Accepted Manuscript

Title: Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline

Author: Ming Li Fengwei Xie Jovin Hasjim Torsten Witt Peter J. Halley Robert G. Gilbert

PII: S0144-8617(14)00933-3
DOI: http://dx.doi.org/doi:10.1016/j.carbpol.2014.09.036
Reference: CARP 9293

To appear in:

Received date: 23-4-2014
Revised date: 5-7-2014
Accepted date: 2-9-2014

Please cite this article as: Li, M., Xie, F., Hasjim, J., Witt, T., Halley, P. J., and Gilbert, R. G., Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline, Carbohydrate Polymers (2014), http://dx.doi.org/10.1016/j.carbpol.2014.09.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline

Ming Li, a,b Fengwei Xie, c Jovin Hasjim, b Torsten Witt, b Peter J. Halley, c,d and Robert G. Gilbert a,b,*

a School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China

b The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia

c The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia

d The University of Queensland, School of Chemical Engineering, Brisbane, QLD 4072, Australia

*Corresponding author. Robert G. Gilbert, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia. Telephone +61 7 3369 4809, Email: b.gilbert@uq.edu.au
Abstract

The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young’s modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

Abbreviations

ANOVA, analysis of variance; CF, cryo-fractured; CM, compression molding; DSC, differential scanning calorimetry; HAMS, high-amylose maize starch; HTT, hydrothermal treatment; NF, non-fractured; NMS, normal maize starch; RH, relative humidity; SEC, size-
exclusion chromatography; **SME**, specific mechanical energy; **TPS**, thermoplastic starch; **WMS**, waxy maize starch; **XRD**, X-ray diffraction

Key words

starch, molecular structure, crystallinity, mechanical properties, hydrothermal treatment
1. Introduction

Replacing non-biodegradable conventional synthetic plastics with renewable, biodegradable alternatives has become more and more desirable, as petroleum-based plastics are non-renewable and degrade slowly in the environment. One potential replacement is the class of thermoplastic starch (TPS) materials. Some successful TPS products are already available in the market; however, their applications are limited because of the poor mechanical properties and moisture resistance. To improve the properties of TPS, it is important to understand better the influences on properties of starch structural changes brought about by processing.

Native starch granules are composed of mainly two glucose macromolecules, amylose and amylopectin. Amylose is mostly linear with long branches and has a molecular weight of $\sim 10^5$–10^6; it is present either in amorphous or in a single helical conformation in native starch granules (Jane, Xu, Radosavljevic & Seib, 1992; Lopez-Rubio, Flanagan, Gilbert & Gidley, 2008). Amylopectin is highly branched and has a molecular weight of $\sim 10^7$–10^9. The branches of amylopectin are arranged into clusters of double helices that aggregate into crystallites in native starch granules, while the branching points are located in amorphous regions; together they form the crystalline-amorphous lamellae (Pérez & Bertoft, 2010; Vamadevan, Bertoft & Seetharaman, 2013; Zhu, Bertoft & Seetharaman, 2013) and subsequently the growth rings.

Improving the mechanical properties of TPS, such as increasing tensile strength and Young’s modulus or decreasing the elongation at break, has been achieved by increasing starch crystallinity with aging (Shogren & Jasberg, 1994; van Soest, Hulleman, de Wit &
In addition, TPS materials produced from high-amylose starch have good mechanical properties (Li et al., 2011; Lourdin, Valle & Colonna, 1995). By producing starch materials from acid-hydrolyzed starch, van Soest et al. (van Soest, Benes, de Wit & Vliegenthart, 1996) found that the tensile strength of TPS was not affected by molecular weight, but the elongation at break and tearing energy were higher for starch materials with higher molecular weight. However, it is difficult to separate the effects of molecular weight on the mechanical properties of TPS films from those of the amylose content (Walenta, Fink, Weigel & Ganster, 2001) and of starch retrogradation (van Soest, Benes & De Wit, 1995). Inconsistent conclusions can be found on the relationship between starch molecular weight and the mechanical properties of TPS from different studies in the literature (Lloyd & Kirst, 1963; van Soest, Benes, de Wit & Vliegenthart, 1996; Walenta, Fink, Weigel & Ganster, 2001), partly due to different testing conditions and techniques, such as aging time before mechanical testing.

