Accepted Manuscript

Title: Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties

Author: Jin Chen Yi Liang Xiaoxi Li Ling Chen Fengwei Xie

PII: S0144-8617(16)30552-5
DOI: http://dx.doi.org/doi:10.1016/j.carbpol.2016.05.030
Reference: CARP 11099

To appear in:

Received date: 31-3-2016
Revised date: 27-4-2016
Accepted date: 11-5-2016

Please cite this article as: Chen, Jin., Liang, Yi., Li, Xiaoxi., Chen, Ling., & Xie, Fengwei., Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties. Carbohydrate Polymers
http://dx.doi.org/10.1016/j.carbpol.2016.05.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties

Jin Chena, Yi Liangb, Xiaoxi Lia, Ling Chen\textsuperscript{a*} and Fengwei Xie\textsuperscript{c,†}

a Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China

b Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong 525427, China

c School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia

* Corresponding author. Tel.: +86 20 8711 3252; fax: +86 20 8711 3252. Email address: felchen@scut.edu.cn (L. Chen)

† Corresponding author. Tel.: +61 7 3346 3199; fax: +61 7 3346 3973. Email addresses: f.xie@uq.edu.au, fwhsieh@gmail.com (F. Xie).
The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (T_o: 81.11°C) and setback viscosity (548.9 mPa·s). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61 J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment.

Keywords:
Jackfruit seed starch; Supramolecular structure; Resistant starch; Digestibility; Thermal properties
Highlights:

- Jackfruit seed starch (JSS) had higher resistant starch content than other starches.
- High crystallinity and ordered semi-crystalline lamellae were the major reasons for the higher enzyme-resistance of JSS.
- Digestion of JSS occurred mainly at the granule surface.
- Digestion caused slight decrease in crystallinity and lamellar regularity of JSS.
Chemical compounds studied in this article

Starch (PubChem CID: 24836924); Sodium hydroxide (PubChem CID: 14798); Water (PubChem CID: 962); Hydrochloric acid (PubChem CID: 313); Ethanol (PubChem CID: 702); Acetic acid (PubChem CID: 176); Iodine (PubChem CID: 807); Potassium iodine (PubChem CID: 4875); Sodium acetate (PubChem CID: 517045).

1. Introduction

Starch is one of the most important carbohydrates in human diets and has been extensively used as a food ingredient. Understanding starch digestibility is of great interest to food industry and importance for diet-related disorders such as obesity, diabetes, and cardiovascular diseases. Not all starch can be digested in the small intestine, where the portion of starch that is not digested is termed resistant starch (RS) (Asp & Björck, 1992). Physiological benefits have been correlated to the RS consumption (Englyst & Hudson, 1996; Jenkins et al., 1998), which notably alters fecal bulk and short-chain fatty acid metabolism, thus promoting the colonic health (Jenkins et al., 1998).

Because hydrolysis influences all level of food processing and nutrition, several arguments prevail for a closer examination of the effects of hydrolytic enzymes on native starch granules. The hydrolysis process of starches includes the diffusion of enzymes to the granule surface, followed by the adsorption and subsequent catalytic events (Colonna, Leloup & Buleon, 1992). Previous studies have shown that the action of α-amylase on starches from different botanical origins results in varied digestion kinetics and degradation patterns (Fuwa, Takaya, Sugimoto & Marshall, 1980;
Generally, starch is a mixture of two types of macromolecules, amylose and amylopectin (Hizukuri, 1985). Double or single helices of amylose and amylopectin can be packed to form amorphous and crystalline regions (Oates, 1997), which is the basis of the supramolecular structure (granule morphology, fractal structure, lamellar structure, and crystalline structure) of starch. There are many structural factors of starch that affect the pattern and rate of enzymatic hydrolysis, such as the size and shape of granules, granule integrity, porosity of granules, crystallinity, amylose/amylopectin ratio, phosphate content, proteins, and lipids on the granule surface (Copeland, Blazek, Salman & Tang, 2009; Dona, Pages, Gilbert & Kuchel, 2010; Planchot, Colonna, Gallant & Bouchet, 1995; Robertson, Wong, Lee, Wagschal, Smith & Orts, 2006; Tester, Qi & Karkalas, 2006). The features of native starch granules that control the site, rate and extent of hydrolysis by α-amylase are interrelated and not easily definable. Thus, studying the changes of supramolecular structure would help to build the ability to manipulate and understand the hydrolysis of starch granules.

Jackfruit is one of the most popular tropical fruits grown in Asia especially in Thailand. Its seeds take up 10–15% of the whole fruits and contain abundant starch and proteins. With the rapid development of the cultivating and processing industry of jackfruit, however, most seeds are discarded, which causes a huge waste of starch resource. Jackfruit seed starch has not been considered and exploited as a potent source of starch. To solve this problem, there have been studies on the isolation and the properties of starch extracted from jackfruit seeds to verify its applicability in food, pharmaceutics and other uses. Jackfruit seed starch has the Type-A crystallinity pattern and a high amylose content (Madruga, de Albuquerque, Silva, do Amaral, Magnani & Neto, 2014).

