Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/113482

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Title: Effect of a strategy of supraglottic airway device versus tracheal intubation during out-of-hospital cardiac arrest on functional outcome: the AIRWAYS-2 randomized clinical trial.

Authors:

Jonathan R. Benger, MD
Kim Kirby, MRes
Sarah Black, DClinRes
Stephen J. Brett, MD
Madeleine Clout, BSc
Michelle J. Lazaroo, MSc
Jerry P. Nolan, MBChB
Barnaby C. Reeves, DPhil
Maria Robinson, M.Ost
Lauren J. Scott, MSc
Helena Smartt, PhD
Adrian South, BSc (Hons)
Elizabeth A. Stokes, DPhil
Jodi Taylor, PhD
Matthew Thomas, MBChB
Sarah Voss, PhD
Sarah Wordsworth, PhD
Chris A. Rogers, PhD
Corresponding Author:

Professor Jonathan R Benger MD
Faculty of Health and Life Sciences
University of the West of England
Glenside Campus
Bristol. BS16 1DD
United Kingdom.
Tel: +44(0)1173421498 or +44(0)7801837030
E-mail: Jonathan.Benger@uwe.ac.uk

Word Count:
Abstract: 327
Main text: 3159
Key Points

Question: Does an initial strategy of a supraglottic airway device for advanced airway management during non-traumatic out-of-hospital cardiac arrest (OHCA) result in a better functional outcome compared with tracheal intubation?

Findings: In this cluster-randomized trial that included 1,523 paramedics and 9,296 patients with OHCA, favorable functional outcome (modified Rankin Scale 0-3) at hospital discharge or after 30 days (if still hospitalised) occurred in 6.4% in the supraglottic airway group versus 6.8% in the tracheal intubation group, a difference that was not statistically significant.

Meaning: In this study, a strategy of supraglottic airway device for advanced airway management did not provide a superior functional outcome.
Abstract

Importance: The optimal approach to airway management during out-of-hospital cardiac arrest (OHCA) is unknown.

Objective: To determine whether a supraglottic airway device (SGA) is superior to tracheal intubation (TI) as the initial advanced airway management (AAM) strategy in adults with non-traumatic OHCA.

Design, Setting and Participants: Cluster randomized trial of emergency medical services clinicians (paramedics) from four ambulance services in England covering approximately 21 million people. Patients >18 years old, who had a non-traumatic OHCA and were attended by a participating paramedic, were enrolled automatically under a waiver of consent between June 2015 and August 2017. Follow-up ended in February 2018.

Intervention: Paramedics were randomised 1:1 to use TI (764 paramedics) or SGA (759 paramedics) for their initial AAM.

Main Outcome Measures: Primary outcome was modified Rankin Scale (mRS) at hospital discharge or 30 days after OHCA, whichever occurred sooner. mRS was dichotomised; 0-3 (good outcome) or 4-6 (poor outcome; 6=death). Secondary outcomes included ventilation success, regurgitation and aspiration.

Results: 9,296 eligible patients (SGA group: 4,886, TI group, 4,410) were enrolled (median age 73 years; 3,373, 36.3% women), and mRS was known for 9,289. Characteristics were similar between groups. 6.4% (311/4882) of patients in the SGA group and 6.8% (300/4407) of patients in the TI group had a good outcome (adjusted risk difference (RD): -0.6%; 95%CI -1.6% to +0.4%). Ventilation success was higher in the SGA strategy group (SGA: 87.4%;
patients allocated to TI were less likely to receive AAM (SGA: 85.2%; 4,161/4883. TI: 77.6%; 3,419/4404). Regurgitation and aspiration were not significantly different (regurgitation: SGA, 26.1%, 1268/4865; TI, 24.5%, 1072/4372; adjusted RD = 1.4% 95%CI -0.6% to +3.4%; aspiration: SGA, 15.1%, 729/4824; TI, 14.9%, 647/4337; adjusted RD = 0.1%, 95%CI -1.5% to +1.8%).

Conclusions and Relevance: Among patients with OHCA, randomization to a strategy of advanced airway management with a supraglottic airway device compared with tracheal intubation did not result in a favorable functional outcome at 30 days.

Trial Registration: ISRCTN No: 08256118.
Introduction

Out-of-hospital cardiac arrest (OHCA) is common, sudden and often fatal. In England during 2014, Emergency Medical Services (EMS) attempted resuscitation in almost 30,000 people; only 25% achieved a return of spontaneous circulation (ROSC), and 8% were discharged from hospital alive. During OHCA few advanced life support (ALS) therapies have been shown to improve outcome. This is partly due to uncertainty about effective treatments, and partly because it is challenging to conduct high-quality randomized clinical trials (RCTs) in patients with OHCA. Consequently, many current clinical recommendations are based on observational studies and expert consensus.

Optimal airway management during OHCA is a key area of uncertainty, with very little high-quality research on which to base treatment recommendations. Options range from basic or minimal airway intervention to early advanced procedures that require training and expertise.