In the present study, the molecular and crystalline structural changes induced by processing are correlated to the mechanical properties in order to obtain a more precise correlation, as distinct from previous studies (van Soest, Benes & De Wit, 1995; van Soest, Benes, de Wit & Vliegenthart, 1996) correlating the acid-hydrolyzed starch structures, which may be further degraded by processing, with mechanical properties. Extrusion brings multi-level starch structural changes, including degradation of large amylopectin molecules and disruption of crystalline and granular structures (Li, Hasjim, Xie, Halley & Gilbert, 2013; Liu, Halley & Gilbert, 2010), and a higher degree of crystallinity is brought by retrogradation. Previous studies often involve changing of molecular structure by acid (van Soest, Benes, de Wit & Vliegenthart, 1996) or enzyme hydrolysis (Walenta, Fink, Weigel & Ganster, 2001) prior to starch processing. However, these hydrolysis procedures bring significant molecular degradation: acid can hydrolyze both amylose and amylopectin in the
amorphous regions and enzyme randomly acts along starch chains. Such changes may be different from the molecular degradation induced by extrusion.

In this study, waxy, normal, and high-amylose maize starches (WMS, NMS, and HAMS, respectively) were used as samples providing a variation in the amylose content. Starch extrudates prepared in a previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) with variations in the molecular and crystalline structures, while maintaining the same amylose content, were used. The crystalline structure was further altered by hydrothermal treatment (HTT). Size-exclusion chromatograph (SEC), X-ray diffractometry (XRD), and scanning electron microscope (SEM) were used to investigate the changes in starch molecular, crystalline, and film surface structures, respectively, after compression molding, aging and HTT.

2. Materials and Methods

2.1. Materials

WMS and HAMS (Gelose 80) were obtained from National Starch Pty. Ltd. (now Ingredion, Lane Cove, NSW, Australia), and NMS was supplied by New Zealand Starch Ltd. (Auckland, New Zealand). The amylose contents of WMS, NMS, and HAMS starches are 0, 28 and 63%, respectively, as measured in a previous study (Vilaplana, Hasjim & Gilbert, 2012). Starch extrudates used were those prepared in a previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013), where glycerol and water with a ratio of 2:3 were used as plasticizer, and the extrude strands were cut using S. F. Scheer pelletizer (Model SGS25 E4, Reduction Engineering, Inc., Kent, OH, USA). The extrusion processing conditions (temperature, screw speed, and plasticizer content) and the average hydrodynamic radius \bar{R}_h (analyzed in the previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013)) are shown in
Table 1. The post-extrusion treatments and characterization techniques applied to the starch extrudates are summarized in Table 2.

2.2. Compression molding

WMS, NMS, and HAMS pellets were compression-molded into starch films using a lab compression molding (CM) machine. CM was carried out at 100 °C for WMS and NMS and at 130 °C for HAMS, with a pressure of 7.5 MPa for 5 min, as WMS, NMS can be compression-molded into homogeneous films at 100 °C, while HAMS can only form films at 130 °C. The resulting films were quench-cooled using a water cooling system to 35 °C before they were removed. Polytetrafluoroethylene films (Dotmar EPP Pty. Ltd., Acacia Ridge, QLD, Australia) were used during CM as release agents.

2.3. Water sorption

Representative films of WMS and HAMS were dried in a BenchTop 2K freeze dryer (VirTis, Gardiner, NY, USA) overnight, and then kept in humidity chambers at 33, 54, and 75% relative humidity (RH, which were achieved using MgCl₂, Mg(NO₃)₂, and NaCl solutions, respectively (Ferreira, Grossmann, Mali, Yamashita & Cardoso, 2009)), for 2, 4, 17.5, 21, and 112.5 hours. The moisture content, M_t, at time t, as the result of moisture absorption, was calculated as follows:

$$M_t(\%) = \frac{w_t - w_o}{w_o} \times 100\% \quad [1]$$

Here w_o and w_t are the weight after freeze drying prior to storage and that after storing in humidity chambers for time t, respectively.
2.4. Hydrothermal treatment

NMS films and tensile dumbbell specimens were placed on petri dishes covered with cellulose filter papers, and then kept in an oven at 105 °C for three days (the RH in the oven was assumed to be 100%). Beakers with water were also placed in the oven to supply the moisture for HTT. After the HTT, the materials were slowly cooled in the oven for an additional 2 hours with the presence of moisture to prevent breakage due to the rapid drying of the films at ambient humidity, which would result in brittleness. The moisture contents of starch films before and after HTT were determined from weight difference after being dried in the oven at 105 °C overnight.

2.5. Size-exclusion chromatography

WMS and HAMS extrudates and their CM films were molecularly dissolved in dimethyl sulfoxide (DMSO; GR for analysis ACS, Merck & Co, Inc., Kilsyth, VIC, Australia) containing 0.5% wt LiBr (ReagentPlus, Sigma–Aldrich Pty. Ltd., Castle Hill, NSW, Australia) (DMSO/LiBr solution) to yield a final concentration of 1 mg/mL, and analyzed in duplicates using an SEC system (Agilent 1100 series, Agilent Technologies, Waldbronn, Germany) equipped with a refractive index detector (RID-10A, Shimadzu, Kyoto, Japan), following the method described elsewhere (Li, Hasjim, Xie, Halley & Gilbert, 2013). Since SEC separates molecules based on size (hydrodynamic volume, V_h, or the corresponding hydrodynamic radius, R_h), the results are presented as SEC distributions of starch molecules, denoted by $w(\log V_h)$ (Cave, Seabrook, Gidley & Gilbert, 2009).