Compared with other starches, jackfruit seed starch has significantly higher gelatinization
temperature and lower breakdown viscosity, suggesting that this starch can be used to products
where a high level of gelatinization is not desirable during cooking (Bobbio, El-Dash, Bobbio &
Rodrigues, 1978; Kittipongpatana & Kittipongpatana, 2011; Rengsutthi & Charoenrein, 2011;
Theivasanthi & Alagar, 2011; Tulyathan, Tananuwong, Songjinda & Jaiboon, 2002; Yi &
Shenghong, 2006). However, the literature provides little information about the structural features
of jackfruit seed starch and its effects on different properties. In particular, while the supramolecular
structure and its effect on the hydrolysis of native jackfruit seed starch are essential to ensure the
nutritional value and a diverse range of food industry uses, this information has not been reported so
far.

The aim of the present study was to investigate the functional properties and enzyme digestion
of jackfruit seed starch, as well as the related hierarchical structure changes in the native starch
granule that control the susceptibility of starch to enzymatic hydrolysis. The results of jackfruit seed
starch were compared with cassava starch and maize starch, which are two of the most popular
starches used in food industry. This would provide us with nutritional implications which are
instrumental for practical applications.

2. Materials and methods

2.1. Materials

Jackfruit Seed Starch (JSS) was isolated from jackfruit seeds using a modified method of
(Bobbio, El-Dash, Bobbio & Rodrigues, 1978). The seeds were manually separated from the
mucilage, and then the aril and spermoderm were peeled off. The peeled seeds were slurried in a
Waring Blender (HR 1727 Philips, Zhuhai, China) with an equal weight of a 0.1% sodium
hydroxide solution for approximately 10 min. Then, the slurry was pressed through multiple gauzes to remove seed fibers. The resulting milking suspension was allowed to decant at 4–5°C and rewashed with distilled water to eliminate soluble sugars. The supernatant was drained, and the upper brown sediment was scraped. The remaining sediment was mixed with 0.1% sodium hydroxide solution and filtered through a sieve (0.058 mm mesh size) to eliminate fibers. When the supernatant became clear, the filtrate was neutralized with 0.1M hydrochloric acid to pH 7.0, and the slurry was centrifuged at 3,000 g for 20 min. The starch was dried at 40°C for 24 h. The starch was grounded with a mortar, passed through a sieve (0.15 mm mesh size), packed in a plastic bag and kept at room temperature until further use. The yield of JSS from Jackfruit seed was 25.45–27.34 g/100 g (dry basis).

Cassava starch (CS) was purchased from Vietnamese Food and Investment Co., Ltd. (Nanning, China). Maize starch (MS) was from Inner Mongolia Wang Yu Biotechnology Co., Ltd. (Inner Mongolia, China). The moisture contents of JSS, CS, and MS, determined using a moisture analyzer (DHS20-1, Sartorius Stedim Biotech GmbH, Germany), were 13.03%, 13.44%, and 13.25%, respectively. Porcine pancreatic α-amylase and amyloglucosidase were purchased from Sigma-Aldrich (St. Louis, MO, USA). A glucose-oxidase peroxidase (GOPOD) assay kit was from Megazyme International Ireland, Ltd. (Wicklow, Ireland). Potato amylose was purchased from Heilongjiang Academy of Agricultural Sciences (Harbin, China).

2.2. Starch characterization

2.2.1. Amylose content analysis

The RS content of each sample (JSS, CS, and MS) was determined using a modified method of
0.1 g of the starch (dry basis) was accurately weighed and dissolved in 1 ml of ethanol and 9 ml of sodium hydroxide solution (1 M), then heated in boiling water for 10 min. After cooling off, this solution was then diluted to 100 mL in a volumetric flask with deionized water. An aliquot (2.50 mL) of this solution was then diluted with 25.00 mL of water, 0.50 mL of acetic acid solution (1 M), 0.50 mL of I$_2$/KI solution (0.0025 M I$_2$, and 0.0065 M KI), and the absorbance of this solution was read in a 1 cm path length quartz cell at 620 nm using an Evolution UV/Visible spectrophotometer (Thermo Scientific, Waltham, USA). The amylose from potato (amylose content: 97.0%) was used for the calibration curve ($R^2=0.9962$).

