Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations

Tools
- Tools
+ Tools

Olsvik, Pål A., Williams, Timothy D., Tung, Hui-shan, Mirbahai, Leda, Sanden, Monica, Skjaerven, Kaja H. and Ellingsen, Ståle (2014) Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 165 . pp. 17-27. doi:10.1016/j.cbpc.2014.05.004

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1016/j.cbpc.2014.05.004

Request Changes to record.

Abstract

This study aimed to investigate whether dioxin (TCDD) and methylmercury (MeHg) pose a threat to offspring of fish exposed to elevated concentrations of these chemicals via epigenetic-based mechanisms. Adult female zebrafish were fed diets added either 20 μg/kg 2,3,7,8 TCDD or 10 mg/kg MeHg for 47 days, or 10 mg/kg 5-aza-2′-deoxycytidine (5-AZA), a hypomethylating agent, for 32 days, and bred with unexposed males in clean water to produce F1 and F2 offspring. Global DNA methylation, promoter CpG island methylation and target gene transcription in liver of adult females and in 3 days post fertilization (dpf) F1 and F2 embryos were determined with HPLC, a novel CpG island tiling array containing 54,933 different probes and RT-qPCR, respectively. The results showed that chemical treatment had no significant effect on global DNA methylation levels in F1 (MeHg and TCDD) and F2 (MeHg) embryos and only a limited number of genes were identified with altered methylation levels at their promoter regions. CYP1A1 transcription, an established marker of TCDD exposure, was elevated 27-fold in F1 embryos compared to the controls, matching the high levels of CYP1A1 expression observed in F0 TCDD-treated females. This suggests that maternal transfer of TCDD is a significant route of exposure for the F1 offspring. In conclusion, the selected doses of TCDD and MeHg, two chemicals often found in high concentrations in fish, appear to have only modest effects on DNA methylation in F1 (MeHg and TCDD) and F2 (MeHg) embryos of treated F0 females.

Item Type: Journal Article
Divisions: Faculty of Medicine > Warwick Medical School > Biomedical Sciences > Cell & Developmental Biology
Faculty of Medicine > Warwick Medical School > Biomedical Sciences
Faculty of Medicine > Warwick Medical School
Journal or Publication Title: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
Publisher: Elsevier
ISSN: 1532-0456
Official Date: September 2014
Dates:
DateEvent
September 2014Published
27 May 2014Available
18 May 2014Accepted
Volume: 165
Page Range: pp. 17-27
DOI: 10.1016/j.cbpc.2014.05.004
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Related URLs:
  • Other Repository

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us