The advanced procedure of tracheal intubation (TI) has been considered a definitive airway management technique. However, large observational studies (>100,000 patients) have consistently favored basic airway management, e.g. bag-mask ventilation, over TI. The introduction of supraglottic airways (SGAs) offers an alternative advanced airway management (AAM) technique during OHCA. Insertion of a SGA is simpler and faster than TI, and proficiency requires less training and ongoing practice. Observational evidence has suggested a possible survival advantage for TI over SGAs. However, a large-scale RCT is required to identify the optimal approach to AAM during OHCA.

The objective of this trial was to estimate the difference in modified Rankin Scale (mRS) at hospital discharge or 30 days post OHCA, if sooner, between groups of patients managed by paramedics randomized to use either SGA or TI as their initial advanced airway management strategy following OHCA.
Methods

Study Design

The protocol and statistical analysis plan (SAP) for this parallel two-group multi-center cluster-RCT are included in the online supplement, and the protocol has been published.11

Paramedic and Patient Population

Paramedics were recruited from four large EMS provider organizations (ambulance services) in England, which cover 21 million people (40% of England’s population). The trial population was adults who had a non-traumatic OHCA.

Patient inclusion criteria were: known or believed to be 18 years of age or older; non-traumatic OHCA; attended by a paramedic participating in the trial who was either the first or second paramedic to arrive at the patient’s side; resuscitation commenced or continued by EMS clinicians. Patient exclusion criteria were: detained in the Prison Service; previously recruited to the trial (determined retrospectively); resuscitation deemed inappropriate (using guidelines based on those of the Joint Royal Colleges Ambulance Liaison Committee12); advanced airway already in place (inserted by another paramedic, doctor or nurse) when a paramedic participating in the trial arrived at the patient’s side; known to be already enrolled in another pre-hospital RCT; patient mouth opening <2 cm.

Paramedics could not be blinded to their allocation and mechanisms were required to avoid the risk of differential recruitment by paramedics based on the patient’s perceived likely outcome. Therefore, every eligible patient attended by a participating paramedic was automatically enrolled in the study under a waiver of consent provided by the Confidentiality Advisory Group (CAG: reference 14/CAG/1030). Ethics review and approval was provided
which included a process of written informed consent for participating paramedics. A disadvantage of automatic enrolment was that enrolled patients might not follow the study protocol because the enrolling paramedic could not recall the protocol details (attendance at an OHCA is relatively rare and stressful for paramedics), or the paramedic mistakenly believed the patient to be ineligible.

Randomization

Because OHCA requires immediate treatment, randomizing patients at the point of OHCA was considered impractical. Therefore, paramedics were randomized to use one of the two AAM strategies for all eligible patients that they attended. This design, although clustered, created many clusters with a small average number of patients, minimising the effect of intra-cluster correlation and the risk of chance imbalances between groups.

Paramedics were randomised in a 1:1 ratio using a purpose-designed secure internet-based system. The random sequence was computer generated in advance using varying block sizes (range 4-8) and stratified by EMS provider organization (4 levels), paramedic experience (2 levels) and distance from the paramedic’s base ambulance station to the usual destination hospital (2 levels).

Intervention

The intervention was the insertion of a second generation SGA with a soft non-inflatable cuff (i-gel: Intersurgical, Wokingham, UK). Because of its speed and ease of insertion, this device has become the most commonly used SGA during OHCA in England. The current standard care pathway is TI using direct laryngoscopy; videolaryngoscopy is not used by paramedics in England. A standard approach to airway management, from basic to
advanced techniques, was agreed by participating ambulance services. This included the use of bag-mask ventilation (BMV) and simple airway adjuncts prior to AAM. Care proceeded as usual for patients with OHCA enrolled in the trial, apart from the initial AAM. All other care was delivered according to standard international resuscitation guidelines.\(^3\)

Participating paramedics received additional training in their allocated AAM intervention immediately after randomization. Training comprised theoretical and simulation-based practice over 1 hour with a brief assessment to confirm competence. For TI a two-person technique using an intubating bougie was recommended. End tidal carbon dioxide monitoring was used to confirm correct device placement in all patients.

Protocol deviations could arise because paramedics have both strategies available to them. Usual practice follows a “step-wise” approach from simple to more advanced techniques, but paramedics have clinical freedom to adapt airway management during OHCA to the patient’s anatomy, position and perceived needs. The trial protocol specified two attempts using the allocated strategy before proceeding to the alternative, but paramedics had discretion to deviate from the protocol on clinical grounds. Allowing discretion was necessary to avoid a paramedic feeling obliged to undertake an intervention that they believed to be against the patient’s best interests. This was also necessary to secure REC approval and professional support.

Outcomes

The primary outcome was modified Rankin Scale (mRS) at hospital discharge, or at 30 days if the patient remained in hospital. Patients were conveyed to and followed up in hospital where mRS was collected by assessors blinded to treatment allocation. mRS is used widely in OHCA research,\(^{15,16}\) and is usually dichotomised as good (0-3) or poor outcome/death (4-6; 6 indicates death). The following secondary outcomes were collected for all eligible
patients, with all but the last 2 reported by participating paramedics: initial ventilation
success, defined as visible chest rise (classified as "yes" when AAM was not used);
regurgitation (stomach contents visible in the mouth or nose) and aspiration (stomach
contents visible below the vocal cords or inside a correctly placed tracheal tube or airway
channel of a SGA) (each classified as "no" when AAM was not used); loss of a previously
established airway (patients with AAM only); sequence of airway interventions delivered
(patients with AAM only); ROSC (i. patients with AAM only for ROSC during airway
management; ii. patients who died at the scene classified as "no" for ROSC at hospital
admission); airway management in place when ROSC was achieved, or resuscitation was
discontinued (patients with AAM only); chest compression fraction (in a sub-set of patients in
two EMS provider organizations); time to death.