2.2.2. Differential scanning calorimetry (DSC)

Thermal behaviors of JSS, CS, and MS were studied using a PerkinElmer DSC 8000 (PerkinElmer, Waltham, America) with an internal coolant (Intercooler 2P) and nitrogen purge gas. A high-pressure stainless steel pan (PerkinElmer No. B0182901) with a gold-plated copper seal (PerkinElmer No. 042-191758) was used to achieve a constant moisture content (MC) during DSC measurements. The sample, with about 70% MC, was prepared by premixing the starch with added water in a sealed glass vial, which was kept at 20°C for 24 h before measurement. About a 4 mg (dry basis) sample, scanned from 40 to 120°C, was used in this study. A slow heating rate of 5°C/min was used. The onset temperature (T_o), peak temperature (T_p), conclusion temperature (T_c), and enthalpy (ΔH) of starch gelatinization were calculated. The enthalpy was calculated based on the weight of dry basis starch.
2.2.3. Pasting properties

Pasting properties were studied using an Anton Paar MCR302 (Anton Paar China, Shanghai, China). The sample slurry (6% concentration, starch on dry basis), after 1 min pre-shearing, was heated from 30°C to 95°C at a heating rate of 5°C/min, held at 95°C for 15 min, and cooled to 50°C at 5°C/min. Then the sample was held at 50°C for 15 min. The changes of viscosity were recorded.

2.3. Enzyme digestion of starches

2.3.1. In vitro digestibility of native starches

For native JSS, CS, and MS, the starch digestibility was determined following the modified method of Englyst (Englyst, Kingman & Cummings, 1992). Based on the rate of hydrolysis, starch was defined as rapidly-digestible starch (RDS, digested within 20 min), slowly-digestible starch (SDS, digested between 20 min and 120 min), and resistant starch (RS, undigested within 120 min).

In brief, porcine pancreatic α-amylase (3 g) was dispersed in water (20 mL), stirred for 10 min and centrifuged at 3000 g for 15 min. The supernatant (13.5 mL) was transferred to a beaker, and 225 U of amyloglucosidase and 1 mL of deionized water were added to the solution. The enzymatic solution should be freshly prepared for each digestion. Duplicate samples (one named Sample A, the other Sample B) of each starch (JSS, CS, and MS) (1 g, dry basis) were dispersed in 20 mL of 0.1 M sodium acetate buffer (pH = 5.2) and then mixed with an enzyme solution (5 mL) consisting of the pancreatic extract and amyloglucosidase. The dispersion was incubated in a 37°C shaking water-bath at 180 strokes/min. An aliquot (0.5 mL) of Sample A was taken at interval of 20 min and mixed with 20 ml of 70% ethanol. The mixed solution of Sample A was centrifuged at 3000 g for 10 min, and then the supernatant was used for hydrolyzing the glucose content, measured by the
glucose oxidase-peroxidase reagent. Sample B was mixed with ethanol to eliminate the activities of enzyme, and then the dispersion was centrifuged at 3,000 g for 20 min. After three times of mixing with ethanol and centrifugation, the sediments of Sample B were dried at 40°C for 12 h, named JSS-20, CS-20, and MS-20 (“20” means the time interval (min) for which the three starches were hydrolyzed), respectively. When the time interval reached 120 min, another aliquot (0.5 mL) of Sample A was taken and mixed with 20 ml of 70% ethanol, centrifuged to analyze the hydrolyzed glucose content. The sediments were treated using the same method of Sample B. These sediments were JSS-120, CS-120, and MS-120, respectively.

2.3.2. Scanning electron microscopy (SEM)

Granule morphology was studied using an EVO18 scanning electron microscope (ZEISS, Germany) operated at a high voltage of 10.0 kV. Before the SEM examination, the samples were coated with a gold thin film.

2.3.3. Small-angle X-ray scattering (SAXS)

A SAXSess small angle X-ray scattering system (Anton Paar, Austria), operated at 50 mA and 40 kV, using Cu Ka radiation with a wavelength of 0.1542 nm as the X-ray source, was applied to perform the SAXS measurements according to our previously method (Zhu, Li, Chen & Li, 2012) with proper modification. Each sample was placed in a paste sample cell and exposed at the incident X-ray monochromatic beam for 10 min. The data, recorded using an image plate, were collected by the IP Reader software with a PerkinElmer storage phosphor system. The samples used for the SAXS measurement were prepared by premixing the starch with added water in glass vials and were equilibrated at 20°C for 24 h before the analysis. The total MC
of each sample was 65%. All data were normalized, and the background intensity and smeared intensity were removed using the SAXSquant 3.0 software for further analysis.

2.3.4. Polarized light microscopy

Polarized light microscopy was performed using a polarized light microscope (PLM) (Axioskop 40 Pol/40A Pol, ZEISS, Oberkochen, Germany) equipped with a 35mm SLA camera (Power Shot G5, Canon, Tokyo, Japan). The magnification was 500 (50×10). Each sample was dispersed as 10 mg (wet basis) of starch in 1 mL of distilled water in a glass vial. Then, a drop of the starch suspension was transferred onto a slide and covered by a coverslip. Polarized light was used for observation.