2.6. X-ray diffractometry

Representative WMS, NMS and HAMS films were stored in humidity chambers at 54% RH for different days at room temperature (23 °C) before the XRD measurements, while the
NMS films with and without HTT were stored in the same humidity chamber for 14 days. While their RHs are not considered here, one expects the trend will be the same: high amylose starch will retrograde more rapidly and the starch may reach to a higher degree of crystallinity; however, as showed in (Shogren & Jasberg, 1994), normal maize starch showed much larger sub-T_g endotherms than high-amylose cornstarch when stored at higher RH, which might be due to the B-type crystallinity formed during the long-term storage among the shorter branches of WMS or NMS. The crystalline structure of stored starch films was analyzed using a D8 Advance X-ray diffractometer (Bruker, Madison, WI, USA), where diffractograms were recorded over an angular range (2θ) of 3–40°, with a step size of 0.02°, and a rate of 0.5 s per step. The radiation parameters were set at 40 kV and 30 mA. The degree of crystallinity was calculated following the method of a previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) using PeakFit software (Version 4.12 Systat Software, Inc., San Jose, CA, USA):

$$\text{Crystallinity (\%) = } \frac{n \sum_{i=1}^{n} A_{ci}}{A_t} \times 100\% \quad [2]$$

where A_{ci} is the area under each crystalline peak with index i, and A_t is the total area (amorphous background and crystalline peaks) under the diffractogram. Each sample was only analyzed once; the standard deviation (SD) of XRD results is within 1-3% as reported in a previous study (Lopez-Rubio, Flanagan, Gilbert & Gidley, 2008).

2.7. Scanning electron microscopy

Starch pellets (before CM) and starch films (after CM) were manually fractured after being frozen in liquid nitrogen. The fragments of each sample were placed onto a specimen stub with double-sided carbon tape, and then coated with a thin layer of gold using a sputter
coater (SPI-MODULE™, SPI Supplies, West Chester, PA, USA). The surface and inner structures of starch pellet and film samples were examined using a scanning electron microscope (SEM, Philips XL30, Eindhoven, Netherlands) with an accelerating voltage of 3 kV and a spot size of 6 nm.

2.8. Tensile mechanical analysis

Dumbbell specimens were cut from starch films (including those after HTT) according to ASTM D638-03 standards (Australian Standard AS 1683:11); the specimens were 12 mm in length and 2 mm in width, and the thickness of each specimen was measured prior to tensile tests. The dumbbell specimens were then conditioned for 14 days at 33, 54, and 75% RH. Each dumbbell specimen was loaded on an Instron® 5543 universal testing machine (Instron Pty. Ltd., Melbourne, VIC, Australia) with a constant strain rate of 5 mm·min⁻¹. Tensile strength, Young’s modulus, and elongation at break were determined using BlueHill software (Instron Ltd., Norwood, OH, USA), following the method of van Soest et al. (van Soest, Benes, de Wit & Vliegenthart, 1996). Tensile results of each sample were averaged from at least five measurements.

2.9. Statistical analysis

Pearson’s correlation analysis was performed using Minitab 16 (Minitab Inc., State College, PA, USA) to analyze any correlations between starch structural features (such as amylose content, \(\bar{R_h} \), and degree of crystallinity) and the tensile mechanical properties of the resulting films with a confidence level of 95.0%. A t-test with a confidence level at 95.0% was also applied to compare the water absorption profiles among different starch films stored at different RH. ANOVA with Tukey’s pairwise comparison was applied to compare the tensile mechanical properties of different starch films.
3. Results

3.1. Starch structure

3.1.1. Effect of compression molding on the starch structure

Starch extrudates from various extrusion conditions (Table 1) were obtained from a previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) with different degrees of degradation on the molecular, crystalline and granular structures due to thermal energy (gelatinization) and mechanical energy (starch damage). In order to measure the tensile mechanical properties, starch extrudates were compression-molded. In spite of the structural changes from extrusion, the high hydraulic pressure and heat involved in CM may cause further degradation on the starch molecular, crystalline and granular structures. Thus, the compression temperature and time needed to be kept as low and short, respectively, as possible to reduce undesirable structural changes, which can affect the properties of the films.

In this study, such CM condition were chosen because WMS and NMS can only form into homogeneous films at $\geq 100 \,^\circ C$, while HAMS can only form into films at $\geq 130 \,^\circ C$ with the pressure and time conditions used here.