Good quality, continuous CPR is associated with increased survival and improved function
following OHCA, and the concept of compression fraction has been developed to
standardise its measurement.17 Compression fraction was therefore measured and
compared in a sub-set of patients in two ambulance services using the “CPR Card” (Laerdal;
Stavanger, Norway), a small disposable device placed in the centre of the patient’s chest
during CPR. The device gives no feedback to the user but records data that can be retrieved
subsequently.

Resource use to support a cost effectiveness analysis and longer-term function were also
collected. These data will be reported separately.

Sample Size

In a previous feasibility study, 9\% of patients survived to hospital discharge.18 No data were
available for mRS. However, death and poor functional outcome after OHCA are closely
related because death is the most common outcome.16 A 2\% improvement in the proportion
of patients achieving a good outcome (mRS 0-3) was judged to be clinically important, and consistent with the 2.4% difference in survival to hospital discharge between TI and SGAs observed in retrospective data.19 This meant that 9,070 patients in total were needed to detect a difference of 8% vs 10% at the 5% significance level and 90% power, after allowing for clustering.11

\textit{Statistical Analysis}

Analysis of the primary outcome, and exploratory analyses of secondary outcomes, were performed according to a pre-specified statistical analysis plan (SAP), which was finalised before data lock and any comparative analysis, but after the end of recruitment due to staff changes in the statistical team. Some typographical errors were corrected in version 2 and some points were clarified, but no substantive changes were made. No comparative post-hoc analyses were performed.

The primary analyses included all eligible patients with outcome data available (Tables report details), except for the following secondary outcomes which only applied to those who received AAM: loss of a previously established airway; ROSC during airway management; airway management in place when ROSC was achieved or resuscitation was discontinued. Chest compression fraction was only measured in small subset of patients. Patients were grouped by the allocation of the first participating paramedic on scene (main analyses).

Analyses were adjusted for stratification factors as fixed effects. For binary outcomes, mixed-effects logistic regression estimated odds ratios for the primary analysis, with paramedic fitted as a random effect. Risk differences and risk ratios were also estimated using generalised linear regression, with standard errors calculated using a sandwich estimator to allow for clustering. Risk ratios are reported in the Supplement (eTable 7). For time-to-event outcomes, Cox proportional-hazards regression was used. The proportionality assumption, checked using Schoenfeld residuals, was met.
The level of missing data is given in footnotes to the Tables. Multiple imputation was not considered as the level of missing data was 7 patients (0.08%) for the primary outcome and less than 1.5% for all but one secondary outcome which had 6.4% missing data.

Two pre-specified exploratory sub-group analyses were performed for the primary outcome; i) Utstein comparator group (OHCA with a likely cardiac cause that is witnessed and has an initial rhythm amenable to defibrillation20) versus non-comparator group, and ii) OHCA witnessed by EMS clinician or not. The treatment effect in sub-groups was compared by testing for an interaction between paramedic allocation and the sub-group variable.

Three pre-specified exploratory sensitivity analyses were performed for the primary outcome. The first extended the population to include patients attended by a participating paramedic who were not resuscitated (i.e. trial patients plus non-resuscitated patients). This was prompted by feedback from a pre-planned closed interim analysis of half the sample considered by the Data Monitoring and Safety Committee. The second and third sensitivity analyses, restricted to the cohort of patients who received AAM (as allocated and treatment received comparisons), were planned from the outset.

A 5\% significance level (two-sided) was used. Groups were compared using Wald tests. No adjustment was made for multiple testing, so that secondary endpoints should be considered exploratory21. All analyses were performed using Stata version 15.1 (StataCorp).
Results

Participants, Baseline Characteristics and Protocol Adherence

Overall, 1,523 paramedics were recruited and randomized. Of 13,462 potentially eligible patients attended by a participating paramedic between June 2015 and August 2017, 4,166 (31%) were excluded and 9,296 (69%) were enrolled (Figure 1). Enrolled patients were conveyed to 95 hospitals and followed-up to hospital discharge. Paramedics’ allocation was balanced (SGA: 759; TI: 764), but there were more patients in the SGA (n=4,886) than the TI group (n=4,410). The proportions of patients with OHCA resuscitated (SGA: 51.6%, 7007/13587; TI: 50.5%, 6455/12789) and eligible (SGA; 69.7%, 4886/7006; TI: 68.3%; 4410/6454) were similar in the two groups.

Patient characteristics and cardiac arrest details were balanced between the two groups (Table 1; eTables 1 and 2).

Fewer patients allocated to TI received AAM (77.6%; 3,419/4404, vs. 85.2%; 4,161/4883). TI patients were also more likely to crossover to SGA as a result of clinical decision-making by the paramedic on scene (Figure 2; eFigure 1, eTable 3).