2.3.5. X-ray diffraction (XRD)

XRD analysis was performed with an Xpert PRO diffractometer (Panlytical, Netherlands), operated at 40 mA and 40 kV, using Cu Kα radiation with a wavelength of 0.1542 nm as the X-ray source. The scanning of diffraction angle (2θ) was from 5° to 40° with a scanning speed of 10°/min and scanning step of 0.033°. The MC of each sample was about 10%. The relative crystallinity of each sample was calculated using a previous method (Hermans & Weidinger, 1948).

2.4 Statistical analysis

The mean values and differences were analyzed using Duncan’s multiple-range test. Analysis of variance (ANOVA), followed by the least significant difference test (LSD-test), was performed using the software SPSS (Version 22.0). The significance level was set at $p < 0.05$.
3. Results and discussion

3.1. Amylose contents and in vitro enzyme digestion analysis of native starches

The amylose/amylopectin ratio is an important index of starch and it can influence digestion and swelling properties through the way of amylose and amylopectin packed. As seen from Table 1, compared to CS and MS, the amylose content of JSS was higher (24.90%), which was similar to a previous finding (Li & Zhong, 2004). CS had the lowest amylose content, only 16.68%. Based on the Englyst test, the percentages of RDS, SDS, and RS in JSS were 5.92%, 19.82%, and 74.26%, respectively. The RS content of JSS was much higher than CS and MS while RDS and SDS were lower, indicating that JSS had strong anti-enzymatic capability. Interestingly, MS had the lowest RS content but the highest SDS content, suggesting that it is a good material of SDS. The slow-digestion property of MS is more likely to be controlled by its inherent structure (perhaps amylopectin chain length distribution) although the existence of surface porous channels might contribute to a high rate of starch hydrolysis (Zhang, Ao & Hamaker, 2006).

3.2. Supramolecular structure characteristics of native and hydrolyzed starches

3.2.1. Granule morphology

Fig. 1 shows the SEM images of JSS, CS and MS in their native states and after 20min and 120min enzyme hydrolysis. The JSS and CS granules had round to bell shapes with a smooth surface. Unlike the other two starches, the MS granules were irregular in shape with small pores and
pits randomly distributed on a rough surface. The JSS granules were less irregular in shape, being smaller than the CS and MS granules.

The susceptibility of starch granules can be classified by the degree and manner by which the granules are eroded and corroded. As seen from SEM, the degree of digestion of starch followed the order: MS > CS > JSS, contrary to the trend of RS (Table 1), which is as expected. Besides, the observed levels of digestion were comparable between large and small granules for all three raw starches. Some small granules in JSS-20 and CS-20 even became hollow with only a thin external shell structure. This suggests a fundamental difference in the mode of α-amylase and amyloglucosidase action, according to the granule size. Smaller granules, by virtue of their higher available surface area per unit mass, facilitate the diffusion and adsorption of enzymes (Colonna, Leloup & Buleon, 1992).

Digestion of JSS was not clearly apparent; the main indication was a less smooth and more rugged granule surface with a few pits (JSS-20 and JSS-20, in Fig.1). Enzymatic digestion of CS was apparent from the increased surface roughness and formation of deep cracks and large holes in many granules (CS-20 and CS-120 in Fig.1). After 20min of enzymatic digestion, some CS granules were in a truncated form (CS-20 in Fig.1). Truncatures are weak points in the granule structure that lead to increased susceptibility, resulting in enhanced hydrolysis of CS. (Valetudie, Colonna, Bouchet & Gallant, 1993). Because of no pores and smooth surfaces, SEM micrographs for JSS and CS showed that enzymatic erosion occurred mainly at the surface. The MS granules showed
extensive corrosion, mainly in the direction of the radial axis and only a few granules remained intact. The surface pores of hydrolyzed MS became larger and deeper into granules because of the more extensive hydrolysis (MS-20 in Fig.1). After 120min hydrolysis, some granules were split, exposing their layered internal structure (MS-120 in Fig.1). The layered internal structure showed different susceptibility of the semi-crystalline structure and amorphous growth rings toward digestion (Zhang, Ao & Hamaker, 2006).