Molecular structure and granular morphology were analyzed by SEC and SEM, respectively, to investigate if there were any changes in these structures after CM. There were no differences in the SEC distributions of starch molecules before and after CM (Supporting Information Figure S1), indicating the compression conditions chosen have not induced further molecular degradation. SEM images of the non-fractured (NF) and cryo-fractured (CF) surfaces (the latter is the internal structure) of WMS and HAMS films are shown in Figure 2. Before CM, the HAMS extrudates displayed more roughness on the NF surface than the WMS extrudates, and also showed greater discontinuity in the internal structure. The
greater amount of granular starch in the HAMS extrudates is due to its higher gelatinization
temperature (Chen, Yu, Chen & Li, 2006; Liu, Yu, Xie & Chen, 2006). After CM, both starch
films display a smoother surface and internal structure, indicating that the high pressure from
CM can compress or disrupt the granular structure (Tabi & Kovacs, 2007) and produce
continuous films.

3.1.2. Effect of aging, relative humidity and time on starch structures

Starch materials can absorb or desorb water at different RH. Changes in the amount of
water, which acts as plasticizer, can influence the mechanical properties of starch films. As
amylose and amylopectin are the main components of starch, lyophilized representative
WMS and HAMS films (WMS-7 and HAMS-7, for which the extrusion processing
conditions prior to CM are listed in Table 1) were used as models to investigate their water
absorption profiles when stored at 33, 54, and 75% RH (Figure 3). The starch films stored at
54 and 75% RH absorbed moisture quickly and the moisture content reached a plateau within
the first 24 h, similar to the results reported by Thunwall et al. (Thunwall, Boldizar &
Rigdahl, 2006). On the other hand, the moisture content of the starch films stored at 33% RH
slightly decreased with the storage time, possibly due to water (plasticizer) remaining in the
starch films lost during the storage at low RH. There were no significant differences in the
water absorption profiles between WMS and HAMS films when stored at 33, 54, and 75%
RH.

Representative WMS, NMS and HAMS films (WMS-7, NMS-7, and HAMS-7,
respectively), were aged for different days to investigate the changes in the crystalline
structure of starch films during conditioning time. After CM, the WMS film was amorphous
and the diffractogram did not show any visible change over 7 days’ storage (Figure 4A);
however, HAMS (Figure 4C) retrograded rapidly within 1 day, but no obvious changes in the
diffractogram were observed thereafter. WMS and NMS produced less crystallinity than HAMS due to the speed of amylose retrogradation, and the retrogradation of amylopectin only changing the degree of crystallinity after long-term storage, which is similar to the results of van Soest et al. (van Soest, Hulleman, de Wit & Vliegenthart, 1996). The NMS film showed a weak diffraction pattern of A-type crystallinity (at 15, 17, 18, and 23°), probably from the remaining ungelatinized granules (Li, Hasjim, Xie, Halley & Gilbert, 2013), after CM (0 day storage) with a small amount of the V-type crystalline structure (Figure 4B). The diffraction pattern of the A-type crystallinity became more apparent after 1 day storage, possibly due to the realignment of the remaining crystallites during storage. The diffractograms did not show any apparent changes during storage from 8 to 14 days, with the degree of crystallinity being ~6%. Thus, the subsequent mechanical testing experiments were performed on starch films after being aged for 14 days to ensure structural equilibration.

3.1.3. Effect of hydrothermal treatment on starch crystalline structure

The degree of crystallinity of WMS and HAMS films, observed from the XRD diffractograms, did not show increases after HTT (Supporting Information Figure S1). This might be because the crystalline structure formed during HTT is from the leached long-chain amylose (which can form a more perfect network in a high moisture and temperature environment), whereas there is no amylose in WMS, and the amount of amylose that can leach out is negligible for HAMS at the HTT temperature (105°C). On the contrary, more amylose may leach out from a larger number of gelatinized NMS granules (compared to HAMS), explaining why it exhibited increased degree of crystallinity after HTT (Figure 5 and Table 3). Hence tensile mechanical testing of hydrothermal treated starch films was only applied to NMS starch films. Due to sample brittleness, only NMS-1, -2, -3, and -4 were
suitable for mechanical testing after HTT, and their degrees of crystallinity were analyzed using XRD (Table 3).

The crystalline patterns of the untreated starch films were the A- and V-types, whereas the C- and V-types were observed after HTT, indicated by the appearance of a small peak at 5.5° (Figure 5). The differences in behaviour of NMS 1 and 3 after HTT when compared to NMS 2 and 4 are not explored fully in this paper. The most likely reason for the observed effect is that an increase in temperature gives greater mobility for chains which do not take part in the remaining crystalline structures; these chains may be able to be more affected by the HTT. Previous work (Li, Hasjim, Xie, Halley & Gilbert, 2013) has noted that decreases in crystallinity occurred with increases in SME; however, the conditions which caused this, low plasticizer and low temperature, do not seem likely to affect the ability of the starch to recrystallize after HTT. The diffraction peaks of the HTT starch films were sharper and more defined, indicating that the crystalline structure became more ordered. DSC results of NMS-1 and -3 (Supporting information Table S1) showed increases in the melting temperatures of starch crystallites, confirming that the crystalline structure became more stable after HTT.

