieskes �

Kraay ����	 it is beyond the scope of this work�

����� Summary

Each of the �ve properties Taylor found in the models he studied have been looked for in the two layer

version of Fasham �����	� With relatively minor discrepancies the simulations of the two layer version of

Fasham �����	 �at an appropriate latitude	 share properties �i	 to �iv	 with Taylor�s work� The following

list summarises the agreement between the properties Taylor found with his models and those at an

appropriate latitude�

� Property �i	

It was found that phytoplankton concentrations in both layers correlated positively with increasing

N� and �	 � �	 and that mixed layer nitrate changed only slightly across the ranges of these

parameters� These results agree mostly with those found by Taylor�

� Property �ii	

In agreement with Taylor it was found that the phytoplankton in both layers showed a common

response to changes in the phytoplankton loss parameters g k� �� and k�� However in the case

of the Michaelis�Menten terms for nutrient uptake k� and k� changes which reduced the uptake

rates in both layers led to a decrease in thermocline phytoplankton but an increase in mixed layer

phytoplankton�

� Property �iii	

Once again in agreement with Taylor increases in the growth rate of phytoplankton in the ther�

mocline layer mediated by the parameters kw Vp � kc and sea�surface irradiance lead to rises
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in the thermocline phytoplankton with concommitant decreases in the mixed layer phytoplankton�

Although not examined by Taylor decreases in both the mixed�layer depth and thermocline thick�

ness also led to increases in the thermocline phytoplankton growth rate and consequently concen�

tration� However unlike the previous parameters these changes also led to increases in the mixed

layer phytoplankton�

� Property �iv	

Whilst neither the NPP ratio nor the �new���recycled� nutrient ratio were found to be independent

of N� in both cases the ratios were found to be fairly constant in the most interesting range� This

is broadly in agreement with Taylor�s results�

� Property �v	

In the case of the NPP ratio and recycling e�ciency it was found that the ratio increased sig�

ni�cantly with increasing e�ciency� The steepest portion of this increase was found around the

baseline value of recycling e�ciency� This disagrees with the comparable result obtained by Taylor�

Despite di�erences in both model complexity and analytical approach �Taylor�s rigorous analysis versus

numerical simulation used here	 it is clear from this list that the two layer version of Fasham �����	

lends support to the majority of Taylor�s properties� It is particularly signi�cant that agreement was

reached without any of the linearising assumptions made by Taylor to simplify analysis� Non�linear

forms in the two layer version of Fasham �����	 were retained in full�

Whether or not these properties could be looked for in data though is not clear� For properties �i	 and

�iv	 to be examined a region in which there was considerable variability in N� would need to be found�

Because of di�erences in the maximum depth of winter mixing N� essentially increases with latitude

�table ���� Figure � of Strass � Woods ����	� However as already discussed increasing latitude has

several other e�ects which make comparison between di�erent latitudes di�cult or impossible� A possi�

bility may exist along the equator where near constant upwelling �caused by the divergence of the Trade

winds of the northern and southern hemispheres	 brings nutrient rich waters to shallower depths� As

these waters spread from the equator and mix with more nutrient�depleted waters it is possible that

enough of a range of deep nitrate would persist to make examining properties �i	 and �iv	 possible�

The majority of nitrogen which is regenerated in the Fasham �����	 model does so via the zooplankton

mortality pathway� The ecological processes which this pathway represents include direct excretion of

ammonium by the zooplankton as well as the more complex routes through higher predators and re�

generative bacteria� As such it is not obvious how properties �i	 and �v	 could reasonably be studied�

It is conceivable that regeneration e�ciency could be estimated based on knowledge of the regenerative

processes of particular species compositions or perhaps the results of experiments tracing the fate of

labelled nitrogen� Variation in species composition through space and time could then provide a range

of e�ciency across which properties �i	 and �v	 could be examined� However the ecological uncertainties
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involved in such an e�ort might entirely swamp its aims�

Similar comparisons between species compositions at di�erent locations and studies which track seasonal

succession patterns may o�er some avenues for investigating property �ii	� However since phytoplankton

uptake and mortality parameters relate to somewhat more tangible ecological processes than nutrient

regeneration it may be easier to �nd appropriate data� Many studies have examined the uptake kinetics

of phytoplankton �see Dortch ���� for an excellent review of the interplay between ammonium and

nitrate uptake	 the grazing rates of zooplankton �Evans � Paranjape ���
� Peters ����� Pa�enh"ofer

et al� ����	 and the signi�cance of viruses in phytoplankton mortality �Beltrami � Carroll ����� Brat�

bak et al� ����	� However once again the uncertainties involved may obscure the processes under study�

Property �iii	 probably presents the best chance for con�rming Taylor�s predictions� Although as Banse

�����	 has pointed out very transient �uctuations in sea�surface irradiance �e�g� by the movement

of passing clouds	 occur on far too short a time scale for any noticeable e�ect of reducing irradiance

it is still possible that events over a longer period �e�g� diel cycle of sunlight� a prolonged period of

cloudiness	 may reveal the patterns found by Taylor and in the two layer version of Fasham �����	� It is

worth noting though that the simulations of varying sea�surface irradiance here found that changes in

incident irradiance have transient periods at �rst where the phytoplankton do not behave as predicted�

In the simulations here these transient periods were up to �� days long� However this transient was

not observed in the nitrate results�

The attenuation coe�cient kw and the thicknesses of the mixed and thermocline layers M and T 

also present possibilities for con�rming Taylor�s predictions against data� As already mentioned some

algae are capable of signi�cantly altering the optical properties of sea water �Balch Kilpatrick � Trees

����� Balch et al� ����	� During blooms of these organisms it may be possible to examine property

�iii	 across a range of kw� Alternatively and somewhat speculatively following the example set by the

IronEx experiments in the Paci�c �Behrenfeld et al� ����	 experiments in which the optical properties

of the mixed layer were altered arti�cially could be performed� Taylor � Stephens �����	 describe

work in which accurate depth pro�les of temperature and chlorophyll �measured by the Undulating

Oceanographic Recorder	 were used to predict the timing and onset of the spring phytoplankton bloom�

Similar measurements recording shifts in the thicknesses of the mixed and thermocline layers could

provide data to con�rm or refute the simulation results presented here for these parameters�
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��� Limit cycle behaviour of the two layer model

In Chapter � the normal single layer version of Fasham �����	 was examined for limit cycle behaviour�

Such cycles were found in certain regions of parameter space and their implications for the model were

discussed� In this section the two layer version of Fasham �����	 was similarly examined to establish

whether or not it shared the behaviour of the single layer model�

����� Mixing rate and subthermocline nitrate

Studies of the full model and the reduced model �c� found that preventing the exhaustion of nitrate

in the modelled system allowed the persistence of predator�prey cycles between the phytoplankton and

zooplankton� In the �rst instance then the parameter space of mixing rate m and subthermocline

nitrate N� was examined�

As previously the equilibrium��nding program from Chapter � was used to �nd the equilibrium solutions

at each combination of parameter values� In keeping with the previous work numerical solutions were

determined at both OWS �India� and Bermuda Station �S�with the forcing functions from days ��� and

��� respectively� All of the plots use the same graphical format that was described originally in Chapter ��

For comparative purposes �gures ��

 and ��
� show the results that were found when the single layer

model was examined� OWS �India� has a pattern of limit cycles which persist only at intermediate

mixing rates� Bermuda Station �S� has limit cycles across almost the full range of the parameters

examined �although none at values of N� close to the baseline value	� The two stations also di�er

signi�cantly in the periods of the limit cycles found� The cycles at OWS �India� all have periods be�

tween �� and �� days whilst at Bermuda Station �S� all of the cycles have periods between 
� and 
�

days� The relationships between cycle period and amplitude also di�er signi�cantly between the stations�

Figures ��
� and ��
� show the results obtained from simulations of the two layer model at the two

stations� In both cases the stations show somewhat similar patterns of mixed layer phytoplankton be�

haviour to their single layer equivalents� However both of these patterns are similarly �retracted� from

the patterns found in the single layer model� While in the single layer model at OWS �India� limit cycles

could be found at values of N� around 
� mmol N m�� in the two layer model they are only found at

values over �� mmol N m��� A similar reduction in the area of parameter space in which limit cycles

occur was found at Bermuda Station �S��

For the same parameter values this �retraction� has also reduced the amplitude of the mixed layer limit

cycles between the two models� This has also happened although to a less obvious degree with the

limit cycle periods� Overall the addition of the thermocline layer to Fasham �����	 has �pushed back�
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Figure ��

� The results of simulations of the normal � compartment version of Fasham

�����	 performed at OWS �India� on day ��� across a range of cross�thermocline mixing

rates �m	 and subthermocline nitrate concentrations �N�	� Mixing rates in m d�� subther�

mocline nitrate concentrations in mmol N m��� Phytoplankton equilibrium concentrations

and limit cycle amplitudes in mmol N m��� Limit cycle periods in days� Limit cycle am�

plitude set to � and period to �� days �for clarity	 where only stable equilibrium solutions

found�

the region of stable oscillatory behaviour so that it occurs at more extreme values of N� and m�

The area of m�N� space in which limit cycle behaviour occurs in the two layer model can be increased

by decreasing the detrital sinking rate in the same manner as was done with the single layer model in

Chapter � �results not shown here	� Setting detrital sinking rate V  to � m d�� permitted limit cy�

cle behaviour at subthermocline nitrate concentrations as low as �� mmol N m�� �with m � ���� m d��	�

In the thermocline layer the patterns of phytoplankton behaviour are di�erent� At both OWS �In�

dia� and Bermuda Station �S� increases from both low N� and m lead to increases in the equilibrium

concentration of phytoplankton �for low values of both parameters at Bermuda Station �S� the ther�

mocline phytoplankton equilibriate at higher concentrations than in the mixed layer	� However as the

concentration of phytoplankton in the mixed layer also rises this quickly leads to the thermocline layer

equilibria falling away again as the phytoplankton there are �starved� of light�
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Figure ��
�� The results of simulations of the normal � compartment version of Fasham

�����	 performed at Bermuda Station �S� on day ��� across a range of cross�thermocline

mixing rates �m	 and subthermocline nitrate concentrations �N�	� Mixing rates in m d��

subthermocline nitrate concentrations in mmol N m��� Phytoplankton equilibrium concen�

trations and limit cycle amplitudes in mmol N m��� Limit cycle periods in days� Limit

cycle amplitude set to � and period to 
� days �for clarity	 where only stable equilibrium

solutions found�

At both locations the amplitudes of the phytoplankton oscillations are comparable to those in the mixed

layer� In the case of OWS �India� the pattern of amplitudes in the thermocline layer is almost identical

to that in the mixed layer with both populations showing small �humps� at high N�� Figure ��
�

shows a sample time series from an OWS �India� simulation� The phytoplankton oscillations in the

thermocline layer are 
��� days out of phase �peak to peak	 with those in the mixed layer�

At Bermuda Station �S� however the pattern of amplitudes is much more complicated� The highest

amplitudes in the parameter region examined occur at high N� but low m then fall o� at �rst with

increasing m� However above m � ��� m d�� the amplitude of the oscillations rises again� This can be

seen in the phytoplankton plots of �gure ��
�� The oscillation amplitude of the mixed layer phytoplank�

ton increases with m but the thermocline phytoplankton fall then rise again� Noticeably however the

amplitudes of the thermocline zooplankton and nitrate limit cycles do not show this trend� In both cases

amplitude increases with increasing m� Attempts to determine the reason for this pattern of behaviour

failed to establish a cause�
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Figure ��
�� The results of simulations of the two layer version of Fasham �����	 performed

at OWS �India� on day ��� across a range of cross�thermocline mixing rates �m	 and

subthermocline nitrate concentrations �N�	� Mixing rates in m d�� subthermocline nitrate

concentrations in mmol N m��� Phytoplankton equilibrium concentrations and limit cycle

amplitudes in mmol N m��� Limit cycle periods in days� Limit cycle amplitude set to �

and period to �� days �for clarity	 where only stable equilibrium solutions found� On the

limit cycle period vs� amplitude plot mixed layer phytoplankton represented by ��� and

thermocline phytoplankton by �o��
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Figure ��
�� The results of simulations of the two layer version of Fasham �����	 performed

at Bermuda Station �S� on day ��� across a range of cross�thermocline mixing rates �m	 and

subthermocline nitrate concentrations �N�	� Mixing rates in m d�� subthermocline nitrate

concentrations in mmol N m��� Phytoplankton equilibrium concentrations and limit cycle

amplitudes in mmol N m��� Limit cycle periods in days� Limit cycle amplitude set to �

and period to 
� days �for clarity	 where only stable equilibrium solutions found� On the

limit cycle period vs� amplitude plot mixed layer phytoplankton represented by ��� and

thermocline phytoplankton by �o��
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Figure ��
�� Time series results of a two layer model simulation performed at OWS �In�

dia� � Phytoplankton �left	 zooplankton �centre	 and nitrate �right	 shown� Mixed layer

concentrations are represented by a solid line thermocline layer concentrations by a dashed

line� Concentrations are in mmol N m���

The abundances in the mixed and thermocline layers of all three of these major model components all

become more in phase as the mixing rate rises �in the graphs shown the phytoplankton in the two layers

are out of phase by approximately �� � and � days respectively	� The higher the mixing the more

homogenised the populations become so this is not surprising�

����� Thermocline thickness

The results in the previous section illustrate the e�ects that the addition of a thermocline layer has to

the limit cycle dynamics of the model� Although many di�erent parameter ranges could be examined

for other di�erences in model behaviour one of the most obvious parameters to vary is that of the

thermocline thickness itself since the quantity of nitrate from the deep ocean which reaches the upper

mixed layer is liable to be strongly tied to this�

Thermocline thickness was examined by performing simulations across a range of T and N� under the

standard conditions of OWS �India� on day ���� Mixing was �xed at ���� m d�� the value at which

limit cycles were previously found� The thermocline thickness was ranged from � m to ��� m� The

ranges of the two parameters included the region already examined for limit cycle behaviour�

Figure ��
� shows the results from these simulations� Equilibrium concentrations and limit cycle ampli�

tudes of phytoplankton in both layers are shown� The periods of the limit cycles are also shown together

with a plot showing the relationship between the limit cycle periods and their amplitudes�

Mixed layer phytoplankton equilibrium concentrations rise �as before	 with increasing N� and the bi�

furcation found previously for a �� m thermocline can be seen on the plot� Thermocline phytoplankton

rise at �rst with N� but their concentration falls away as mixed layer phytoplankton increasingly starve

them of light�
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Figure ��
�� Time series results of two layer model simulations performed at Bermuda Sta�

tion �S� for three values of mixing rate m� Phytoplankton �left	 zooplankton �centre	 and

nitrate �right	 shown� Mixed layer concentrations are represented by a solid line thermocline

layer concentrations by a dashed line� Concentrations are in mmol N m���

For values of N� in the normal range �� �� mmol N m��	 the mixed layer phytoplankton are almost

unchanged by increasing thermocline thickness� In contrast the thermocline phytoplankton equilibria

across the same region fall as increasing thermocline thickness reduces their depth�integrated light�

limited growth�

However above around �� mmol N m�� the system bifurcates at low values of thermocline thickness

and limit cycles occur� The amplitudes of the mixed layer phytoplankton cycles are much higher than

those previously found for the two layer model and very close to those which were found at comparable

m and N� values with the single layer model� The phytoplankton cycles in the two layers are also almost

perfectly in phase with one another �� � day out of phase	� These results are not surprising since as

the thermocline�s thickness shallows the two layer system comes closer and closer to being a single layer

system� The thermocline layer phytoplankton have a depth�integrated light�limited growth closer to

that of the mixed layer phytoplankton and the narrow thermocline allows much greater homogenisation
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Figure ��
�� The results of simulations of the two layer version of Fasham �����	 performed

at OWS �India� on day ��� across a range of thermocline thickness and subthermocline

nitrate concentrations �N�	� Thermocline thickness in m subthermocline nitrate concentra�

tions in mmol N m��� Phytoplankton equilibrium concentrations and limit cycle amplitudes

in mmol N m��� Limit cycle periods in days� Limit cycle amplitude set to � and period

to �� days �for clarity	 where only stable equilibrium solutions found� On the limit cy�

cle period vs� amplitude plot thinner�thermocline limit cycles represented by ��� and

thicker�thermocline limit cycles by �o��
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of the two layers� This homogenisation mixes more phytoplankton into the thermocline layer from the

mixed layer but also permits a much greater nitrate in�ux into the mixed layer�

However as the thermocline thickness increases whilst the limit cycle behaviour at �rst ceases a second

series of limit cycles are found� In the range of N� examined these limit cycles begin at thermocline

thicknesses above �� m� This thickness is comparable to the thickness of the mixed layer itself and

the limit cycles are not caused purely by di�usion of phytoplankton into the thermocline layer from the

mixed layer� This is evidenced by the thermocline phytoplankton peaks trailing the mixed layer ones by

around 
� days� These limit cycles are caused by the increase of nitrate �ux to the mixed layer which

is in turn caused by the reduced light�limited growth of the thermocline phytoplankton�

The limit cycles found in these simulations �particularly those which occur with thicker thermoclines	

all occur at values of N� well outside the normal range� As has been done previously a second series

of simulations where detrital sinking rate V  was reduced to � m d�� were performed to establish

whether or not limit cycles could occur at parameter values likely to be encountered in the real world�

Figure ��
� shows the results of these simulations� The most obvious di�erence from the results shown

in �gure ��
� is the extension of the area of parameter space in which limit cycles occur� While the

extent of the area in which limit cycles occur �� �� mmol N m�� and upwards	 does not quite reach

the normal range �� �� mmol N m��	 the gap is small and may be quite easily bridged by changes in

other parameters�

Note that although the two �types� of bifurcation with thermocline thickness previously mentioned have

merged into a single region they can still be easily discerned by the increases in limit cycle amplitude

�especially with thermocline phytoplankton	 and period as the thermocline thins�

As was found previously with low detrital sinking rates the limit cycle periods are slightly higher and

across the range examined here show much less variation than was found for the same range with high

sinking rates�

The model simulations here assume that the thermocline phytoplankton are at a homogeneous concen�

tration through their layer in the same manner as the mixed layer phytoplankton� However while the

mixed layer phytoplankton are mostly passively mixed in their layer the thermocline phytoplankton

distribute themselves more actively �swimming sinking buoyancy control	� As such a homogeneous

distribution through a particularly thick thermocline �which would considerably reduce light�limited

growth	 is unlikely� Consequently the more extreme thermocline thicknesses examined previously are

liable to produce results quite di�erent from those which would be found in comparable real�life situa�

tions�
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Figure ��
�� The results of simulations of the two layer version of Fasham �����	 performed

at OWS �India� on day ��� across a range of thermocline thickness and subthermocline

nitrate concentrations �N�	� In these simulations detrital sinking rate V  was set to the

lower value of � m d��� Thermocline thickness in m subthermocline nitrate concentrations

in mmol N m��� Phytoplankton equilibrium concentrations and limit cycle amplitudes in

mmol N m��� Limit cycle periods in days� Limit cycle amplitude set to � and period

to �� days �for clarity	 where only stable equilibrium solutions found� On the limit cycle

period vs� amplitude plot mixed layer phytoplankton represented by ��� and thermocline

phytoplankton by �o��
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����� Mixing inputs

As has already been established the inter�layer mixing rates m� and m� can have a profound in�uence

on the dynamics of the system by a�ecting the rate at which nitrate in�uxes to the modelled system� In

the work described so far whenever a range of mixing rates has been examined the two mixing param�

eters have been assigned the same value� However the factors a�ecting mixing processes at the mixed

layer�thermocline and thermocline�deep ocean margins are not the same and it is likely that in real life

the two parameters have a degree of independence� Wind will strongly a�ect mixed layer�thermocline

mixing whilst currents in the deep ocean will a�ect the mixing processes between the thermocline and

the deep ocean�

To examine the signi�cance of varying m� and m� independently simulations were performed across

ranges of both� As usual simulations were performed for both OWS �India� and Bermuda Station �S�

situations�

Figures ���� and ���� show the results of these simulations� In the ranges examined only stable equi�

libria were found and the phytoplankton nitrate and net primary productivity equilibria are shown�

The simulations at both latitudes share several features� Nitrate and phytoplankton concentrations in

the thermocline layer are strongly related to the value of m� �the thermocline�deep ocean mixing rate	

whilst concentrations of nitrate and phytoplankton in the mixed layer increase most signi�cantly in

response to increases of both m� and m�� This is not surprising since increasing m� on it own cannot

directly increase the �ux of nitrate into the modelled system �though by decreasing Nn�T even further

increasing m� slightly increases the in�ux of nitrate into the thermocline layer from the deep ocean	�

At OWS �India� the potential for the thermocline phytoplankton to dominate is curbed by the less

favourable light environment there and PT only really dominates where m� is high but m� is low� In

fact as both rise PT begins to fall away as shading from the prospering mixed layer phytoplankton

reduces light�limited growth even further� However near the baseline values of m� and m� even small

increases in m� lead to the signi�cant rises in total primary productivity�

At Bermuda Station �S� the thermocline phytoplankton almost entirely dominate the full range of m�

and m�� This control is most visible on the plot of mixed layer nitrate� Although the equilibrium values

of this do increase with m� and m� the absolute quantity of nitrate in the mixed layer is held very low

by the productivity of the thermocline phytoplankton� This result is analogous to Taylor�s property �i	

�Nn�M is independent of N�	� Both relate to the powerful control on nitrate �ux exerted by thermocline

phytoplankton� Because of the low importance of mixed layer phytoplankton increases in primary pro�

ductivity are almost entirely reliant on increases in the mixing between the thermocline and the deep

ocean� The more light�limited environment of OWS �India� �nds total primary productivity reliant on
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Figure ����� The results of simulations of the two layer version of Fasham �����	 performed

at OWS �India� on day ��� across a range of mixed layer�thermocline �m�� ML m	 and

thermocline�deep ocean �m�� TL m	� The �gures show the equilibrium concentrations of

phytoplankton �top	 and nitrate �middle	 and the equilibrium net primary productivity