3.2.2. Lamellar structure characteristics

The double-logarithmic SAXS patterns of native and hydrolyzed starch residues are shown in Fig. 2. From this figure, we can obtain some parameters of a theoretical model for the lamellar structure in starch (Cameron & Donald, 1993a, b), including d, the average thickness of the semi-crystalline lamellae; $\Delta \rho = \rho_c - \rho_a$ (where ρ_c and ρ_a are the electron densities of the crystalline regions and the amorphous regions in the semi-crystalline lamellae), the difference in electron density between the crystalline lamellae and the amorphous lamellae; $\Delta \rho_u = \rho_u - \rho_a$ (where ρ_u is the electron density of the amorphous background), the difference in electron density between the value of q of the peak at ca. 0.6 nm$^{-1}$ can be used to calculate the average repeat distance (d) of the semi-crystalline lamellae in starch granules according to the Woolf-Bragg’s equation $d = 2\pi/q$ (Blazek & Gilbert, 2010; Vermeylen, Goderis & Delcour, 2006). Table 2 shows the SAXS parameters from the peaks of native and hydrolyzed starches. It can be seen from Table 2 that the average thickness of the semi-crystalline lamellae of JSS and CS were thinner than that of MS (JSS: 9.06 nm; CS: 9.14 nm; and MS: 9.42 nm) and the peak areas of JSS and CS were larger than MS (JSS: 0.1288; CS: 0.1248; and MS: 0.0800). This indicates JSS and CS may have more ordered
The log $I \sim \log q$ SAXS patterns of JSS, CS, and MS and their hydrolyzed residues are presented in Fig. 2a, b and c. The scattering intensity changed slightly for JSS (JSS-20 and JSS-120 in Fig. 2a) during the whole enzymatic hydrolysis. After 120 min hydrolysis, the scattering intensity at the low q region showed an increasing trend (JSS-120 in Fig. 2a) and the definition of the peak of JSS-120 was lower than those of JSS and JSS-20. This can be explained by the easier disturbance of starch molecular arrangement in the amorphous background than in the amorphous lamellae by α-amylase, thus resulting in an increase in $\Delta \rho_u$ (Cameron & Donald, 1992). All the analysis of JSS showed that most of the semi-crystalline lamellae of JSS remained intact even after 120 min hydrolysis. And the slight changes in the scattering intensity of JSS, JSS-20, and JSS-120 explained a high RS content of JSS and less obvious surface erosion. However for CS and MS (CS-20 in Fig. 2b and MS-20 in Fig. 2c), the q region around the peak showed a decreasing trend, suggesting the crystalline regions in the semi-crystalline lamellae were disturbed after 20 min hydrolysis. And the scattering intensity at the low q region showed an increasing trend, due to more destruction to the amorphous background than to the amorphous lamellae. After 120 min hydrolysis (CS-120 in Fig. 2b and MS-120 in Fig. 2c), the scattering intensity decreased to an extensive degree. It is noted that the decrease of scattering intensity in MS was faster during the first 20 min of enzymatic hydrolysis and slower from 20 min to 120 min than in CS. This could be an excellent explanation for the higher SDS content of MS. Based on the above discussion, a conclusion can be made that the
semi-crystalline lamellae of JSS were more ordered and thus more resistant to the hydrolysis than those of CS and MS.

3.2.3 Crystalline characteristics

Normally, a birefringence cross can be observed when the starch granule is exposed under polarized light, due to orderly-arranged starch molecules of crystalline regions and disorderly-arranged starch molecules of amorphous regions. Therefore, information about the crystalline structure of starch can be reflected by the birefringence pattern when starch granules suffered from hydrolysis or external attack. The polarized light microscope images of JSS, CS, and MS and their hydrolyzed residues are shown in Fig. 3. Given the different sizes of JSS, CS, and MS granules, native JSS showed weaker birefringence intensity than CS and MS, while CS showed the strongest intensity. It is noted that the birefringence intensity remained almost the same for JSS after enzyme hydrolysis for 120 min, suggesting most of crystalline structure of JSS was retained. Nevertheless, the birefringence intensity decreased significantly for CS and MS (especially for MS), and the birefringence crosses became less apparent, owing to the disturbance of double helices in their crystallites during enzyme digestion. This result is consistent with the analysis of SAXS.

Fig. 4 shows the XRD patterns of JSS, CS, and MS, and their hydrolyzed residues. It is seen that JSS and MS displayed a typical A-type crystalline structure with main diffraction peaks at ca. 15, 17, 18 and 23° (2θ) (Tulyathan, Tananuwong, Songjinda & Jaiboon, 2002; Zobel, 1964). CS
exhibited a weak diffraction maximum at 5.6°(2θ), and the 17°(2θ) peak was somewhat more intense than its 18°(2θ) neighbor (Chrastil, 1987). Both features indicated CS contained some B-type crystalline structure but the main structure was still A-type. The degree of relative crystallinity of starch followed the order: JSS ≈ CS > MS. According to the XRD patterns of partly-digested starches of JSS, CS and MS, the crystalline types of all three starches remained essentially unchanged after digestion. However, after enzyme treatment, decreased diffraction intensities were observed (Figure 4a, b, and c). The relative crystallinity of JSS changed moderately, decreased from 30.6% to 27.6% (Table 2) after 20min digestion, while CS and MS decreased more sharply from 30.3% to 23.6% and 27.4% to 19.4%, respectively. These results suggest that hydrolysis did occur in the crystalline regions despite that most of crystalline structure of JSS was retained after 120min hydrolysis.