3.2. Tensile mechanical properties

3.2.1. Effect of relative humidity during aging on starch film tensile properties

The tensile properties of WMS and HAMS films stored at different RH are shown in Table 4. Films stored at a lower RH were generally more rigid, displaying higher tensile strength, and Young’s modulus, but lower elongation at break than those stored at a higher RH, consistent with those reported by other researchers (Mali, Sakanaka, Yamashita & Grossmann, 2005; Mathew & Dufresne, 2002; Shogren & Jasberg, 1994). This is ascribed to the higher moisture content of film stored at higher RH (Figure 3), which can function as plasticizer.
3.2.2. Effect of plasticizer content and amylose content on film tensile properties

Plasticizer content (glycerol and water in this case) has a similar effect on the tensile mechanical properties to that of RH (Table 1). For starch films with the same amylose content, significant changes in the mechanical properties only occurred when the amount of plasticizer was different. Brittle starch films resulted from a lower plasticizer content displayed higher tensile strength and Young’s modulus, but lower elongation at break, than films with the higher plasticizer content.

When the mechanical properties were compared among different types of starch films with the same plasticizer content (Table 1 and Supporting information Table S2), HAMS films exhibited higher tensile strength than WMS and NMS films, similar to results reported by others (Li et al., 2011; Lourdin, Valle & Colonna, 1995). At 30% plasticizer content, WMS film showed a higher tensile strength and Young’s modulus than NMS film. However, at 40% plasticizer content, the Young’s modulus and tensile strength of WMS films were not significantly different from those of NMS films. Furthermore, the WMS films had similar Young’s modulus to the HAMS films at both plasticizer contents. At 40% plasticizer content, HAMS and NMS films had higher values of elongation at break than WMS films; however, at 30% plasticizer content, NMS films had higher values of elongation at break than WMS and HAMS films.

3.2.3. Effect of hydrothermal treatment on starch film tensile properties

The tensile mechanical properties, degree of crystallinity and moisture content for the NMS starch films after HTT are shown in Table 3. Starch films after HTT showed higher tensile strength and Young’s modulus. There were no significant differences in the moisture contents, and thus the changes in the mechanical properties were probably largely related to
the increase in the perfectness of the crystalline structure, which reduced the ability of starch chains to deform during the tensile tests.

3.3. Correlations between starch structure and tensile mechanical properties

The influence of the structural features of starches on the tensile mechanical properties was explored separately for WMS and HAMS films at different plasticizer contents (Table 5) (as there were only two NMS films with the same plasticizer content, the correlation analysis was not performed on the NMS films). The only significant correlation observed was in the HAMS films with 30% plasticizer content, showing a negative correlation between R_h and tensile strength.

The correlations between amylose content and mechanical properties were also explored among the films with the same plasticizer content. For starch films at 40% plasticizer content, there was a negative correlation between elongation at break and R_h as well as a positive correlation between elongation at break and amylose content. However, such correlations were not observed from the starch films with 30% plasticizer content.

Finally, the crystallinity changes induced by HTT were correlated with the various mechanical properties. The increase in the degree of crystallinity of starch films induced by HTT was accompanied by an increase in Young’s modulus, although the crystallinity prior to HTT did not show any significant correlations with the tensile mechanical properties (Table 5).
4. Discussion

Plasticizer content, amylose content and structural factors all affect the mechanical properties of TPS materials. As is shown in the results, starch with higher amylose content (HAMS) showed a higher tensile strength than NMS and WMS when processed with 30% plasticizer. In addition, an increase in the plasticizer content resulted in a decrease in the tensile strength and Young’s modulus and an increase in the elongation at break. Those results are similar to those reported the previous studies (Li et al., 2011; Mali, Sakanaka, Yamashita & Grossmann, 2005). As the main purpose of this study is to understand the roles of molecular and crystalline structures on the tensile mechanical properties of starch films, the correlations among the starch structural features and the mechanical properties are discussed in greater detail.