�bottom	 in the two modelled layers� Mixing rates are in m d�� concentrations in mmol N

m�� and net primary productivity is in mmol N m�� d���

���



0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

ML m

Pm equilibrium concentrations

TL m

Pm
 e

qu
ili

br
iu

m

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

ML m

Pt equilibrium concentrations

TL m

Pt
 e

qu
ili

br
iu

m

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

ML m

Nn,m equilibrium concentrations

TL m

N
n,

m
 e

qu
ili

br
iu

m

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

ML m

Nn,t equilibrium concentrations

TL m

N
n,

t e
qu

ili
br

iu
m

0

0.5

1

0

0.5

1
0

1

2

3

ML m

Mixed layer net primary productivity

TL m

N
PP

m

0

0.5

1

0

0.5

1
0

1

2

3

ML m

Thermocline net primary productivity

TL m

N
PP

t

Figure ����� The results of simulations of the two layer version of Fasham �����	 performed

at Bermuda Station �S� on day ��� across a range of mixed layer�thermocline �m�� ML m	

and thermocline�deep ocean �m�� TL m	� The �gures show the equilibrium concentrations

of phytoplankton �top	 and nitrate �middle	 and the equilibrium net primary productivity

�bottom	 in the two modelled layers� Mixing rates are in m d�� concentrations in mmol N

m�� and net primary productivity is in mmol N m�� d���
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mixing at both layer margins�

At both locations increasing m� leads to rises in both Nn�T and PT  but very much lower changes to

Nn�M and PM � This is not unexpected since nitrate is ordinarily limiting at both locations during the

summer �see the values of Nn�M and Nn�T at the baseline values of m� and m�	 and any increase of

nitrate in�ux to the modelled system is likely to be taken advantage of by the thermocline phytoplankton�
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��	 Summary

This chapter has explored the features and behaviour of a two layer version of Fasham�s �����	 model�

Previously other researchers have examined such models �Taylor ����� Taylor et al� ����	 and the

work presented here is intended to complement that work�

The form of the two layered model used is essentially a simple extension of the single layer system with

a second set of thermocline ODEs which interact with their mixed layer partners� These interactions

mostly take the form of mixing di�usion and de�entraining although the thermocline phytoplankton

are further a�ected by the amount of light which penetrates the mixed layer and the zooplankton com�

partments are complicated by the assumed mobility of the organisms they contain�

This latter complication permits the construction of several reasonable formulations for zooplankton be�

haviour� However examination of four of these revealed some signi�cant di�erences in their behaviour

leading to the adoption of a form with two separate but communicating compartments� Other authors

�Kremer � Nixon ����� Ross Gurney � Heath ���� ����	 have used more complicated functions

in some of which the zooplankton are capable of tracking their prey� However such forms are usually

con�ned to studies in which the nature of the zooplankton in question is well understood and fairly

narrow� In the Fasham �����	 model the compartment is assumed to be a broad mixture of many

di�erent zooplankton types and is less well suited to such speci�c behaviour�

The primary reason for the construction of a two layer model was to attempt to capture the phenomenon

of DCM observed in many locations �Menzel � Ryther ����� Brock Sathyendranath � Platt �����

Estrada et al� ����	� Since latitude is an important factor a series of simulations were performed where

latitudinal di�erences in forcing functions and parameter values were accounted for� These simulations

broadly agreed with data and predicted DCM at tropical and sub�tropical latitudes�

In an attempt to create testable predictions from two layer models Taylor �����	 deduced a series of

general properties from several models which could be looked for in data from appropriate ocean regions�

An examination of the two layer version of Fasham �����	 found that most of these properties applied

to it and suggested a few additional avenues which could be looked for in data� The prospects of �nding

support for these properties in data were also discussed�

Following on from the work in Chapter � the two layer model was similarly examined for limit cycle

behaviour� Simulations found that while the model did exhibit limit cycles the parameter range in

which they occurred was smaller than that found for the single layer model� The thickness of the ther�

mocline was examined as a possible bifurcation parameter and it was found that increasing it from zero
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caused two �types� of bifurcation� Simulations with very shallow thermoclines behaved very similarly

to the single layer model whilst thicker thermoclines reduced phytoplankton growth there su�ciently

that nitrate in�ux to the mixed layer permitted limit cycles� However the signi�cance of these latter

results is reduced by the less realistic assumptions they make about the thermocline and the behaviour

of the compartments within it� Finally independent di�erences in the mixing rates between the two

layers were examined� Simulations here found that for mixed layer production to increase signi�cantly

mixing between both the thermocline and the deep ocean and the mixed layer and the thermocline

had to increase whereas thermocline production �unsurprisingly	 only required greater thermocline to

deep ocean mixing� The signi�cance of these results was examined at both OWS �India� and Bermuda

Station �S��
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��
 Discussion

The assumption that the physics of the plankton ecosystem can be modelled as single well�mixed sur�

face layer has been a key one throughout this thesis �and in the majority of plankton models	� In this

chapter the assumption has been challenged by making a second assumption of a deeper ocean layer

overlain by this well�mixed surface layer� This deeper layer was created to represent the thermocline

the region of the water column across which the thermal �and haline and nutrient	 change between the

homogenised surface waters and the deep ocean occurs�

This addition to the model was made in an attempt to capture the uneven vertical distribution of phy�

toplankton and primary production which is often observed in the ocean� Although the addition of a

second vertical layer could not fail to improve the modelled distribution of phytoplankton the resulting

model was found to be more successful than the single layer model in predicting total primary productiv�

ity for certain geographical locales� However several of the assumptions used in the construction of the

model �e�g� perfect mixing within both layers restricted mixing between the two layers	 do favour such

agreement and are probably not entirely consistent with reality� Archer �����	 provides an overview of

more realistic �and complex	 physical ocean models�

In summary modelling the oceanic plankton ecosystem as two layers allows the resulting model to more

accurately capture the patterns of production in oligotrophic ocean regions �the tropics and sub�tropics	�
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Chapter �

Conclusions and future work

Big whorls have little whorls

that feed on their vorticity�

and little whorls have lesser whorls

and so on to viscosity

� Lewis Fry Richardson ������

Thought for the day�

If you see a light at the end of the tunnel� it is probably a train�

� Anonymous
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��� Summary

The chapters of this thesis describe four di	erent investigations of the Fasham ������ model
 While the

�nal of these explores the consequences of an extension to the original model� the �rst three each address

uncertainty in the structure or parameterisation of it
 Because of the relative complexity of the model�

throughout the thesis a numerical approach to the problems tackled was adopted


Chapter � aimed �somewhat na�vely� to determine a minimum model which captured the behaviour

of the full Fasham ������ model at both OWS �India� and Bermuda Station �S�
 The full model was

�stripped� to what were considered its bare essentials� a PZ form� and then the model was rationally

reconstructed to the full form
 At each step� consideration was given to the pathways reinstated and

the forms that they took �e�g� the zooplankton grazing term�
 To retain mechanistic integrity� neither

the functional forms nor the parameter values were changed from those used in the full model
 The

simulations found that models only became successful once they possessed a detrital compartment
 In

contrast� the bacteria compartment was found to be fairly redundant� with several models �e�g� �c�

�c�� �c�� successfully managing without it
 OWS �India� simulation results found that when nutrients

were not limiting through most of the year� models which ignored them or demoted them to a single

parameter were surprisingly successful


The summer months of simulations at OWS �India� are distinguished by oscillations in the concen�

tration of phytoplankton
 These oscillations are interesting since data sets from OWS �India� also

appear to exhibit such cycles� while they are entirely absent from both data and model simulations at

Bermuda Station �S�
 Chapter � sought to characterise the nature of these oscillations in the modelled

phytoplankton and zooplankton populations
 Numerical studies of the full model using ��xed forcing�

revealed that they are transient behaviour towards a stable equilibrium which is never normally reached

because of the forced annual cycle
 An intensive numerical study of parameter space around the baseline

parameter values did� however� uncover regions of parameter space in which stable oscillatory behaviour

was found to occur �parameters m� N� and V were particularly important in this regard�
 From the

ranges of parameters in the literature� plausible combinations of values were found which would make

the oscillations stable� and potentially observable in data
 Work investigating parameter ranges also

suggested potentially sensitive parameters �those where model equilibria were particularly sensitive near

baseline values�� and also particularly insensitive parameters �somewhat in agreement with Chapter ��

bacterial parameters were found to elicit almost no changes in model equilibria�
 Because of recent

interest in the literature� the role of the zooplankton loss term in such behaviour was also investigated


The �ndings from this latter work suggested caution in applying the conclusions of a well�known study

by Steele � Henderson ������
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While Chapter � studied parameters with a view to the dynamical behaviour they could elicit� Chapter

� instead aimed to establish the sensitivity of the forced model to variation in each of the parame�

ters
 The work built upon a similar analysis by Fasham� Ducklow � McKelvie ������� and introduced

stochastic approaches to study parameter sensitivity
 One of these techniques was that described by

Kremer ������
 After initial parameter sensitivity studies at both OWS �India� and Bermuda Sta�

tion �S��which found parameter sensitivity dominated by photosynthesis and grazing parameters�� the

techniques themselves were examined to study issues such as model sensitivity to multiple variable pa�

rameters� the quantitative relationship between variability in a parameter and corresponding variability

in the model� and the periodicity of variability in parameters
 Finally� the reduced models from Chapter

� were re�introduced to study the e	ects of parameter variability on models varying in their complexity


While certain di	erences between the simpler �excitable� model and the full model were discerned� there

did not appear to be a strong relationship between model size and susceptibility to parameter variability


A key assumption running through all of the earlier models in the thesis was that of a homogeneous

mixed layer in which all of the modelled biology resided
 Chapter � altered the vertical structure of

the full model by adding a second� deeper layer to represent the thermocline
 Such models have been

examined in the literature since they can better capture the vertical distribution of phytoplankton in

tropical and sub�tropical waters
 The assumed motility of zooplankton in such a model caused di�culty

in constructing the model� but it was found that they were best treated as �faithful� to the layer in

which they originated
 The e	ect of latitudinal di	erences in seasonal cycle� and the generality of several

propositions of Taylor ������ concerning such models were examined� and the results were compared

�often favourably� with appropriate measurements where available
 The equilibrium behaviour of the

two layer model was also examined in a manner similar to that in Chapter �
 While oscillatory behaviour

was found in the two layer model� the parameter ranges over which it occurred were found to be much

reduced


��� Conclusions

Several major conclusions can be drawn from the four research chapters �

� Detritus plays a key role in the success of the reduced models� while bacteria are mostly redundant


� Models in which nitrate �the �fuel� of the ecosystem� is represented by a static parameter rather

than a dynamic variable can be successful under certain conditions


� Predator�prey oscillations during normally forced OWS �India� solutions are transients toward a

stable �xed point


� Stable limit cycles exist in reasonable regions of parameter space �parameters m� N� and V were

found to be important�
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� At both OWS �India� and Bermuda Station �S�� model solutions are sensitive to phytoplankton

photosynthesis �kw� �� � and Vp� and zooplankton grazing parameters �g� �� k� and p��


� The two layer version of Fasham ������ can improve estimates of NPP� and better capture the

dynamics in subtropical and equatorial regions


��� Future work

There are a number of directions in which the work in this thesis could be extended
 A particular

limitation of the work common to all of the research chapters has been its focus on the geographical

locations of OWS �India� and Bermuda Station �S�
 While these stations di	er substantially in their

forcing and the values of certain key parameters �particularly N��� they still only represent a fraction

of the variability in the world ocean
 For instance� although mentioning the potential signi�cance of

equatorial upwelling regions for oscillatory behaviour� Chapter � does not explore this avenue �Fasham

et al�� ����� citing Toggweiler� ����� report such behaviour in simulations at this location�


Focusing on individual chapters� several lines of further research suggest themselves
 As noted in Chap�

ter �� one of the restrictions placed on the reduced models was that their parameters were �xed at the

values from the full model
 Using the kind of non�linear optimisation technique described in Fasham �

Evans ������ �and the full model as a �perfect� data set�� the parameters of reduced models could be

optimised to establish whether a given reduced model could� in principle� be reasonably made to ��t� the

full model �i�e� those models whose optimised parameters fall close to those of the full model�
 Although

the success of bacteria�less models such as �c� and �c� was well�received� further work to establish the

e	ects of this subtraction� and possibly new implicit representations of heterotrophic bacteria� would be

interesting
 As already suggested� extension of the comparison of models could be extended to other

forcing regimes
 The di	erential success of the implicit nitrate models between the two locations studied

suggests choosing di	erent reduced models for di	erent locations �possibly to ease computation burden

in spatially�extended GCMs�


A weakness of Chapter ��s analysis of oscillatory behaviour was its reliance on a relatively crude nu�

merical approach to explore parameter space
 While the complexity of the model favoured this� the

investigation of more powerful numerical utilities �such as those described in Edwards� ����� would

ideally precede any future studies of model behaviour
 Tying the results of Chapters � and �� the be�

haviour of the reduced models could systematically be probed� to establish if any patterns of behaviour

between the models occurred
 Edwards ������ found that the addition of a detritus compartment to the

ZPN ecology of Steele � Henderson ������ resulted in very similar patterns of bifurcation
 The lack of

�A preliminary analysis of model �c� along these lines has already been performed using the programs from Chapter ��

While the behaviour of the stable equilibria across parameter ranges was very similar to that of the full model� no limit

cycle behaviour was uncovered� However� as with the study of the full model� the analysis examined only a fraction of

parameter space�
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success of � compartment models �compared to � compartment ones� in Chapter � suggests a contrary

result with the reduced forms of the Fasham ������ model
 Furthermore� the bifurcations already found

should be re�examined from a more mathematical standpoint to establish any relationships between the

oscillatory behaviour here and the menagerie of bifurcations found in the analysis of Edwards ������


Aside from consideration of the range and nature of variability of the parameters used in the analysis

of Chapter � �already mentioned in Chapter ��s discussion�� there are several paths for future research


Sensitivity work in Chapter � assessed parameters over the full annual cycle
 In the case of Bermuda

Station �S�� where the concentrations of plankton are relatively high throughout the year� such an

approach may suit an analysis
 By contrast� at OWS �India�� where plankton only occur at high

concentrations from the late spring to early autumn� attention to parameter sensitivities should perhaps

only focus on this period �however� the choice of system measure used may negate such concerns�
 As

stated in Chapter �� many of the terms in the Fasham ������ model �and in all plankton models� represent

a composite of many di	erent ecological processes
 A possible extension to the work of Chapter � would

be to explore the consequences to model sensitivity of de�compositing such processes
 For example�

although bacterial losses are represented as �

dB

dt
� � � � � ��B � � � �

� � � � � excretion � � � �

they may be more accurately modelled as �

dB

dt
� � � � � ��aB � ��bB � ��cB � ��dB � � � �

� � � � � excretion � starvation � phage infection � senescence � � � �

where each process is modelled �and parameterised� separately� and usually approximated to the term

above
 However� since each of the separate parameters which would then make up bacterial losses would

likely command only a fraction of the model sensitivity of the �lumped� term �since ��x � ���� the

e	ect of this� even where all of the sub�parameters are allowed to vary stochastically together� is likely

to be a reduction in importance of the total pathway �e�g� excretion� these sub�pathways model�
 This

reduction in importance may profoundly a	ect the conclusions of such work �and may misdirect ventures

to sample �sensitive� parameters�


The work of Chapter � made several major assumptions about the modelled biology and physics� each

of which presents a potential agenda for extending the work
 The assumption of identical populations

of plankton in the two modelled layers could be replaced by parameterisations based upon observations

�Annan�s ��		
� comparison of the Monte Carlo and stochastic parameters techniques has some bearing here� His

analysis suggested that stochastic parameters simulations show lower variance than those of Monte Carlo simulations

because multiple re�sampling of a parameter narrows the real� variance around its mean� Similarly� where a parameter�

x� is broken down into n sub�parameters �where� for instance� x�� x�� � � ��xn � x�� and then these sub�parameters are

allowed to vary stochastically together� then for every single re�samplingof x in the normal model� there are n re�samplings

in the de�composited model�

���



of the assemblages dominating the di	erent layers �e�g� surface layer cyanobacteria versus deep layer

eukaryotes� Gieskes � Kraay� �����
 Alternatively� competition models with multiple phytoplankton

species �each with their own parameterisation� could be used to establish whether any succession pat�

terns �which could be sought in observational data� occurred
 As stated in Chapter �� the formulation

of the zooplankton compartment is far from clear depending upon the assumptions made about their

behaviour
 Although this aspect of the model could be extended by further variants of the zooplank�

ton compartment �e�g� migration to the most phytoplankton�rich layer� introduction of migrating and

non�migrating zooplankton species� DVM zooplankton�� any behaviour which distinguished between the

modelled layers should also examine whether the e	ects of processes such as predation should be similarly

di	erent between the layers
 With respect to the physics� more realistic representations of vertical space

and mixing �e�g� see Archer� ����� Taylor � Stephens� ����� could be used� although any adaptation

in this direction may entirely alter the basic two layer structure of the model and complicate comparisons


��� �Robust� models

The context of many attempts to model plankton systems is to establish a single model �a �robust�

model� which� when given the appropriate physical forcing with respect to a location in question �or in�

serted into a GCM�� will produce annual patterns of biological activity in agreement with data
 Fasham

������ and Fasham ������ explicitly spell out this �goal� of plankton ecosystem modelling


Since data� on the whole� has tended to be poor in either overall spatio�temporal coverage �e�g� cruise

data�� or bandwidth �e�g� satellite data�� models have tended to be relatively simple
 Researchers are

not necessarily using ZPN models simply because they are easy to use� but often because the available

data is restricted to only chlorophyll or DIN concentrations
 The success of such simple models in re�

producing phenomena such as the spring phytoplankton bloom has additionally led to their persistence

in the plankton modelling literature


However� it is likely that for a robust model to be generated� more than simple ZPN models will be

required
 Work such as Kremer � Nixon ������� Andersen� Nival � Harris ������� Frost ������� and

Taylor et al� ������ has drawn attention to the need to include multiple ZPN �species� �e�g� copepods

versus microzooplankton� diatoms versus phyto�agellates� nitrogen nutrients versus silicate� phosphate

or iron� to model speci�c data sets� and it is likely that any model which aims to be applicable to the

entire world ocean will need to be similarly structured


The work in this thesis� although utilising a model with some degree of complexity �e�g� multiple nitro�

gen nutrients� representations of both DON and PON�� still ignores almost all of the other distinctions

made above
 However� following Einstein�s dictum �see Chapter ��� simple models should still ideally be

preferred� and analyses similar to that of Chapter � should always be borne in mind


���



��	 Closing remarks

Although considerable work still remains to be done in the development of models which accurately� and

robustly� predict plankton behaviour across the world ocean� it is hoped that the work in this thesis�

by suggesting important state variables� functional forms and parameters� can play a small part in their

realisation


���
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Appendices

God does not care about our mathematical di�culties� He integrates empirically�

� Albert Einstein ����������	

A computer lets you make more mistakes faster than any other invention in human history�

with the possible exception of handguns and tequila�

� Mitch Radcli
e �Digital Media	
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A�� Correction of the ���� OWS �India� data

In several chapters in this thesis use is made of data collected by Bob Williams at OWS �India� in

����� The data consists of chlorophyll ������ metres	 and nitrate ����� metres	 measurements made at

a series of �xed depths during the period from the spring through to the autumn of �����

In order to compare this data with model output it was necessary to depth�integrate it to get an average

value across the mixed layer since the models used in this thesis assume a homogeneous mixed layer�

However in order to depth�integrate the data the depth of the mixed layer when the samples were

taken needs to be known� Unfortunately this data was not available�
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Figure A��� Plots of the raw chlorophyll and nitrate samples �top row	 and the depth�

integrated concentrations after the data have been corrected for mixed�layer depth �bottom

row	� In the raw plots there are � chlorophyll and � nitrate data points for each sampling

day where each point refers to a di
erent sampling depth� Chlorophyll concentration in mg

chl� m�� nitrate concentration in mmol N m���

To get around this problem the mixed�layer depth data interpolated from Levitus� �����	 monthly av�

erages was used to provide an estimate of mixed�layer depth on each of the sampling days� As remarked

in Fasham �����	 though in ���� the seasonal thermocline shallowed to less than �� metres in April

whilst in the interpolated depth data this only happens in May� Since the appearance of the spring

���



phytoplankton bloom is highly dependent on the shallowing of the mixed layer it is important that this

di
erence in the timing of mixed layer shallowing is accounted for� In the absence of guiding observa�

tions this was done by time�shifting the data by �� days so that the spring chlorophyll maximum in the

measured data coincided with that of the model �which uses the interpolated Levitus data	� While this

does give the modelled spring bloom possibly undeserved credibility it probably makes the estimated

mixed�layer depth a more accurate re�ection of the true state of a
airs�

The depth�integration assumed linear distribution of chlorophyll or nitrate between each sample depth

and where the mixed layer was estimated to be deeper than the deepest sample the corrected value was

that calculated by depth�integrating to that deepest sample� Figure A�� shows the raw and processed

data for both chlorophyll and nitrate� All of the measurements made from samples taken at di
erent

depths are shown in the plots of raw data� The depth�integrated values calculated are linked by a dotted

line to make the time series clearer�

Data courtesy of Bob Williams and Dr� Mike Fasham�
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A�� Program code

The majority of the work presented in this thesis was produced using author�written programs �all in

the language C	� Because of the reliance on such code this appendix contains one of the programs used�

For ease of reading the program is listed here in several pieces�

Software was compiled and run on Sun SPARC stations �IPX �� and ��	 using SunOS ����� or SunOS