It is noted that although JSS and CS both had a smooth surface and similar relative crystallinity (Table 2), the RS content of JSS was higher than CS. This can be demonstrated by the observation that the degree of the ordered structure in semi-crystalline lamellae was in the order JSS • CS • MS in the SAXS, suggesting not only the crystallinity but the way how molecules are ordered play a key role in the enzyme digestion of JSS. Another reason could be due to their amylose/amylopectin ratio. Specifically, a higher amylose content may mean an increased number of long chains and facilitate the amylose-lipid complex formation on the granule surface, leading to an increased content of enzyme-resistant starch (Crowe, Seligman & Copeland, 2000; Cui & Oates, 1999; Tufvesson, Skrabanja, Björck, Elmståhl & Eliasson, 2001). The surface pores and low relative crystallinity of MS could contribute to its high RDS and low RS contents.
When the α-amylase attacks starch granules, the double helices must first be unwound, as single-stranded helices are the polymeric substrates for the enzyme (Larson, Day & McPherson, 2010). The amylopectin double helices can only be unwound if they are dissociated from their crystallites. However, the amylopectin side chains of starch strongly interact, not only with their helical duplex partners, but also with other neighboring helices. Thus, more ordered crystalline structure leads to a lower rate of enzymatic hydrolysis because of stronger interactions between neighboring helices. Normally, higher crystallinity is in consistent with more ordered arrangement of amylopectin double helices in the semi-crystalline lamellae, since the crystallinity reflects the long range order of starch. In the light of these principles, the more ordered crystalline structure (corresponding to more ordered semi-crystalline lamellae and high relative crystallinity) was the main reason for the strong anti-enzymatic capability of JSS.

3.3. Thermal behavior

Fig. 5a shows the DSC thermograms of JSS, CS and MS in excess water (70 wt.%) and the related thermal parameters were shown in Table 3. From Fig. 5a and Table 3, it was obvious that JSS had the highest gelatinization temperature \(T_\text{g} \): 81.11°C, followed by MS \(T_\text{g} \): 65.58°C and CS \(T_\text{g} \): 60.47°C. The higher \(T_\text{g} \), \(T_\text{p} \), and \(T_\text{c} \) of JSS could be due to a higher content of amylose-lipid complexes with an increased amylose content, resulting in reduced swelling of the granule (Karkalas & Raphaelides, 1986; Pycia, Juszczak, Gałkowska & Witeczak, 2012; Svihus, Uhlen & Harstad, 2005; Tester & Morrison, 1990). The higher gelatinization temperature of JSS may also reflect its much longer amylpectin chains, as there is a significant positive correlation between the DSC gelatinization parameters and the amylpectin unit-chain length distribution of starches (Jane...
et al., 1999; Noda et al., 1998; Shi & Seib, 1995; Srichuwong, Sunarti, Mishima, Isono &
Hisamatsu, 2005a). Since the granule size followed the order CS • MS • JSS (Fig.1), another reason
could be related to the size of starch granules since larger granules might be more vulnerable during
heating (Chiotelli & Le Meste, 2002; Kaur, Singh & Sodhi, 2002; Vasanthan & Bhatti, 1996). JSS
and MS showed rather symmetric peaks and had similar ΔT, which was narrower than that of CS.
This indicates that the crystalline structure of JSS and MS are more unified and consistent than that
of CS, resulting in more homogeneous heat conductivity. Higher ΔT of CS was proposed to arise
from the inconsistency of crystalline structure corresponding to the melting of B-type in CS
although the main structure in CS was A-type. JSS and CS had similar ΔH (Table 3), due to their
similar relative crystallinity, which were higher than that of MS. The higher ΔH values suggested
that the interactions (via hydrogen bonding) between double helices (which were packed in clusters)
forming the crystalline regions of JSS and CS were probably more extensive than in MS (Cooke &

3.4. Pasting properties

Fig.5b shows the pasting properties of JSS, CS and MS. As seen from Table 3, the peak
viscosity (PV) of three starches followed the order JSS • CS • MS, which corresponded to the trend
of T_o. The breakdown viscosity (BDV) of JSS (109.5 mPa·s) was lower than those of CS and MS
(473.2 mPa·s and 288.4 mPa·s, respectively). When viscosity reached PV, almost all of amylose leached out and therefore BDV was less affected by amylose, but more by amylopectin fine structure (Han & Hamaker, 2001). Lower BDV is another indicator that JSS may have much longer amylopectin chains since dissociation of double helices of amylopectin leads to granule swelling and affects pasting properties to some extent (Han & Hamaker, 2001; Sirichuwong, Sunarti, Mishima, Isono & Hisamatsu, 2005b). The final viscosity (FV) and setback viscosity (SBV) indicate the re-association of the starch molecules involving amylose after gelatinization and a formation of a gel network (Charles, Chang, Ko, Siroth & Huang, 2004). JSS had higher FV and SBV than CS and MS (Table 3), owing to a high amylose content (Sasaki, Yasui & Matsuki, 2000; Vandeputte, Derycke, Geeroms & Delcour, 2003). The reason CS had less amylose content but higher FV and SB than MS might be due to the finer amylopectin structure (enrichment in B2 chains) of CS (Sirichuwong, Sunarti, Mishima, Isono & Hisamatsu, 2005b).