For the three types of starches, WMS displays the greatest variations in molecular size (Table 1) among its extrudates, as the main component (amylopectin) is severely degraded during extrusion (Li, Hasjim, Xie, Halley & Gilbert, 2013; Liu, Halley & Gilbert, 2010), and thus it is a good model to understand the relationship between the degraded molecular structure and the tensile mechanical properties. However, there were no significant correlations between \bar{R}_h and the tensile mechanical properties of WMS films (Table 5). Different from acid and enzyme hydrolysis, the mechanical shear only cleaved a small number of glycosidic bonds in amylopectin molecules, as explained previously (Li, Hasjim, Xie, Halley & Gilbert, 2013), and the degraded amylopectin was still relatively large with a vast number of short branches. During extrusion and storage, the shorter branches of amylopectin may form intramolecular interactions; however, these interactions may not be varied sufficiently by the extrusion processing to cause significant changes in the tensile mechanical properties of WMS film. On the other hand, a negative correlation between \bar{R}_h
and tensile strength was observed with HAMS films at 30% plasticizer content (Table 5), probably due to the damage of starch granules along with the degradation of amylopectin, allowing more amylose to leach out and form stronger network and to co-crystallize with the partially degraded amylopectin (with longer chain length than in WMS) more effectively. Similar correlations were not observed from HAMS film with 40% plasticizer content, which may be attributed to the lesser degree of damage to the starch granules (less shear energy) than in those with 30% plasticizer content (Li, Hasjim, Xie, Halley & Gilbert, 2013).

Comparing all three types of starch films, an increase in amylose content increases the elongation at break, which is consistent with previous studies (Li et al., 2011; Lourdin, Valle & Colonna, 1995). The long branches of amylose (Liu, Halley & Gilbert, 2010; Vilaplana, Hasjim & Gilbert, 2012) are more flexible than the short branches of amylopectin, and the random coils of amylose branches can be easily stretched to give higher elongation at break; however, the shorter branches of amylopectin molecules form a rigid (van Soest & Essers, 1997), inflexible network due to high molecular entanglements. The apparent correlation between R_h and the elongation at break was probably because starch with a higher amylose content inherently has a smaller R_h (Table 5).

As discussed above, the effective inter-molecular network formed by the longer chains of amylose improves tensile mechanical properties of starch film (such as higher tensile strength, Young’s modulus), which is similar to the results from the studies of van Soest et al. (van Soest, Benes & De Wit, 1995; van Soest, Benes, de Wit & Vliegenthart, 1996), where an increase in starch molecular weight (longer branches with less acid hydrolysis) leads to a higher tearing energy. Larger molecules normally have more molecular entanglements and thus form a stronger network, which increases the energy required to tear the starch film during tensile testing. As acid degrades starch molecules to a higher extent than the
degradation of starch molecules induced by extrusion, this phenomenon is not as apparent for
the films made from starch extrudates in the present study.

On the other hand, there were no significant correlations between starch structural
parameters (molecular size and amylose content) and the mechanical properties from the
different starches at 30% plasticizer content. At this level of plasticizer, the molecules might
be restrained in a more rigid network structure, preventing them from undergoing
retrogradation after extrusion and being fully stretched during tensile test. The results suggest
that plasticizer content is more dominant in governing the tensile mechanical properties of
starch film than amylose content and molecular size.

The degree of crystallinity of the starch films produced under different extrusion
conditions did not show significant correlations with tensile mechanical properties (Table 5).
In a previous paper (Li, Hasjim, Xie, Halley & Gilbert, 2013), it was noted that a proportion
of crystallinity in extruded samples was related to the starch granule remnants not completely
gelatinized during extrusion processing. The lack of a correlation between the starch
crystallinity prior to HTT and tensile mechanical properties implies that either the differences
in the degree of crystallinity were not large enough to induce changes in the tensile
mechanical properties, or this crystalline structure was originated from the starch granule
remnants and did not participate in the continuous network that influenced the tensile
mechanical properties. This is different from the inferences from the study by van Soest et al.
(van Soest, Hulme, de Wit & Vliegenthart, 1996), which concluded that an increase in the
degree of crystallinity (by aging starch films at room temperature) led to an increase in elastic
modulus and tensile strength. This inconsistency brings the question of whether the
crystallinity source, i.e. within granular starch and that of the continuous network, has an
effect on the tensile mechanical properties. It should be noted that the ungelatinized starch
granules may act as "filler or defects" in the continuous structure, which may promote the formation of microcracks, causing decreases in elongation at break (Bartczak, Argon, Cohen & Weinberg, 1999); however, this was not observed to any extent in this study.

The higher degree of crystallinity of NMS film after HTT was accompanied by significantly higher Young’s modulus (Table 3). HTT was applied in the present study to increase the crystallinity of the starch network surrounding the granular starch, allowing the investigation of the effects of the crystalline structure from retrograded starch on the tensile mechanical properties. It should be noted that only the crystalline structure was altered by HTT, whereas molecular size (Chung, Hoover & Liu, 2009) and plasticizer content (Table 3) were not changed. Thus the increased Young’s modulus is due to the increased degree of crystallinity after HTT, and greater entanglements may be formed in the continuous network (melted molecules) of the starch films, which behaves like physical cross-linking, producing greater resistance to chain mobility. Although there was some retrogradation in the starch films aged at 54% RH for at least 14 days, the extent of rearranged crystallinity was less than in those after HTT, which was carried out at a high-temperature, excessive-moisture environment, providing greater chain mobility. This is confirmed by sharper crystalline peaks in the XRD diffractograms (Figure 5) and higher melting temperature (Supporting Information Table S1).