Primary Outcome

Primary outcome data were available for 99.9% (9,289/9,296) of patients (Table 2); 6.4% (311/4882) in the SGA group and 6.8% (300/4407) in the TI group had a good outcome (mRS 0-3, odds ratio (OR) 0.918, 95% confidence interval (95%CI) 0.77-1.09; risk difference (RD, SGA minus TI) -0.6%, 95%CI -1.6% to +0.4%; Figure 3 and eFigure 2).

Exploratory Sensitivity Analyses
Including patients attended by a participating paramedic who were not resuscitated did not change the conclusion (SGA, 2.7%, 311/11462; TI, 2.8%, 300/10741; OR=0.959; 95%CI: 0.81-1.14. RD=-0.2%; 95%CI -0.6% to +0.3%; Figure 3, eTable 4). However, in the 7,576 (81%) patients who received AAM more patients in the SGA group had a good outcome (SGA, 3.9%, 163/4158; TI, 2.6%, 88/3418; OR=1.57, 95%CI 1.18-2.07; RD=+1.4%; 95%CI +0.5% to +2.2%). This effect was also observed in the analysis with patients grouped according to the first AAM intervention received (SGA, 4.2%, 193/4630; TI, 2.0%, 58/2838; OR=2.06, 95%CI 1.51-2.81; RD=+2.1%, 95%CI +1.2% to +2.9%).

Exploratory Subgroup Analyses

There was no interaction between allocation and either subgroup (Figure 3; Utstein comparator group vs not, p=0.24; cardiac arrest witnessed by EMS clinician vs not, p=0.24).

Secondary Outcomes

Secondary outcomes are shown in Table 2 and eTable 5. The SGA treatment strategy was significantly more successful in achieving ventilation after up to two attempts (SGA, 87.4%, 4255/4868; TI, 79.0%, 3473/4397; OR=1.92, 95%CI 1.66-2.22; RD=+2.1%, 95%CI +1.2% to +2.9%). Regurgitation and aspiration at any time (i.e. before and/or after AMM) were similar (regurgitation: SGA, 26.1%, 1268/4865; TI, 24.5%, 1072/4372; OR=1.08, 95%CI 0.96-1.20; RD =+1.4% 95%CI -0.6% to +3.4%; aspiration: SGA, 15.1%, 729/4824; TI, 14.9%, 647/4337; OR=1.01, 95%CI 0.88-1.16; RD=+0.1%, 95%CI -1.5% to +1.8%).

The median time to death was not significantly different between the two groups (SGA: 67 minutes, n=4871. TI: 63 minutes, n=4400), and neither was the compression fraction in a
very small sample of 66 patients (SGA, median 86%, IQR 81-91%, n=34; TI, median 83%, IQR 74%-89%, n=32; p=0.14; eTable 6).
Discussion

In this pragmatic cluster RCT no significant difference was found between TI and SGA in the primary outcome of good outcome after OHCA for all trial patients.

Patients with a short duration of cardiac arrest and who receive bystander resuscitation and/or defibrillation are considerably more likely to survive and are also less likely to require AAM. This problem of confounding by indication is an important limitation of many large observational studies that show an association between AAM and poor outcome in OHCA. This study found that 21.1% (360/1704) of patients who received no AAM achieved a good outcome compared to 3.3% (251/7576) of patients who received AAM.

Paramedics allocated to TI were less likely to use AAM than paramedics allocated to SGA. TI is a more complex skill than SGA insertion and requires two practitioners, additional equipment and good access to the patient’s airway, yet OHCA often occurs in locations where patient access is challenging. TI has been associated with potential harms including unrecognised oesophageal intubation, lengthy pauses in chest compressions and over-ventilation. No evidence of a difference in compression fraction was found in a small sub-sample of enrolled patients, but the potential for harm associated with TI persists.

At the outset, it was expected that most patients with a favourable outcome would not receive AAM, and that some crossover would occur. For these reasons, two exploratory sensitivity analyses were pre-specified only in patients who received AAM, even though these analyses are susceptible to bias. Patients who received AAM were similar in the two groups (eTable 1; eTable 2), and a strategy of SGA first was associated with better outcomes whenever AAM was undertaken by a trial paramedic (eTable 4), but the difference between groups was less than the pre-specified clinically important 2% difference and less than the minimal important difference of approximately 3% reported by others. The SGA first strategy also achieved initial ventilation success more often, although regurgitation and
Conversely, patients in the TI group were significantly more likely to regurgitate and aspirate before AAM, possibly due to less frequent use of advanced techniques to secure the airway in this group and the increased time required for TI compared to insertion of a SGA.

A recent RCT of French and Belgian patients with OHCA, comparing BMV with TI delivered by physicians as part of an EMS team, proved inconclusive. To our knowledge, no RCT has compared BMV with an SGA in patients with OHCA. Reported rates of ventilation and TI success have been higher in previous studies, but these have been based on selected populations and practitioners with greater training and experience, including physicians. This study reflects both the reality of current paramedic practice in England, and the challenges of airway management in a patient group where regurgitation and poor airway access are common.

Loss of a previously established airway occurred twice as frequently in the SGA group than in the TI group. There are some cardiac arrest patients for whom effective ventilation cannot be achieved with basic airway management techniques or an SGA, and for whom TI may be the only way of achieving effective ventilation. The exact role of different advanced airway management techniques in adults with OHCA, and the associated implications for skill acquisition and maintenance, remain to be determined.