4. Conclusion

JSS granules were shown to be small, round to bell shapes, with a smooth surface and displayed a typical A-type crystalline structure. Compared with MS and CS, JSS had higher amylose content, higher RS content and more ordered semi-crystalline lamellae. According to the DSC measurement, JSS had the highest T_o. This might be because of the reduced swelling of the granule, probably due to more amylose-lipid complexes with higher amylose content and to its smaller granules which were more resistance to heat. JSS and CS had similar ΔH, due to their similar relative crystallinity. From the pasting property study, the BDV of JSS was lower than those of CS and MS while FV and SBV were higher. Lower BDV might indicate longer amylopectin
chains of JSS, which needs further investigation. As seen from SEM, the degree of digestion of starch followed the order: MS > CS > JSS. Digestion of JSS only apparently occurred at the surface, with a less smooth and more rugged granule surface with occasional pitting. In the course of digestion, for JSS, the scattering intensity and the relative crystallinity were decreased slightly, and the birefringence intensity remained almost the same. These observations indicate the more ordered semi-crystalline lamellae and high relative crystallinity were the major factors for the stronger anti-enzymatic capability of JSS than those of CS and MS. In conclusion, the results presented the detailed related supramolecular structure changes (especially granular, crystalline, and lamellae structure) of JSS granules that control the susceptibility of starch to enzymatic hydrolysis and the physicochemical properties. The knowledge obtained from this work is expected to facilitate further research on the nutritional and other properties of JSS for widening its industrial application.

5. Acknowledgments

This research has been financially supported under various projects by the Key Project of the National Natural Science Foundation of China (NSFC) (No.31130042), NSFC-Guangdong Joint Foundation Key Project (No. U1501214), NSFC (No.31271824), YangFan Innovative and Entrepeneurial Research Team Project (No. 2014YT02S029), the Ministry of Education Special R&D Funds for the Doctoral Discipline Stations in Universities (20120172110014), the Ministry of Education Program for Supporting New Century Excellent Talents (NCET-12-0193), the Key R&D Projects of Zhongshan (2014A2FC217), the R&D Projects of Guangdong Province (2014B090904047), and the Fundamental Research Funds for the Central Universities (2015ZZ106).
References

Figure Captions

Fig. 1. SEM images of native and hydrolyzed starch residues at 1000× and 3000× magnification.

Fig. 2. Double-logarithmic SAXS patterns of native and hydrolyzed starch residues. (a) Jackfruit seed starch (JSS, JSS-20, and JSS-120); (b) cassava starch (CS, CS-20, and CS-120); (c) maize
Fig. 3. Polarized light microscopic images of native and hydrolyzed starch residues.

Fig. 4. XRD patterns of native and hydrolyzed starch residues, (a) jackfruit seed starch (JSS, JSS-20, and JSS-120); (b) cassava starch (CS, CS-20, and CS-120); (c) maize starch (MS, MS-20, and MS-120).

Fig. 5. Differential scanning calorimetry (DSC) thermographs (a), and viscosity curves (b) of jackfruit seed starch, cassava starch and maize starch.

Tables

Table 1. Amylose contents and *in vitro* enzyme digestion analysis of jackfruit seed starch (JSS), cassava starch (CS) and maize starch (MS).

<table>
<thead>
<tr>
<th>Raw starches</th>
<th>RDS (%)</th>
<th>SDS (%)</th>
<th>RS (%)</th>
<th>Amylose (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfruit seed starch (JSS)</td>
<td>5.92±0.49c</td>
<td>19.82±1.01c</td>
<td>74.26±1.28a</td>
<td>24.90±0.10a</td>
</tr>
<tr>
<td>Cassava starch (CS)</td>
<td>10.50±0.04b</td>
<td>38.43±0.03b</td>
<td>51.07±0.08b</td>
<td>16.68±0.54c</td>
</tr>
<tr>
<td>Maize starch (MS)</td>
<td>12.04±0.04a</td>
<td>69.73±1.14a</td>
<td>18.23±1.18c</td>
<td>22.42±0.19b</td>
</tr>
</tbody>
</table>

Values are means of three determinations (±standard deviation); values followed by the different letters within a column differ significantly (*p* < 0.05).
Table 2. SAXS parameters and relative crystallinity of native and hydrolyzed starches.