These results imply that the effects of crystallinity on starch mechanical properties are more complicated than reported previously, such as by van Soest et al. (van Soest, Hulleman, de Wit & Vliegenthart, 1996). The crystalline structure originating from the starch granule remnants did not affect the starch mechanical properties, but that of the starch network surrounding the starch granule remnants controlled the starch mechanical properties. Thus, it is important to understand the nature of the crystalline structure in starch film when
correlating with mechanical properties.
5. Conclusion

The effects of starch molecular, crystalline and granular structure on the mechanical properties of starch films were examined. Degradation on the amylopectin molecules did not cause any significant changes in mechanical properties, although the molecular size (R_h) range of the degraded waxy starch used here had a wide variation (38–58 nm). The shear degradation of amylopectin induced by extrusion might be too small to show any significant changes in the tensile mechanical properties. On the other hand, the longer branches of amylose molecules played a more dominant role than R_h in determining tensile mechanical properties, as long amylose branches may form more inter- or intra-molecular flexible network, increasing elongation at break. However, the effects of long branches on the mechanical properties are limited when the plasticizer content is quite low. As distinct from a previous finding, which did not separate the sources of crystallinity in TPS to explain their roles in mechanical properties, the present study showed that the crystallization of leached-out amylose in the continuous phase played a more dominant role on the mechanical properties of TPS than the crystalline structure from the starch granule remnants, which is not involved in the continuous network. The presence of native starch granules may act as defect and negatively affect the mechanical properties (e.g. decrease in elongation). Thus in order to obtain starch materials with superior mechanical properties, it is essential to increase the crystallinity of the continuous phase and to use starches with longer branches, but lower gelatinization temperature to maximize the amount of leached-out amylose.
Acknowledgement

The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia. Financial assistance from an Australian Research Council Discovery grant, DP130102461, is highly appreciated.

Supporting information

Supplementary data mentioned in the text is provided.

Figure S1. SEC weight distributions of extrudates from waxy and high-amylose maize starches (WMS and HAMS, respectively) before and after compression molding (CM).

Figure S2: X-ray diffractograms of compress molded waxy and high-amylose maize starch (WMS and HAMS, respectively) films before and after hydrothermal treatment (HTT).

Table S1. Thermal properties of normal maize starch films with and without hydrothermal treatment.

Table S2: Tukey’s pairwise comparison of mechanical properties of different starch films from Table 1.a
References

Figure captions

Figure 2. SEM images of non-fractured (NF) and cryo-fractured (CF) surfaces of waxy and high-amylose maize starch (WMS and HAMS, respectively) films before and after compression molding (CM).

Figure 3. Moisture absorption curve of waxy (WMS, with filled symbols) and high-amylose maize starches (HAMS, with open symbols) films stored at different relative humidity (● for 33% RH, ■ for 54% RH, and ▲ for 75% RH).

Figure 4. X-ray diffractograms of compression molded starch films after being stored for different times at 54% RH. Red arrows point at the peaks of V-type crystallinity. (A for waxy maize starch films, B for normal maize starch films, and C for high-amylose maize starch films)

Figure 5. X-ray diffractograms of compression molded normal maize starch extrudate before and after hydrothermal treatment (HTT). The extrusion processing conditions of films prior to compression molding are listed in Table 3.
Figure 2
Figure 3

Figure showing a graph with time on the x-axis and $W_t - W_0 / W_0$ on the y-axis. The graph compares different materials over time, with legends indicating WMS-RH75, HAMS-RH75, WMS-RH54, HAMS-RH54, WMS-RH33, and HAMS-RH33.
Figure 4
Figure 5
Table 1. Processing conditions, starch structure information of starch extrudates and the corresponding mechanical properties of the starch films.