Limitations

This study has several limitations. First, the trial population included patients who did and did not receive AAM, and the use of AAM was greater among paramedics in the SGA group compared to those in the TI group which could result in confounding by indication. Second, there was an imbalance in the number of patients in the two groups, probably due to unequal distribution of high-recruiting paramedics in the two groups; it was not possible to stratify for
this because high-recruiting paramedics could not be identified in advance. Third, there was crossover between groups, which was inevitable on practical and ethical grounds. Fourth, although other elements of care (e.g. initial basic airway management and subsequent on-scene and in-hospital care, such as targeted temperature management and access to angiography) followed established guidelines, differences in these factors between groups could have influenced the findings. Fifth, the participating paramedics were volunteers, and their airway skills may not be representative of those who chose not to take part. Sixth, the findings are applicable to use of the trial SGA in countries with similar EMS provision to England, where paramedics attend most OHCAs. The findings may not be applicable in countries with physician-led EMS provision or to other SGAs which may have different characteristics. However, the principles underpinning the insertion and function of all SGAs are similar.

Conclusions

Among patients with OHCA, randomization to a strategy of advanced airway management with a supraglottic airway device compared with tracheal intubation did not result in a favorable functional outcome at 30 days.

Acknowledgement:

Author Contributions:

Guarantors: Benger and Rogers had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Benger, Black, Brett, Kirby, Nolan, Reeves, Robinson, Rogers, Scott, South, Stokes, Taylor, Thomas, Voss, Wordsworth.

Acquisition, analysis, and interpretation of data: All authors.

Drafting of the manuscript: Benger.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Lazaroo, Scott, Smartt, Rogers (Clinical Trials and Evaluation Unit, Bristol Medical School, University of Bristol, Bristol, UK)

Technical and project support: Clout, Taylor.

Acknowledgement of non-author contributions:

Megan Rhys, BSc Hons, South Western Ambulance Service NHS Foundation Trust, Exeter, UK, lead research paramedic in feasibility study, supported paramedic engagement and provided expertise when developing protocol.

Rachel Brophy, MSc, Clinical Trials and Evaluation Unit (CTEU), Bristol Medical School, University of Bristol, Bristol, UK, assistant clinical trial coordinator, managed patient follow up.

Jenny Lamb, BA Hons, Clinical Trials and Evaluation Unit (CTEU), Bristol Medical School, University of Bristol, Bristol, UK, assistant clinical trial coordinator, managed patient follow up.
Abby Willcox, PhD, Clinical Trials and Evaluation Unit (CTEU), Bristol Medical School, University of Bristol, Bristol, UK, assistant clinical trial coordinator, managed patient follow up.

Adam Wallis, South Western Ambulance Service NHS Foundation Trust, Exeter, UK, provided financial management.

Tom Hill CIMA Adv Dip MA, South Western Ambulance Service NHS Foundation Trust, Exeter, UK, provided financial management.

Tony West, AAT, South Western Ambulance Service NHS Foundation Trust, Exeter, UK, provided financial management.

Jonathan Green, MRes, South Western Ambulance Service NHS Foundation Trust, Exeter, UK, lead research paramedic for South Western Ambulance Service NHS Foundation Trust, delivered regional paramedic recruitment and training, patient screening and data collection, funded by NIHR grant.

Richard Pilbery, MSc, Yorkshire Ambulance Service NHS Trust, Wakefield, UK, research paramedic for Yorkshire Ambulance Service NHS Trust, delivered regional paramedic recruitment and training, patient screening and data collection, funded by NIHR grant.
Gregory Adam Whitley, MSc, East Midlands Ambulance Service NHS Trust, Nottingham, UK, research paramedic for East Midlands Ambulance Service NHS Trust, delivered regional paramedic recruitment and training, patient screening and data collection, funded by NIHR grant.

Theresa Foster, BSc (Hons), East of England Ambulance Service NHS Trust, Melbourn, UK, Research Manager for East of England Ambulance Service NHS Trust, provided research support and governance, no compensation received for contribution to the study.

Jane Shewan, RGN, BEd, MSc, Yorkshire Ambulance Service NHS Trust, Wakefield, UK, Head of Research for Yorkshire Ambulance Service NHS Trust, provided research support and governance.

Anne Spaight, MA, East Midlands Ambulance Service NHS Trust, Nottingham, UK, Head of Clinical Governance, Audit and Research for East Midlands Ambulance Service NHS Trust, provided research support and governance.

Marcus Bailey, BSc (Hons) Open, East of England Ambulance Service NHS Trust, Melbourn, UK, consultant paramedic for East of England Ambulance Service NHS Trust, acted as ambulance service Principal Investigator.

Steven Dykes, MB ChB, Yorkshire Ambulance Service NHS Trust, Wakefield, UK, Deputy Medical Director for Yorkshire Ambulance Service NHS Trust, acted as ambulance service Principal Investigator.