<table>
<thead>
<tr>
<th>Sample</th>
<th>q_{peak} (nm$^{-1}$)</th>
<th>d (nm)</th>
<th>Peak Area</th>
<th>RC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSS</td>
<td>0.6934$^{\text{abc}}$</td>
<td>9.06$^{\text{de}}$</td>
<td>0.1288a</td>
<td>30.6$^{\text{ab}}$</td>
</tr>
<tr>
<td>JSS-20</td>
<td>0.6868$^{\text{bcd}}$</td>
<td>9.15$^{\text{ed}}$</td>
<td>0.1240b</td>
<td>28.5$^{\text{bcd}}$</td>
</tr>
<tr>
<td>JSS-120</td>
<td>0.7001$^{\text{ab}}$</td>
<td>8.98$^{\text{de}}$</td>
<td>0.0653c</td>
<td>27.6$^{\text{bcd}}$</td>
</tr>
<tr>
<td>CS</td>
<td>0.6868$^{\text{bcd}}$</td>
<td>9.14$^{\text{de}}$</td>
<td>0.1248a</td>
<td>30.3$^{\text{ab}}$</td>
</tr>
<tr>
<td>CS-20</td>
<td>0.6802$^{\text{cd}}$</td>
<td>9.24e</td>
<td>0.0639c</td>
<td>25.4$^{\text{def}}$</td>
</tr>
<tr>
<td>CS-120</td>
<td>0.6934$^{\text{abc}}$</td>
<td>9.01$^{\text{de}}$</td>
<td>0.0318d</td>
<td>23.6$^{\text{efg}}$</td>
</tr>
<tr>
<td>MS</td>
<td>0.6670e</td>
<td>9.42b</td>
<td>0.0800b</td>
<td>27.4$^{\text{de}}$</td>
</tr>
<tr>
<td>MS-20</td>
<td>0.6604e</td>
<td>9.51b</td>
<td>0.0572e</td>
<td>21.5f</td>
</tr>
<tr>
<td>MS-120</td>
<td>0.6208f</td>
<td>10.12b</td>
<td>0.0213d</td>
<td>19.4f</td>
</tr>
</tbody>
</table>

Values are means of three determinations; values followed by the different letters within a column differ significantly ($p < 0.05$).
Table 3 Gelatinization parameters and pasting properties of jackfruit seed starch (JSS), cassava starch (CS) and maize starch (MS)

<table>
<thead>
<tr>
<th>Sample</th>
<th>JSS</th>
<th>CS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_o (°C)</td>
<td>81.11±0.53<sup>a</sup></td>
<td>60.47±1.00<sup>c</sup></td>
<td>65.58±0.45<sup>b</sup></td>
</tr>
<tr>
<td>T_p (°C)</td>
<td>85.39±0.64<sup>a</sup></td>
<td>65.88±0.78<sup>c</sup></td>
<td>69.43±0.15<sup>b</sup></td>
</tr>
<tr>
<td>T_c (°C)</td>
<td>91.70±1.12<sup>a</sup></td>
<td>79.32±0.84<sup>b</sup></td>
<td>75.48±0.38<sup>c</sup></td>
</tr>
<tr>
<td>ΔT (T_c-T_o)</td>
<td>10.59±0.65<sup>b</sup></td>
<td>18.85±1.85<sup>a</sup></td>
<td>9.90±0.09<sup>b</sup></td>
</tr>
<tr>
<td>ΔH (J/g)</td>
<td>19.61±0.76<sup>a</sup></td>
<td>19.67±0.41<sup>a</sup></td>
<td>15.86±0.32<sup>b</sup></td>
</tr>
<tr>
<td>PT (°C)</td>
<td>82.0±0.2<sup>a</sup></td>
<td>66.9±0.3<sup>c</sup></td>
<td>71.5±0.2<sup>b</sup></td>
</tr>
<tr>
<td>PV (mPa·s)</td>
<td>844.0±5.1<sup>b</sup></td>
<td>963.2±4.3<sup>a</sup></td>
<td>743.9±3.3<sup>c</sup></td>
</tr>
<tr>
<td>BDV (mPa·s)</td>
<td>109.5±2.4<sup>c</sup></td>
<td>473.2±1.5<sup>a</sup></td>
<td>288.4±1.8<sup>b</sup></td>
</tr>
<tr>
<td>FV (mPa·s)</td>
<td>1354.0±7.4<sup>a</sup></td>
<td>1044.0±6.3<sup>b</sup></td>
<td>827.9±5.2<sup>c</sup></td>
</tr>
<tr>
<td>SBV (mPa·s)</td>
<td>548.9±3.5<sup>a</sup></td>
<td>514.4±4.1<sup>b</sup></td>
<td>349.1±3.8<sup>c</sup></td>
</tr>
</tbody>
</table>

T_o, T_p and T_c correspond to onset, peak and conclusion gelatinization temperature (°C); whereas ΔH and ΔT represent melting enthalpy (J/g of starch) and gelatinization temperature range (°C) respectively. PT represents peak temperature (°C), whereas PV, BDV, FV, SBV correspond to peak viscosity, breakdown viscosity, final viscosity and setback viscosity (mPa·s) respectively.

Values in the table are means of three determinations (± standard deviation); values followed by the different letters within a column differ significantly ($p < 0.05$).
Figures

Fig 1

Fig 2
Fig 4

(a) and (b) show the relative intensity vs. diffraction angle for different samples. (a) JSS and (b) CS. (c) Shows MS and its variations.