���� Compilation was performed using gcc version ������ Standard mathematics libraries included in

executable code�

A���� Main program

The program shown is a version which distinguishes limit cycle behaviour from stable equilibria �as used

in Chapter �	� The program is annotated to clarify its operation� Note that the functions which read

information �e�g� parameter values forcing data	 in from �les are not shown�

�� Libraries
��������� ��

�include �stdlib�h� �� Need this for the rand function ��
�include �stdio�h�
�include �math�h�
�include �time�h� �� Need this to seed the rand function ��
�include 	string�h	

�� �defined parameters
������������������� ��

�� Replacement variables ��
�define PI 
�������� �� Duh ��
�define YEAR 
� �� Length of simulation year in days ��
�define REGIME � �� Order of Runge�Kutta regime ��
�define ORDER � �� Order of ODEs ��
�define PARAMS 
� �� Number of model parameters ��
�define FLOWS �
 �� Number of flows monitored ��
�define OUTPUTS �� �� Number of model outputs ��
�define NUTRIENT � �� Nutrient compartment ��
�define BIGNUMB ���
������ �� Two to the power of thirty ��

�� Define globals
�������������� ��

�� Control parameters ��
double const�mld� trans�step� trans�dist� latitude� lat� const�Iss�
double ll�param� ul�param� ll�param�� ul�param��
int triangle� location� stat�mld� det�years� stoch�years� stat�Iss�
int cmodel� oktas� dummy� day�cycle� stoch�on� fix�force� fix�day�
int fix�trigger� decimals� cyc�days� avg�days� rand�init�
int param� param�� trans�days� data�days� steps� steps�� z�pred�
int lock�� lock�� sim�type� z�mixing�
char savedata������ load�MLD������

�� Model parameters array ��
double MLD�YEAR�� irrad�YEAR�� MLDiff�YEAR�� cover�������
double base�PARAMS�� trans�PARAMS�� upplim�PARAMS�� lowlim�PARAMS��
double base��PARAMS�� trans��PARAMS��
int compartment�ORDER���� output�comp� constant�PARAMS�� iters�

�� Flow monitoring parameters ��
double flow�FLOWS�� v�flow�REGIME��FLOWS�� flow�array�FLOWS��YEAR��

�� State variables ��
double state�ORDER���� v�ORDER��

���



�� Runge�Kutta parameters ��
double a�REGIME��REGIME�� b�REGIME�� c�REGIME��

�� Declare functions
����������������� ��

�� Initialisation functions ��
void init�control���
void init�param���
void init�MLD�forcing���
void init�cloud�data���
void init�RK����

�� Runge�Kutta functions ��
void runge�kutta�double� double��
void add�to�v�double� double ���
void set�v�to�double ���

�� Fasham model functions ��
double light�equation�double� double� double��
double full�fasham�double �� double �� double� int� int��
void model�outputs�double ���

�� Transmogrifying functions ��
void transform���

�� Fasham MLD forcing functions ��
double mixed�layer�depth�double��

�� Fasham irradiance functions ��
double I��now�double��
double declination�int��
double rad�vector�int��
double sunrise�ha�double� double��
double daylength�double��
double integrated�double� double� double� double� double��
double hour�angle�double��
double zenith�angle�double� double� double��
double ir�top�atmos�double� double� double��
double sea�surface�double� double��

�� Output functions ��
void output�param���
void output�flows���

�� Standard maths functions ��
double min�double� double��
double max�double� double��
double power�double� int��
double divide�double� double��
double rolling�mean�double� double� int��
double rolling�variance�double� double� double� double� int��
int same�number�double� double� int��

�� Main program
������������ ��

main��
�
�� �Program changed � ��th June �����

Simulation types �

This version of the Fasham programs allows the user � different
simulation types for runs�

�� Normally forced simulations
These simulations use the daily mixed layer data and irradiance
equations to generate diel and annual forcing patterns�

A typical run has several transient years followed by a final
year during which data is collected from the simulation�

�� Diel forced simulations
These simulations have diel forcing locked on a particular day
of the year� Irradiance changes across the day but MLD remains
the same�

A typical simulation runs the model for a long period of time
during which the dynamical behaviour is 	determined	 before

���



a final �usually short� period during which the simulation is
sampled�

�� Fixed forcing simulations
These simulations have no time�dependent forcing at all� Both
irradiance and MLD are locked on constant� user�defined values�

As for the diel forced simulations�


� Fixed forcing simulations
As for the fixed forcing simulations�

A typical simulation runs the model once for a continuous and long
period of time� Periodically� a model parameter is changed� The
model is sampled for data during the entire run�

�This latter type of simulation was devised solely to facilitate
a probe of the so�called 	light�effect	��

��

�� ������������������������������������������������������������� ��

�� Variable Initialisation
����������������������� ��

�� MinMax arrays ��
double baseline�OUTPUTS��ARRAY�� clock�ARRAY��
double mod�outs�OUTPUTS��
double average�OUTPUTS��ARRAY�� variance�OUTPUTS��ARRAY��
double minimum�OUTPUTS��ARRAY�� maximum�OUTPUTS��ARRAY��
double store�check�OUTPUTS�����������

�� Net primary productivity and f�ratio arrays and storage variables ��
double fratio������ npp������ nnpp������ nrpp������
double now�fr� now�npp� now�nnpp� now�nrpp�

�� Other run statistics ��
double box�max�ORDER � ��� box�min�ORDER � ���

�� Sim type 
 variables ��
double sim
timer�
int sim
�flag�

�� Stable equilibrium checking variables ��
double stable�equil�ORDER����� mintimer� mintime�
int stab�flag� stab�flag�� decicheck� same�days�

�� Averaging variables ��
double averagetimer�
int avgtime�

�� Collapsing limit cycle variables ��
int collapse�flag�

�� Limit cycle variables ��
double cyctimer� cyctime� cycles�ORDER����������� cycles��ORDER�����������
double cyccorrect�
int cycle� cycflag� cycflag��

�� Output statistics ��
double avg�cyc� min�cyc� max�cyc� tot�cyc� now�cyc�
int behaviour�

�� Storing initial conditions for runs ��
double p�store�ORDER�� p�store�ORDER�� shove�

�� Housekeeping variables ��
double simtime� transtimer� datatimer� dt� flowtimer� fixtimer�
double initials�ORDER�� step�size� step�size��
double sum� stoch� old�mean� old�var� dummy�end�
int runs� inttime� timeup� poincare�
char savenpp������ savepoincare������ savesummary������ savecycles������
double x� y� z�
int a� b� c� i� j� k� l� m�
int count�� count�� count
� output�array�������

�� Filing variables ��
FILE �Send�out� �Send�out�� �Send�out
� �Send�out��

�� ������������������������������������������������������������� ��

���



�� Initialise control� model� and forcing parameters
������������������������������������������������� ��

init�control���
printf�	Control parameters�n	�� �� Program control parameters ��
init�param���
printf�	Model parameters�n	�� �� Model parameters ��
init�MLD�forcing���
printf�	MLD forcing�n	�� �� MLD forcing data ��
init�cloud�data���
printf�	Cloud data�n	�� �� Cloud cover arrays ��
init�RK����
printf�	Runge�Kutta IV�n	�� �� Runge�Kutta weights ��

�� ������������������������������������������������������������� ��

�� Output procedures
����������������� ��

�� Output model parameter values to file��
output�param���

�� Open up main data output file ��
if��Send�out � fopen�savedata�	w	����NULL�
�
printf�	��� Cannot open parameters output file ����n	�savedata��
exit����

 

�� Open up Poincare section output file ��
sprintf�savepoincare�	!s�poincare	�savedata��
if��Send�out� � fopen�savepoincare�	w	����NULL�
�
printf�	��� Cannot open raw stream output file ����n	�savedata��
exit����

 

�� Open up summary data output file ��
sprintf�savesummary�	!s�summary	�savedata��
if��Send�out
 � fopen�savesummary�	w	����NULL�
�
printf�	��� Cannot open summary output file ����n	�savedata��
exit����

 

�� Open up limit cycles output file ��
sprintf�savecycles�	!s�limitcycle	�savedata��
if��Send�out� � fopen�savecycles�	w	����NULL�
�
printf�	��� Cannot open limit cycles output file ����n	�savedata��
exit����

 

�� ������������������������������������������������������������� ��

�� Setting up initial conditions
����������������������������� ��

if �sim�type���
stat�mld�stat�Iss���

else
stat�mld�stat�Iss���

srandom���time�NULL��!�������

same�days���� �� the number of days required for a stable equilibrium
to be declared ��

dt������iters�� �� duration of a single model iteration ��
mintimer������ �� minimum time before a run can be declared a stable

equilibrium ��
decicheck��int��power������ decimals���

if�steps���
step�size��ul�param � ll�param����double��steps � ����

else
step�size�����

if�steps����
step�size���ul�param� � ll�param�����double��steps� � ����

else

���



step�size������

if �sim�type��
�
�
steps���int��trans�days�avg�days�� � ��
step�size��ul�param � ll�param����double�steps��

 

if �sim�type����
poincare�YEAR�

else
poincare������

�� Clear flows storage array ��
for�i���i�YEAR�i���
�
for�j���j�FLOWS�j���

flow�array�j��i������
 

�� ������������������������������������������������������������� ��

�� Do initial deterministic runs
����������������������������� ��

�� Parameter � loop ��
m���
do
�
�� Assign parameter �"s new value ��
trans�param���ll�param� � m�step�size��

�� Parameter � loop ��
l���
do

�
�� Assign parameter �"s new value ��
trans�param��ll�param � l�step�size�

�� Is parameter one of the special ones# ��
if�param�����
�
�� Zooplankton feeding efficiency ��
trans�����trans�����trans�param��

 
if�param�����
�
�� Zooplankton grazing preference ��
x�� � trans�param��
trans��
��trans������x������

 
if�param����
�
�� Zooplankton grazing preference �� prey models only� ��
trans������ � trans�param��

 
if�param�����
�
�� Recycling efficiency of zooplankton losses ��
x�trans�param��
trans�param���base������base���� � base�������x�
trans������base������base���� � base�������x�

 

�� State variable initial conditions ��
for�i���i�ORDER�i���
�
do

�
stoch���double���random��!BIGNUMB���BIGNUMB��
state�i��stoch�base�

��

 
while�state�i���base�

����� $$ state�i�������

 
state�NUTRIENT��base�

��

�� Simulation type 
 initial conditions ��
if �sim�type��
�
�

���



for�i���i�ORDER�i���
state�i�������

 

�� Reset storage arrays ��
for�i���i�ORDER�i���
�
minimum�i������������
maximum�i���������

 