A. Niroshan Siriwardena, PhD, East Midlands Ambulance Service NHS Trust, Nottingham, UK, research lead at East Midlands Ambulance Service NHS Trust, acted as ambulance service Principal Investigator.
Lisa Grimmer, BSc, University Hospitals Bristol NHS Foundation Trust, Bristol, UK, regional research nurse in South Western region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Katie Sweet, BSc (Hons), University Hospitals Bristol NHS Foundation Trust, Bristol, UK, regional research nurse in South Western region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Rosalyn Squire, BSc, University Hospitals Plymouth NHS Trust, Plymouth, UK, regional research nurse in South Western region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Prematie Andreou, BSc Hons, University Hospitals of Leicester NHS Trust, Leicester, UK, regional research nurse in East Midlands region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Lucy Ryan, MNurSci, Nottingham University Hospitals NHS Trust, Nottingham, UK, regional research nurse in East Midlands region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Sara Jones, BSc (Hons), Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK, regional research nurse in Eastern region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.

Helen Foot, BA Hons, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK, regional research nurse in Yorkshire region, coordinated and supported data collection in receiving hospitals, funded by NIHR grant.
Simon Gates, PhD, University of Birmingham, Birmingham, UK, Chair and independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Charles Deakin, MA MD FRCA FRCP, University of Southampton, Southampton, UK, independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Keith Douglas, patient representative and independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Margaret Douglas, patient representative and independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Gavin D Perkins, MD, University of Warwick, Coventry, UK, independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Jasmeet Soar, FRCA FFICM FRCP, Southmead Hospital, North Bristol NHS Trust, Bristol, UK, independent member of Trial Steering Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Gordon Taylor, DPhil, MSc, BSc (Hons), University of Exeter Medical School, Exeter, UK, Chair and independent member of Data Monitoring and Safety Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.
Richard Lyon, MBE, MBChB (Hons), MD, FRCEM, MRCP, FCPara, DiplMC (RCD), NHS Lothian, Edinburgh, UK, independent member of Data Monitoring and Safety Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Andrew Newton, PhD, College of Paramedics, Bridgwater, UK, independent member of Data Monitoring and Safety Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Tom Quinn, MPhil, Kingston University and St George’s, University of London, London, UK, independent member of Data Monitoring and Safety Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Helen Snooks, BSc (Hons), PhD, Swansea University, Swansea, UK, independent member of Data Monitoring and Safety Committee, received reimbursement of travel expenses incurred during attendance at oversight meetings.

Conflict of Interest Disclosures:

All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Rogers salary was funded by a grant from the British Heart Foundation until March 2017; part of Reeves salary was funded by grants from the National Institute for Health Research. All other authors declare no conflicts of interest.

Funding Statement:

The trial was funded by the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) Programme (project number 12/167/102), and supported by the NIHR
Comprehensive Research Networks. The study was not funded by any commercial organizations or equipment manufacturers. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the HTA, NIHR, NHS or the Department of Health and Social Care.

The funding organization had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

This study was designed and delivered in collaboration with the Clinical Trials and Evaluation Unit, a UKCRC registered clinical trials unit which, as part of the Bristol Trials Centre, is in receipt of National Institute for Health Research CTU support funding.

Supplementary Data:

Supplementary data associated with this article can be found online.
<table>
<thead>
<tr>
<th>DEMOGRAPHY</th>
<th>Randomised to TI (n=4,410)</th>
<th>Randomised to Trial SGA (n=4,886)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>2791/4410 (63.3%)</td>
<td>3132/4886 (64.1%)</td>
</tr>
<tr>
<td>Age (median, IQR)</td>
<td>74 (62, 83)</td>
<td>73 (61, 82)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INITIAL CARDIAC ARREST DETAILS</th>
<th>Randomised to TI (n=4,410)</th>
<th>Randomised to Trial SGA (n=4,886)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from 999 call to first EMS clinician arrival (mins; median, IQR)</td>
<td>8 (5, 11)</td>
<td>7 (5, 11)</td>
</tr>
<tr>
<td>Presenting rhythm</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>Asystole</td>
<td>2356/4316 (54.6%)</td>
<td>2597/4791 (54.2%)</td>
</tr>
<tr>
<td>VF</td>
<td>979/4316 (22.7%)</td>
<td>1094/4791 (22.8%)</td>
</tr>
<tr>
<td>Pulseless VT</td>
<td>44/4316 (1.0%)</td>
<td>39/4791 (0.8%)</td>
</tr>
<tr>
<td>PEA</td>
<td>937/4316 (21.7%)</td>
<td>1061/4791 (22.1%)</td>
</tr>
<tr>
<td>Arrest witnessed</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>By bystander</td>
<td>2231/2788 (80.0%)</td>
<td>2493/3100 (80.4%)</td>
</tr>
<tr>
<td>By EMS clinician</td>
<td>557/2788 (20.0%)</td>
<td>607/3100 (19.6%)</td>
</tr>
<tr>
<td>Bystander/responder CPR before EMS clinician arrival</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>Bystander/responder defibrillation before EMS clinician arrival</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>If yes, ROSC achieved</td>
<td>20/146 (13.7%)</td>
<td>27/176 (15.3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ON ARRIVAL OF STUDY EMS CLINICIAN</th>
<th>Randomised to TI (n=4,410)</th>
<th>Randomised to Trial SGA (n=4,886)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway management in progress</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>BVM only</td>
<td>273/1383 (19.7%)</td>
<td>307/1463 (21.0%)</td>
</tr>
<tr>
<td>OPA and BVM</td>
<td>766/1383 (55.4%)</td>
<td>875/1463 (59.8%)</td>
</tr>
<tr>
<td>NPA and BVM</td>
<td>11/1383 (0.8%)</td>
<td>11/1463 (0.8%)</td>
</tr>
<tr>
<td>Trial SGA</td>
<td>262/1383 (18.9%)</td>
<td>190/1463 (13.0%)</td>
</tr>
<tr>
<td>Intubation</td>
<td>3/1383 (0.2%)</td>
<td>3/1463 (0.2%)</td>
</tr>
<tr>
<td>Other SGA</td>
<td>44/1383 (3.2%)</td>
<td>57/1463 (3.9%)</td>
</tr>
<tr>
<td>Mouth to mouth</td>
<td>8/1383 (0.6%)</td>
<td>10/1463 (0.7%)</td>
</tr>
<tr>
<td>Face shield/pocket mask</td>
<td>5/1383 (0.4%)</td>
<td>4/1463 (0.3%)</td>
</tr>
<tr>
<td>Suction</td>
<td>3/1383 (0.2%)</td>
<td>2/1463 (0.1%)</td>
</tr>
<tr>
<td>Other</td>
<td>8/1383 (0.6%)</td>
<td>4/1463 (0.3%)</td>
</tr>
<tr>
<td>Successful ventilations ongoing</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
</tr>
<tr>
<td>Patient had ROSC on arrival</td>
<td>1110/1372 (80.9%)</td>
<td>1154/1455 (79.3%)</td>
</tr>
<tr>
<td>TI=Tracheal Intubation, SGA=Supraglottic Airway, IQR=Interquartile range, VF=Ventricular Fibrillation, VT=Ventricular Tachycardia, PEA=Pulseless Electrical Activity, EMS=Emergency Medical Services, CPR=Cardiopulmonary Resuscitation, ROSC=Return of Spontaneous Circulation, BVM=Bag Valve Mask, OPA=Oropharyngeal Airway, NPA=Nasopharyngeal Airway.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All patients are grouped by the allocation of the first study EMS clinician on scene.
Table 2: Primary outcome (modified Rankin Scale at hospital discharge/30 days), survival status and main secondary outcomes