�� Reset program clocks and event timers ��
i���
timeup���
inttime���
avgtime���
cycflag���
simtime�����
stab�flag���
sim
�flag���
mintimer���� � �� � ����dt��
if �sim�type���
datatimer��trans�days � avg�days � cyc�days� � �� � ����dt��

else
datatimer���trans�days � ���YEAR� � �� � ����dt��

if �sim�type��
�
datatimer�cyc�days � ����dt��

if �sim�type��� $$ sim�type����
flowtimer�mintimer�

else
flowtimer�datatimer � ����

cyctimer��trans�days � avg�days� � �� � ����dt��
mintime�mintimer�
cyctime�cyctimer�
averagetimer�trans�days � �� � ����dt��
sim
timer�avg�days � cyc�days � ����dt��

do
�
simtime��dt�

runge�kutta�simtime� dt��

model�outputs�mod�outs��

�� Poincare section output ��
j��i!�iters�poincare���
if�j����

�
fprintf�Send�out��	!��lf 	�simtime��
for�k���k�ORDER�k���
�
fprintf�Send�out��	!�
lf 	�state�k���

 
fprintf�Send�out��	�n	��
fflush�Send�out���

 

�� Sort out flows for non�forced simulations ��
if ��sim�type��� $$ sim�type���� %% simtime�flowtimer�

�
for�j���j�FLOWS�j���
�
flow�j������

 
flowtimer���

 

�� Store state variables for later output ��
if ��sim�type��� $$ sim�type��
� %% simtime�flowtimer�

�
for�j���j�FLOWS�j���
�
flow�j������

 
flowtimer�������

 
if �simtime�datatimer�

���



�
for�j���j�OUTPUTS�j���
�
store�check�j��inttime��mod�outs�j��
�� if�j��� $$ j�����

printf�	!��lf !��lf�n	�state�j��mod�outs�j��� ��
 

store�check�OUTPUTS��inttime��simtime �
�trans�days � avg�days � cyc�days � ����

�� Store parameter value for sim�type 
 simulations ��
if �sim�type��
�
store�check�OUTPUTS��inttime��trans�param��

�� Correct nutrient limitation and f�ratio values ��
store�check�����inttime��store�check�����inttime��
store�check�����inttime��

store�check�����inttime��store�check�����inttime��
store�check�����inttime��

store�check�
���inttime��store�check�
���inttime��
store�check�
���inttime��

store�check�����inttime��store�check�����inttime��
store�check�
���inttime��

if �sim�type��� $$ sim�type��
�
�
for�j���j�FLOWS�j���

�
flow�j������

 
 

inttime���
datatimer���
�� This line outputs midday and midnight values instead

datatimer�datatimer � ��� ��
 

�� For type 
 simulations ��
if �sim�type��
 %% simtime�sim
timer�

�
�� Increase parameter under question ��
trans�param��trans�param� � step�size�
sim
timer�sim
timer � avg�days�

 

�� For fixed day or fixed forcing functions simulations ��
if �sim�type�� %% sim�type�
�

�
�� Check to establish if stable equilibrium reached ��
if�simtime�mintimer�
�
�� Store today"s state variable values ��
for�j���j�ORDER�j���

�
stable�equil�j�����mod�outs�j��

 
j���
stab�flag����

�� Check today"s states to yesterday"s ��
do

�
a�same�number�stable�equil�j�����

stable�equil�j�����decimals��
if�a����
j��� �� They"re the same& ��

else
stab�flag���� �� They"re different ��

 
while�j�ORDER %% stab�flag������

�� If today��yesterday trigger stable equilibrium flag ��
if�stab�flag�����

stab�flag���
else

stab�flag���

���



�� Move today"s states ready for tomorrow ��
for�j���j�ORDER�j���

stable�equil�j�����stable�equil�j�����

mintimer���
 

�� Average results for limit cycle calculations ��
if�simtime�averagetimer %% simtime�cyctimer�
�
for�j���j�ORDER�j���

�
if�mod�outs�j��minimum�j�����
minimum�j�����mod�outs�j��

if�mod�outs�j��maximum�j�����
maximum�j�����mod�outs�j��

old�mean�average�j�����
average�j�����rolling�mean�old�mean�

mod�outs�j��
avgtime��

 
averagetimer���
avgtime���

 

�� Limit cycle period calculations
������������������������������� ��

if�simtime�cyctimer %% cycflag����
�
�� Setting up for first limit cycle ��
average���������maximum������
� minimum����������� � minimum�������
cycle���
for�j���j�ORDER�j���

�
minimum�j������������
maximum�j���������

 
if�mod�outs����average�������

cycflag���
else

cycflag���
 

if�simtime�cyctime�
�
�� Minima and maxima for this limit cycle ��
for�j���j�ORDER�j���

�
if�mod�outs�j��minimum�j�����
minimum�j�����mod�outs�j��

if�mod�outs�j��maximum�j�����
maximum�j�����mod�outs�j��

 
 

if�simtime�cyctime�
�
if�cycflag��� %% mod�outs����average�������

�
�� Lap completed � store data ��
cycles����cycle��simtime�
cycles�����cycle��simtime�
for�j���j�ORDER�j���
�
cycles�j����cycle��mod�outs�j��
cycles��j����cycle��maximum�j����

� minimum�j�����
minimum�j�����minimum�j�����
maximum�j�����maximum�j�����
minimum�j������������
maximum�j���������

 
cycle���
cycflag���

���



 
if�cycflag��� %% mod�outs����average�������

�
�� Half�lap completed � set trap to catch cycle ��
cycflag���

 
cyctime���

 
if �i���trans�days�avg�days�cyc�days�data�days����iters��
timeup���

else
timeup���

 
else

�
�� For normal or fixed forcing simulations ��
if �sim�type����
�
�� Normal simulations ��
if �i���trans�days�YEAR��iters��

timeup���
else

timeup���
 

else
�
�� Fixed forcing simulations ��
if �i���trans�days � cyc�days��iters��

timeup���
else

timeup���
 

 

�� Increment loop counter ��
i���

 
while�timeup�� %% stab�flag�same�days��

�� ������������������������������������������������������������� ��

�� Output routines
��������������� ��

if �sim�type����
�
�� Normal annually forced simulations ��
fprintf�Send�out�	!��lf !��lf 	�trans�param���trans�param���
for�k�
�k�OUTPUTS�k���

�
fprintf�Send�out�	� 	��

 
fprintf�Send�out�	�n	��
for�k���k�inttime�k���

�
fprintf�Send�out�	!d 	�k��
for�j���j�OUTPUTS�j���
fprintf�Send�out�	!��lf 	�store�check�j��k���

fprintf�Send�out�	�n	��
 

 
if �sim�type��
�
�
�� Constant forcing simulations ��
for�k���k�inttime�k�k�data�days�

�
fprintf�Send�out�	!d !��lf 	�k�store�check�OUTPUTS��k���
for�j���j�output�comp�j���
fprintf�Send�out�	!��lf 	�store�check�compartment�j���k���

fprintf�Send�out�	�n	��
 

sim
�flag���
 

if �sim�type��� $$ sim�type����
�
�� Fixed day or constant forcing simulations ��

�� Stable equilibrium data

���



����������������������� ��
if�stab�flag��same�days�

�
�� This run ended with a stable equilibrium point ��
avg�cyc�min�cyc�max�cyc�����
behaviour���

�� Main data output ��
fprintf�Send�out�	!��lf !��lf !��lf 	�
simtime�trans�param���trans�param���
for�j���j�output�comp�j���
fprintf�Send�out�	!��lf 	�mod�outs�compartment�j����

fprintf�Send�out�	!d ��n	�behaviour��

�� Summary data output ��
fprintf�Send�out
�	!��lf !�
lf !�
lf 	�
simtime�trans�param���trans�param���
for�j���j�ORDER�j���
fprintf�Send�out
�	!��lf !��lf � � 	�
mod�outs�j��mod�outs�j���

for�j�ORDER�j�OUTPUTS�j���
fprintf�Send�out
�	!��lf 	�mod�outs�j���

fprintf�Send�out
�	� � � !d�n	�behaviour��

�� Limit cycles data output ��
fprintf�Send�out��	!��lf !��lf !��lf 	�
simtime�trans�param���trans�param���
for�j���j�ORDER�j���
fprintf�Send�out��	!��lf 	�mod�outs�j���

fprintf�Send�out��	����� !d ��n	�behaviour��
 

else
�
�� Transient or limit cycle data

����������������������������� ��
if�cycle����
�
�� No stable equilibrium or cycles found ��
avg�cyc�min�cyc�max�cyc�����
behaviour���
for�j���j�ORDER�j���

�
minimum�j�����minimum�j�����
maximum�j�����maximum�j�����

 
 

else
�
�� Cycling behaviour found& ��

�� Are cycles collapsing# ��
collapse�flag���
k���
do

�
for�j���j�ORDER�j���
�
a�same�number�cycles��j����k����

cycles��j����k�����
if�a�����

collapse�flag���
 

k���
 

while�collapse�flag��� %% k�cycle��
if�collapse�flag����

�
�� System appears to be collapsing ��
behaviour�
�

 
else

�
�� System oscillations appear to be stable ��
behaviour���

 

���



avg�cyc�����
min�cyc�cyc�days � ����
max�cyc�����
for�j���j�cycle�j���

�
now�cyc�cycles����j� � cycles����j����
avg�cyc�avg�cyc � now�cyc�
if�now�cyc�min�cyc�
min�cyc�now�cyc�

if�now�cyc�max�cyc�
max�cyc�now�cyc�

 
avg�cyc�avg�cyc��cycle � ���

 

�� Main data output ��
for�k���k�inttime�k���
�
if�k����

fprintf�Send�out�	!��lf !��lf !��lf 	�
store�check�ORDER��k��trans�param���
trans�param���

else
fprintf�Send�out�	!��lf � � 	�store�check�ORDER��k���

for�j���j�output�comp�j���
fprintf�Send�out�	!��lf 	�
store�check�compartment�j���k���

if�k����
fprintf�Send�out�	!d !d�n	�behaviour�inttime��

else
fprintf�Send�out�	� ��n	��

 

�� Summary data output ��
fprintf�Send�out
�	!��lf !�
lf !�
lf 	�
simtime�trans�param���trans�param���
for�j���j�ORDER�j���
fprintf�Send�out
�	!��lf !��lf !��lf !��lf 	�
minimum�j�����maximum�j�����cycles��j�������
cycles��j����cycle�����

for�j�ORDER�j�OUTPUTS�j���
fprintf�Send�out
�	!��lf 	�mod�outs�j���

fprintf�Send�out
�	!��lf !��lf !��lf !d�n	�
avg�cyc�min�cyc�max�cyc�behaviour��

�� Limit cycles data output ��
if�cycle���
�
cyccorrect�trans�days � avg�days � ���
for�k���k�cycle�k���

�
if�k����
fprintf�Send�out��	!��lf !��lf !��lf 	�
�cycles����k��cyccorrect��trans�param���
trans�param���

else
fprintf�Send�out��	!��lf � � 	�
�cycles����k��cyccorrect���

cyccorrect�cycles����k��
for�j���j�ORDER�j���
fprintf�Send�out��	!��lf 	�cycles�j����k���

if�k����
fprintf�Send�out��	!d !d�n	�behaviour�cycle��

else
fprintf�Send�out��	� ��n	��

 
 

else
�
fprintf�Send�out��	!��lf !��lf !��lf 	�
simtime�trans�param���trans�param���
for�j���j�ORDER�j���

fprintf�Send�out��	!��lf 	�mod�outs�j���
fprintf�Send�out��	����� !d ��n	�behaviour��

���



 
 

 

�� Flush data to output files ��
fflush�Send�out��
fflush�Send�out
��
fflush�Send�out���
l���

 
while�l�steps %% sim
�flag�����
m���

 
while�m�steps� %% sim
�flag�����

�� Close data streams ��
fclose�Send�out��
fclose�Send�out���
fclose�Send�out
��
fclose�Send�out���

 

�� ������������������������������������������������������������� ��

void model�outputs�double array�OUTPUTS��
�
�� This function organises the outputs array

����������������������������������������� ��
double sum�
int i�

for�i���i�OUTPUTS�i���
array�i������

�� Assign states to array ��
sum�����
for�i���i�ORDER�i���
�
array�i��state�i��
sum��state�i��

 
array�ORDER��sum�

�� Assign miscellaneous flows to array ��
�� Mixed layer statistics ��
array����flow���� �� net primary production ��
array�����flow�
��� �� net new primary production ��
array�����flow����� �� net recycled primary production ��
array�����flow����� �� daily f�ratio ��
array�����flow�
�� �� light limitation term ��
array�����flow�

�� �� nutrient limitation term ��
array�����flow�
��� �� zooplankton loss rate ��
array�����flow����� �� mixed�layer depth ��
array��
��flow�
��� �� solar irradiance at the top of the atmosphere ��
array�����flow�
��� �� day length ��
for�i���i���i���
array�
�i��flow�compartment�output�comp�i���

 

���



A���� Runge�Kutta integrating engine

These functions integrate the model ODEs using a Runge�Kutta IV engine� Since versions of this pro�

gram were used with models of di
ering size the functions are written to allow models with di
erent

numbers of ODEs to be easily incorporated� This code was jointly written by Andrew J� Morris �Uni�

versity of Warwick	 and the author�

void runge�kutta�double t� double h�
�
�� This suite of functions performs the numerical integration

���������������������������������������������������������� ��
double k�REGIME��ORDER�� �� REGIMEth order RK� ORDERth order ODEs ��
double diffs�ORDER�� �� blank array to store differentials��
int i�j�l�

for�i���i�REGIME�i���
�
for�j���j�FLOWS�j���
�
v�flow�i��j������

 
 

for�i���i�REGIME�i���
�
set�v�to�state��

for�j���j�i�j���
�
add�to�v�h�a�i��j��k�j���

 

for�l���l�ORDER�l���
�
diffs�l������

 

�� Run model equations ��
full�fasham�v�diffs�t�h�c�i��l�i��

for�l���l�ORDER�l���
�
k�i��l��diffs�l��

 
 

for�i���i�REGIME�i���
�
for�j���j�ORDER�j���
�
state�j���h�b�i��k�i��j��

 
for�l���l�FLOWS�l���
�
flow�l���h�b�i��v�flow�i��l��

 
 

 

�� ������������������������������������������������������������� ��

void add�to�v�double scalar� double in�ORDER��
�
�� Adds values from other steps according to RK routine employed ��

int i�
for�i���i�ORDER�i��� �v�i���scalar�in�i�� 

 

�� ������������������������������������������������������������� ��

void set�v�to�double in�ORDER��
�
�� Puts values of states into a temporary array ��

���



int i�
for�i���i�ORDER�i��� �v�i��in�i�� 

 

�� ������������������������������������������������������������� ��

void init�RK���
�
�� This function sets up the �th order Runge�Kutta regime

������������������������������������������������������ ��

int i�

�� clear Runge�Kutta tableau ��
for�i���i��REGIME�REGIME��i��� �a�i�REGIME��i!REGIME������ 

�� �th order Explicit Runge�Kutta scheme ��
a����������
a����������
a�
���������

b����������
b��������
�
b��������
�
b�
��������

c��������
c�������
c�������
c�
������

printf�	Done 	��
 

���



A���� Fasham ��		�
 model function

These functions specify the ODEs used in the full model� The �rst function includes the model ODEs

and the nitrogen �ows produced by modelled ecological processes� All of the reduced forms of this model

as well as the expanded two layer model are simple modi�cations of this function� The second function

is used by the �rst to calculate depth�integrated phytoplankton growth �see Chapter �	�

double full�fasham�double In�ORDER�� double Out�ORDER�� double t�
int component� int rkstep�

�
�� Fasham full model equations

��������������������������� ��

�� � Phytoplankton
� Zooplankton
� Bacteria

 Detritus
� Nitrate
 Ammonium
� Dissolved organic nitrogen ��

double functime�
double J� Q� Q�� Q�� sigma� P�mort� hplus� P�mix�
double f� f�� G�� G�� G
� Z�mort� Z�mix�
double S� U�� U�� B�excr� B�mix�
double D�degr� D�mix�
double Nn�mix�
double Nr�mix�
double Nd�mix�
double I�ss� I�now� MLD�now� MLDiff�now� store�ORDER��

�� Calculate forcing functions at this time ��
if�sim�type����
�
�� Forcing functions vary across the year ��
MLD�now�mixed�layer�depth�t��
I�ss�I��now�t��
MLDiff�now�����MLDiff����int��t��!
�����
hplus�max��MLDiff�now�����

 
if�sim�type����
�
�� Forcing functions locked on a single day ��
functime�fix�day � �t � ��int��t����
MLD�now�mixed�layer�depth�functime��
I�ss�I��now�functime��
MLDiff�now�����
hplus�����

 
if�sim�type����
�
�� Forcing functions locked on constant values ��
MLD�now�trans�
���
I�ss�trans�
���
MLDiff�now�����
hplus�����

 
if�sim�type��
�
�
�� Special type of simulation which outputs time series data ��
functime�fix�day � �t � ��int��t����
MLD�now�mixed�layer�depth�functime��
I�ss�trans�
���
MLDiff�now�����
hplus�����

 

�� Correct irradiance for albedo and PAR fraction ��
I�now�I�ss��� � trans�����trans����

�� Phytoplankton ��
if�I�now��� �� daytime ��

���



�
J�light�equation�In����I�now��MLD�now���
Q���In����exp��trans����In������trans��� � In�����
Q��In����trans���� � In����
Q��Q� � Q���
sigma��J�Q��
v�flow�rkstep��
�����

 
else �� nighttime ��
�
J�����
Q�Q��Q������
sigma�����
v�flow�rkstep��
�����

 
f�trans�������trans�����In���� � �trans��
��In���� � �trans�����In�
����
f����trans�����In����In���� � �trans��
��In����In���� �

�trans�����In�
��In�
����
G���trans�����trans�����In����In����In������f � f���
P�mort��trans����In����In������trans��
� � In�����
P�mix���trans�
�� � hplus��In������MLD�now��
Out�������� � trans�����sigma�In���� � G� � P�mort � P�mix��

�� Zooplankton ��
G���trans�����trans��
��In����In����In������f � f���
G
��trans�����trans�����In�
��In�
��In������f � f���
if�z�pred���� �� constant mortality ��
Z�mort��trans������In����

if�z�pred���� �� linear mortality ��
Z�mort��trans�����In�����In����

if�z�pred���� �� hyperbolic mortality ��
Z�mort���trans�����In������trans���� � In������In����

if�z�pred��
� �� sigmoid mortality ��
Z�mort���trans�����In����In�����
��trans�����trans����� � �In����In�������In����

Z�mix���MLDiff�now��In������MLD�now��
Out������trans�����G�� � �trans�����G�� � �trans�����G
� � Z�mort � Z�mix��

�� Bacteria ��
S�min�In��� �trans�
���In������
U���trans�
���In����In������trans���� � S � In�����
U���trans�
���In����S���trans���� � S � In�����
B�excr�trans�����In����
B�mix���trans�
�� � hplus��In������MLD�now��
Out�����U� � U� � G� � B�excr � B�mix��

�� Detritus ��
D�degr�trans�����In�
��
D�mix���trans�
�� � hplus � trans�
����In�
����MLD�now��
Out�
������ � trans������G�� � ��� � trans������G��

� �trans�����G
� � D�degr � P�mort � D�mix��

�� Nitrate ��
Nn�mix���trans�
�� � hplus���MLD�now����trans�

� � In�����
Out���������J�Q��In���� � Nn�mix��

�� Ammonium ��
Nr�mix���trans�
�� � hplus��In�����MLD�now��
Out��������J�Q��In���� � U� � B�excr � �trans�����Z�mort� � Nr�mix��

�� Dissolved Organic Nitrogen �DON� ��
Nd�mix���trans�
�� � hplus��In������MLD�now��
Out������trans����sigma�In���� � D�degr � �trans�����Z�mort� � U� � Nd�mix��

�� Output data for calculation of model flows ��
v�flow�rkstep��������� � trans�����sigma�In�����MLD�now��
v�flow�rkstep������G��MLD�now�
v�flow�rkstep������P�mort�MLD�now�
v�flow�rkstep��
�����fabs�min�MLDiff�now� ������ � trans�
����In����
v�flow�rkstep������trans�����G���MLD�now�
v�flow�rkstep�����trans�����G���MLD�now�
v�flow�rkstep������trans�����G
��MLD�now�
v�flow�rkstep������Z�mort�MLD�now�
v�flow�rkstep���������
v�flow�rkstep�����U��MLD�now�
v�flow�rkstep������U��MLD�now�

���



v�flow�rkstep�������G��MLD�now�
v�flow�rkstep�������B�excr�MLD�now�
v�flow�rkstep���
�����fabs�min�MLDiff�now� ������ � trans�
����In����
v�flow�rkstep�������� � trans������G��MLD�now�
v�flow�rkstep������� � trans������G��MLD�now�
v�flow�rkstep������P�mort�MLD�now�
v�flow�rkstep��������trans�����G
��MLD�now�
v�flow�rkstep�������D�degr�MLD�now�
v�flow�rkstep���������fabs�min�MLDiff�now� ������ � trans�
��

� trans�
����In�
��
if �MLDiff�now�����
v�flow�rkstep�������MLDiff�now�In�����

else
v�flow�rkstep�������MLDiff�now�trans�

���

v�flow�rkstep��������trans�
����trans�

� � In������
v�flow�rkstep����������J�Q��In�����MLD�now�
v�flow�rkstep�������trans�����Z�mort��MLD�now�
v�flow�rkstep���
��B�excr�MLD�now�
v�flow�rkstep����������J�Q��In�����MLD�now�
v�flow�rkstep������U��MLD�now�
v�flow�rkstep���������fabs�min�MLDiff�now� ������ � trans�
����In���
v�flow�rkstep�������trans����sigma�In�����MLD�now�
v�flow�rkstep������D�degr�MLD�now�
v�flow�rkstep�������trans�����Z�mort��MLD�now�
v�flow�rkstep��
����U��MLD�now�
v�flow�rkstep��
������fabs�min�MLDiff�now� ������ � trans�
����In����
v�flow�rkstep��
����� � �trans���� � trans�������Z�mort�MLD�now�
v�flow�rkstep��

��Q�
v�flow�rkstep��
��J�
v�flow�rkstep��
����Z�mort�In�����
v�flow�rkstep��
���I�ss�
v�flow�rkstep��
������� � trans������J�Q���In�����MLD�now��
v�flow�rkstep���������� � trans������J�Q���In�����MLD�now��
v�flow�rkstep������divide�Q�� �Q� � Q����
v�flow�rkstep������MLD�now�

 

�� ������������������������������������������������������������� ��

double light�equation�double P� double I� double M�
�
�� This routine calculates the depth�integrated light field

�������������������������������������������������������� ��
double part����

part����power�I����power�trans�������
part����exp�����trans��� � �trans�
��P���M��
part�
��power�trans�������
part�����trans����trans����I��
part����trans��� � �trans�
��P���
part�����log��pow�part�������� �

�pow��part�
��part�����������part�����
��pow�part���� �����part����
part�����log��pow�part��������part���� �

�pow��part�
���part�����part����part�������������part�����
��pow�part���� �����part����
part������part��� � part�����M��

return part����
 

���



A���� Forcing functions

These functions are used to provide the program with forcing data� All bar the last of these are involved

in the calculation of solar forcing� The last function is a simple one to determine the current mixed�layer

depth from the daily data�

The cloud cover function is based upon a FORTRAN version supplied to the author by Dr� Mike Fasham�

In incorporates four di
erent algorithms to estimate sea�surface irradiance from irradiance at the top of

the atmosphere�

double I��now�double t�
�
�� This function calculates sea surface irradiance

����������������������������������������������� ��
�� Model variables ��
double D�� R�� W�� L�� W�� Z� I�� I�� I��
double I�� I��hour� time� SE� Iss� cfrac�
int day�

�� Is irradiance constant across the day# ��
if�triangle����
�
�� Yes& Return single �� hour averaged irradiance ��
return�irrad�fix�day���

 
else
�
�� No& Calculate instantaneous irradiance ��

�� Initialise variables ��
I���

���
I��hour�
������I��
day����int��t��!
���
time��t � ��int��t����

�� These calculations are performed only once per day ��
D��declination�day��
R��rad�vector�day��
W��sunrise�ha�lat� D���
�� L��daylength�W���

I��integrated�I��hour� R�� W�� lat� D��� ��

time��time������� �� convert time into hours ��
W��hour�angle�time��
Z�zenith�angle�D�� lat� W���
I��ir�top�atmos�I�� R�� Z��
SE��PI��� � Z�
if�SE�����

�
cfrac�sea�surface�I�� �sin�SE����
Iss��I��cfrac��

 
else

�
cfrac�����
Iss�����

 
return�Iss��

 
 

�� ������������������������������������������������������������� ��

double declination�int day�
�
�� Calculates the Earth"s declination

This is the angle at solar noon between the equator and the Sun ��

double answer�

���



answer�������
���sin����PI����double����� � day��YEAR����

return answer�
 

�� ������������������������������������������������������������� ��

double rad�vector�int day�
�
�� Calculates the radius vector of the Earth

This expresses the ellipticity of the Earth"s orbit ��

double answer� answer�� answer��

answer����� � ����

�cos����PI����double�day�YEAR������
answer��pow�answer�� ����
answer�����answer��

return answer�
 

�� ������������������������������������������������������������� ��

double sunrise�ha�double latitude� double declination�
�
�� Calculates the sunset �or sunrise� hour�angle

This is the angle between the south point and the setting Sun ��

double answer�

answer�acos�����tan�latitude��tan�declination����

return answer�
 

�� ������������������������������������������������������������� ��

double daylength�double sunset�ha�
�
�� Calculates the daylength in hours

This is the time between sunrise and sunset ��

double answer�

answer���sunset�ha��PI���������

return answer�
 

�� ������������������������������������������������������������� ��

double integrated�double sol�const�hour� double rad�vect� double sunset�ha�
double latitude� double declination�

�
�� Calculates integrated daily solar irradiance

Integrates irradiance across the day to give a single value ��

double answer� answer�� answer�� answer
�

answer������PI���sol�const�hour��power�rad�vect� �����
answer���sunset�ha�sin�latitude��sin�declination���
answer
��sin�sunset�ha��cos�latitude��cos�declination���
answer�answer���answer� � answer
��

return answer�
 

�� ������������������������������������������������������������� ��

double hour�angle�double time�now�
�
�� Calculates the hour�angle

This is the angle between the Sun and the south point ��

double answer�

answer��time�now � �������PI�����

return answer�
 

���



�� ������������������������������������������������������������� ��

double zenith�angle�double declination� double latitude� double hour�angle�
�
�� Calculates the zenith angle

This is the angle between the point directly above the current location
and the Sun � it is this which is related to the incidence of irradiance
on a flat surface ��

double answer� answer��

answer���sin�declination��sin�latitude�� �
�cos�declination��cos�latitude��cos�hour�angle���

answer�acos�answer���

return answer�
 

�� ������������������������������������������������������������� ��

double ir�top�atmos�double sol�const� double rad�vect� double zenith�
�
�� Calculates the solar irradiance at the top of the atmosphere

This is the instantaneous irradiance flux at the top of the Earth"s
atmosphere ��

double answer�

answer��sol�const��power�rad�vect� �����cos�zenith��

if�answer�����
�
answer����� �� removes negative answers ��

 

return answer�
 

�� ������������������������������������������������������������� ��

double sea�surface�double Itop� double S�
�
�� This routine determines sea surface irradiance

That is� irradiance at the top of the atmosphere is corrected to
account for atmospheric conditions so that a value of irradiance
at the sea surface can be derived

The routine returns a fraction which the the fraction of solar
irradiance which MAKES IT to the surface� Althought the variable
is called cloud absorbance in Fasham"s code� he uses it as if it
were cloud transmittance� I have used it here as cloud transmittance�

NOTE � this value must subsequently be corrected to account for sea
surface albedo and the PAR�total radiation ratio ��

double c� cfrac� sdeg�

�� Smith % Dobson ������ model
���������������������������
Atmosphere�Oceans ������� ��

if�cmodel����
�
if�oktas��
�
cfrac�S��cover����oktas� � �cover����oktas��S���

 
else
�
c��oktas������
cfrac��cover�
��oktas� � �S�exp��cover�������S��

��c�exp��cover����oktas��S� � ��� � c���
 

 
else
�� Evans % Parslow ����� model

����������������������������
Biol� Oceanogr� 
�
���
�� ��

if�cmodel����
�
cfrac���� � �����oktas������

���



 
else
�� Dobson % Smith ������ model

���������������������������
Q� J� Roy� Met� Soc� ���������� ��

if�cmodel��
�
�
cfrac�S��cover����oktas� � �S�cover���oktas����

 
else
�� Reed ������ model

�����������������
J� Phys� Oceanogr� �������� ��

if�cmodel����
�

sdeg��������asin�S��PI��
cfrac���� � �������oktas������ � �������sdeg�

 

return cfrac�
 

�� ������������������������������������������������������������� ��

double mixed�layer�depth�double t�
�
�� This function calculates current mixed�layer depth

�������������������������������������������������� ��
double mld�now� day��
int day�

day����int��t��!
���
day���t � ��int��t����
mld�now�����MLD�day� � ��� � day���MLDiff�day����

return�mld�now��
 

���



A���� Miscellaneous mathematical functions

These functions are used throughout the program to perform simple calculations�

double min�double x� double y�
�
�� This routine calculates the lesser of two numbers

������������������������������������������������� ��
if �x�y�
return y�

else
return x�

 

�� ������������������������������������������������������������� ��

double max�double x� double y�
�
�� This routine calculates the greater of two numbers

�������������������������������������������������� ��
if �x�y�
return x�

else
return y�

 

�� ������������������������������������������������������������� ��

double power�double x� int y�
�
�� This routine is a faster way of raising to integer powers

��������������������������������������������������������� ��
int i�
double z�
z�x�
for�i���i�y�i���
z�z � x�

return z�
 

�� ������������������������������������������������������������� ��

double divide�double topline� double bottomline�
�
�� This routine evaluates fractions � making sure the bottom line is not �

����������������������������������������������������������������������� ��
if �bottomline��� $$ topline����
return ����

else
return �topline�bottomline��

 

�� ������������������������������������������������������������� ��

double rolling�mean�double old�mean� double new�value� int n�
�
�� This routine calculates a 	rolling	 mean of the daily data

���������������������������������������������������������� ��
if �n����
�
�� First value� therefore mean�current state ��
return new�value�

 
else
�
return ���n�old�mean� � new�value����double��n������

 
 

�� ������������������������������������������������������������� ��

double rolling�variance�double old�variance� double old�mean�
double new�value� double new�mean� int n�
�
�� This routine calculates a 	rolling	 variance of the daily data

�������������������������������������������������������������� ��
double x�� x�� x
�

���



if �n����
�
�� First value� therefore variance�� ��
return ����

 
else
�
x����double�n����double��n � ����
x��old�variance � power�old�mean��� �

�power�new�value�������double�n��
x
�power�new�mean����

return ��x��x�� � x
��
 

 

�� ������������������������������������������������������������� ��

double more�than�zero�double number�
�
�� This routine ensures that numbers are above zero

������������������������������������������������ ��
if �number�����
return ����

else
return number�

 

�� ������������������������������������������������������������� ��

double less�than�one�double number�
�
�� This routine ensures that numbers �mostly fractions� are below one

������������������������������������������������������������������ ��
if �number�����
return ����

else
return number�

 

�� ������������������������������������������������������������� ��

int same�number�double one� double two� int places�
�
�� This routine checks if two numbers are the same to x decimal places

������������������������������������������������������������������� ��
double decicheck�
int a� b� flag�

decicheck��int��power������ places���
a��int��one�decicheck��
b��int��two�decicheck��

if�a�b�
flag����

if�a�b�
flag���

if�a��b�
flag���

return flag�
 

���



A�	 Software used

In addition to the software written by the author several commercially available and shareware utilities

were used to perform the research described within this thesis as well as in the production of the thesis

itself�

All simulation output was handled by the visualisation software MATLAB �The MathWorks Inc�

Massachusetts USA	 for processing analysis and interpretation� Additionally MATLAB was used to

generate all of the graphs used in this thesis�

Although none of the results presented in this thesis relied upon it directly the dynamical systems

toolkit DSTool �Guckenheimer Meyers Wicklin and Worfolk ����	 played an important role in the

early stages of model development and implementation�

Thesis typesetting was handled by LATEX�� and extensive use was made of Lamport �����	 in the

presentation of the work here� All diagrams were produced using the shareware applications XFig and

XV �John Bradley	�

The timing of this thesis has coincided with the expansion of the world wide web� Consequently parts

of this thesis have made use of facilities or information available on the web� Three web sites have been

explicitly referenced in this thesis�

�i	 http���www�aquarius�geomar�de�omc

�Online Map Creation� by Martin Weinelt�

�ii	 http���wood�jhuapl�edu�

�World Ocean Optics Database� administered by Je
rey Smart�

�iii	 http���socserv��socsci�mcmaster�ca�'econ�ugcm�
ll
�malthus�popu�txt

�An Essay on the Principle of Population� by Thomas Malthus �����	�

���
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