<table>
<thead>
<tr>
<th>All trial patients</th>
<th>Randomised to TI (n=4,410)</th>
<th>Randomised to Trial SGA (n=4,886)</th>
<th>Estimate (95% CI)</th>
<th>p-value</th>
<th>ICC</th>
<th>Risk difference (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY OUTCOME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRS (0 to 3; good recovery)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (no symptoms)</td>
<td>300/4407 6.8%</td>
<td>311/4882 6.4%</td>
<td>OR=0.92 (0.77, 1.09)</td>
<td>0.33</td>
<td>0.05</td>
<td>RD=-0.006 (-0.016, 0.004)</td>
<td>0.24</td>
</tr>
<tr>
<td>1</td>
<td>124/4407 2.8%</td>
<td>117/4882 2.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48/4407 1.1%</td>
<td>41/4882 0.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50/4407 1.1%</td>
<td>58/4882 1.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78/4407 1.8%</td>
<td>95/4882 1.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>46/4407 1.0%</td>
<td>45/4882 0.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (deceased)</td>
<td>27/4407 0.6%</td>
<td>39/4882 0.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECONDARY OUTCOMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Died at scene</td>
<td>2488/4407 56.5%</td>
<td>2623/4882 53.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Died prior to ICU admission</td>
<td>1058/4407 24.0%</td>
<td>1226/4882 25.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Died prior to ICU discharge</td>
<td>369/4407 8.4%</td>
<td>503/4882 10.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Died prior to hospital discharge</td>
<td>120/4407 2.7%</td>
<td>138/4882 2.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survived to 30 days/hospital discharge</td>
<td>372/4407 8.4%</td>
<td>392/4882 8.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to death (minutes; median, IQR, n)</td>
<td>63 (41,216) 4400</td>
<td>67 (41,267) 4871</td>
<td>HR=0.97 (0.93, 1.02)</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to death 0-72 hours (minutes; n, median, IQR)</td>
<td>63 (41,205) 4400</td>
<td>67 (41,246) 4871</td>
<td>HR=0.96 (0.92, 1.00)</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 hour survival</td>
<td>575/4395 13.1%</td>
<td>664/4872 13.6%</td>
<td>OR=1.04 (0.92, 1.18)</td>
<td>0.54</td>
<td>0.02</td>
<td>RD=0.004 (-0.010, 0.019)</td>
<td>0.54</td>
</tr>
<tr>
<td>Initial ventilation success (up to two attempts at AAM)</td>
<td>3473/4397 79.0%</td>
<td>4255/4868 87.4%</td>
<td>OR=1.92 (1.66, 2.22)</td>
<td><0.001</td>
<td>0.12</td>
<td>RD=0.083 (0.063, 0.102)</td>
<td><0.001</td>
</tr>
<tr>
<td>TI</td>
<td>1891/2723 69.4%</td>
<td>92/116 79.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial SGA</td>
<td>542/617 87.8%</td>
<td>3412/3994 85.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other SGA</td>
<td>55/72 76.4%</td>
<td>29/36 80.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Randomised to TI (n=4,410)</td>
<td>Randomised to Trial SGA (n=4,886)</td>
<td>Estimate (95% CI)</td>
<td>p-value</td>
<td>ICC</td>
<td>Risk difference estimate (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Any loss of a previously established airway(^2)</td>
<td>153/3081 5.0%</td>
<td>412/3900 10.6%</td>
<td>OR=2.29 (1.86, 2.82)</td>
<td><0.001</td>
<td>0.07</td>
<td>RD=0.059 (0.046, 0.072)</td>
<td><0.001</td>
</tr>
<tr>
<td>TI</td>
<td>70/2149 3.3%</td>
<td>33/570 5.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial SGA</td>
<td>84/981 8.6%</td>
<td>389/3455 11.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other SGA</td>
<td>5/171 2.9%</td>
<td>3/33 9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitation at any time</td>
<td>1072/4372 24.5%</td>
<td>1268/4865 26.1%</td>
<td>OR=1.08 (0.96, 1.20)</td>
<td>0.21</td>
<td>0.06</td>
<td>RD=0.014 (-0.006, 0.034)</td>
<td>0.17</td>
</tr>
<tr>
<td>Aspiration at any time</td>
<td>647/4337 14.9%</td>
<td>729/4824 15.1%</td>
<td>OR=1.01 (0.88, 1.16)</td>
<td>0.84</td>
<td>0.08</td>
<td>RD=0.001 (-0.015, 0.018)</td>
<td>0.86</td>
</tr>
<tr>
<td>Regurgitation before initial SGA/TI attempt</td>
<td>923/4379 21.1%</td>
<td>846/4869 17.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration before initial SGA/TI attempt</td>
<td>589/4355 13.5%</td>
<td>532/4840 11.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitation during or after initial SGA/TI attempt</td>
<td>543/4361 12.5%</td>
<td>875/4857 18.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration during or after initial SGA/TI attempt</td>
<td>304/4344 7.0%</td>
<td>473/4829 9.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admitted to ED/hospital</td>
<td>1922/4410 43.6%</td>
<td>2263/4886 46.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROSC on ED/hospital arrival</td>
<td>1249/4404 28.4%</td>
<td>1495/4880 30.6%</td>
<td>OR=1.12 (1.02, 1.23)</td>
<td>0.02</td>
<td>0.01</td>
<td>RD=0.022 (0.003, 0.042)</td>
<td>0.03</td>
</tr>
<tr>
<td>Survived to ED discharge</td>
<td>861/1919 44.9%</td>
<td>1033/2259 45.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)TI=Tracheal Intubation, SGA=Supraglottic Airway device, CI=Confidence Interval, ICC=Intracluster correlation coefficient, OR=odds ratio, RD=risk difference, HR=Hazard ratio, mRS=modified Rankin Scale score, ICU=Intensive Care Unit, IQR=Interquartile Range, AAM=advanced airway management, ED=Emergency department, ROSC=Return of spontaneous circulation, EMS=Emergency medical services.

Note: Odds ratios and risk differences are adjusted for stratification factors fitted as fixed effects. Odds ratios were obtained from a mixed effects logistic regression model with study EMS clinician fitted as a random effect. Risk differences were obtained by fitting a generalised linear model (binomial family and identity link) with standard errors adjusted for clustering. The hazard ratios are adjusted for EMS clinician experience and distance from usual hospital and stratified by EMS provider organisation with standard errors adjusted for clustering. Wald p-values are displayed.

\(^{2}\)Patients who survived to ICU discharge but did not consent to active or passive follow-up were censored at ICU discharge because research approvals did not permit analysis of subsequent data, apart from the mRS.

\(^{1}\)Trial patients with at least one AAM attempt only.

All patients are grouped by the allocation of the first study EMS clinician on scene.
Figure 1 Flow of study EMS clinicians and patients
Submitted separately.

Figure 2 Interventions received and patient outcome by study allocation
Submitted separately.

Figure 3 Forest plot of primary outcome results (mRS at hospital discharge/30 days)
Submitted separately, notes for figure below

mRS=Modified Rankin Scale, TI=Tracheal Intubation, SGA=Supraglottic Airway device, OR=Odds Ratio, CI=Confidence Interval, EMS=Emergency Medical Services.
Odds ratios are estimated from a mixed effects logistic regression model, with stratification factors fitted as fixed effects and study EMS clinician as a random effect. Wald p-values are displayed.
The size of the point estimate (grey dot) is proportional to the number of patients included

Note:
Patients are grouped by the allocation of the first study EMS clinician on scene.
eFigure 2 displays the breakdown of the mRS scores in the form of horizontally stacked bar charts.
n/N is displayed where n is the number of patients with a score of 0-3 (good recovery) and N is the total number in that group.

[1] All trial patients.
[2] All trial patients. Patients whose cardiac arrest was recorded as not witnessed are included in the Utstein non-comparator group.
[3] All trial patients. Patients whose cardiac arrest was recorded as not witnessed are included in the not witnessed by ambulance staff group.
[4] All trial patients plus patients attended by a study EMS clinician who were not resuscitated.