<table>
<thead>
<tr>
<th>Starch extrudate</th>
<th>Temperature °C</th>
<th>SS rpm</th>
<th>Plasticizer % b</th>
<th>R_h/ nm c</th>
<th>Crystallinity %</th>
<th>Tensile strength (MPa)</th>
<th>Young’s Modulus (MPa)</th>
<th>Elongation at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS-1</td>
<td>105</td>
<td>70</td>
<td>40</td>
<td>85.7</td>
<td>22.2</td>
<td>9.4 ± 1.0 °CDE</td>
<td>515 ± 56 B</td>
<td>6.2 ± 0.7 DE</td>
</tr>
<tr>
<td>WMS-2</td>
<td>105</td>
<td>130</td>
<td>40</td>
<td>88.8</td>
<td>20.2</td>
<td>8.3 ± 2.0 DE</td>
<td>365 ± 107 B</td>
<td>6.8 ± 2.0 DE</td>
</tr>
<tr>
<td>WMS-3</td>
<td>135</td>
<td>70</td>
<td>40</td>
<td>99.1</td>
<td>9.58</td>
<td>11.2 ± 0.4 BCDE</td>
<td>540 ± 71 B</td>
<td>6.2 ± 1.9 DE</td>
</tr>
<tr>
<td>WMS-4</td>
<td>135</td>
<td>130</td>
<td>40</td>
<td>96.7</td>
<td>11.2</td>
<td>10.2 ± 2.6 BCDE</td>
<td>542 ± 50 B</td>
<td>5.9 ± 3.9 DE</td>
</tr>
<tr>
<td>WMS-5</td>
<td>105</td>
<td>70</td>
<td>30</td>
<td>55.1</td>
<td>18.5</td>
<td>18.3 ± 2.1 BCDE</td>
<td>1401 ± 113 A</td>
<td>1.5 ± 0.6 E</td>
</tr>
<tr>
<td>WMS-6</td>
<td>105</td>
<td>130</td>
<td>30</td>
<td>38.4</td>
<td>9.03</td>
<td>14.8 ± 2.2 BCDE</td>
<td>1421 ± 49 A</td>
<td>1.6 ± 0.7 E</td>
</tr>
<tr>
<td>WMS-7</td>
<td>135</td>
<td>70</td>
<td>30</td>
<td>58.7</td>
<td>17.1</td>
<td>15.8 ± 2.8 BCDE</td>
<td>1453 ± 171 A</td>
<td>1.4 ± 0.2 E</td>
</tr>
<tr>
<td>WMS-8</td>
<td>135</td>
<td>130</td>
<td>30</td>
<td>41.4</td>
<td>17.7</td>
<td>19.1 ± 3.6 BCDE</td>
<td>1464 ± 261 A</td>
<td>1.7 ± 0.3 E</td>
</tr>
<tr>
<td>NMS-1</td>
<td>105</td>
<td>130</td>
<td>40</td>
<td>40.0</td>
<td>12.7</td>
<td>5.3 ± 0.5 E</td>
<td>217 ± 15 B</td>
<td>17.1 ± 2.1 BCD</td>
</tr>
<tr>
<td>NMS-2</td>
<td>135</td>
<td>70</td>
<td>40</td>
<td>48.0</td>
<td>11.4</td>
<td>8.2 ± 0.8 BCDE</td>
<td>388 ± 52 B</td>
<td>20.7 ± 1.7 AB</td>
</tr>
<tr>
<td>NMS-3</td>
<td>105</td>
<td>130</td>
<td>30</td>
<td>31.0</td>
<td>10.3</td>
<td>5.5 ± 0.3 E</td>
<td>332 ± 33 B</td>
<td>8.9 ± 1.4 CDE</td>
</tr>
<tr>
<td>NMS-4</td>
<td>135</td>
<td>130</td>
<td>30</td>
<td>30.0</td>
<td>13.9</td>
<td>8.4 ± 0.4 DE</td>
<td>613 ± 17 B</td>
<td>9.9 ± 1.0 BCDE</td>
</tr>
<tr>
<td>HAMS-1</td>
<td>105</td>
<td>70</td>
<td>40</td>
<td>9.3</td>
<td>9.48</td>
<td>11.6 ± 0.9 BCDE</td>
<td>645 ± 76 B</td>
<td>11.2 ± 2.2 BCDE</td>
</tr>
<tr>
<td>HAMS-2</td>
<td>105</td>
<td>130</td>
<td>40</td>
<td>10.1</td>
<td>9.18</td>
<td>12.7 ± 1.6 BCDE</td>
<td>676 ± 52 B</td>
<td>15 ± 2.4 BCD</td>
</tr>
<tr>
<td>HAMS-3</td>
<td>135</td>
<td>70</td>
<td>40</td>
<td>9.0</td>
<td>9.04</td>
<td>12.7 ± 1.1 BCDE</td>
<td>543 ± 95 B</td>
<td>18.9 ± 4.1 ABC</td>
</tr>
<tr>
<td>HAMS-4</td>
<td>135</td>
<td>130</td>
<td>40</td>
<td>9.4</td>
<td>9.99</td>
<td>14.5 ± 1.1 BCDE</td>
<td>623 ± 76 B</td>
<td>29 ± 4.0 A</td>
</tr>
<tr>
<td>HAMS-5</td>
<td>105</td>
<td>70</td>
<td>30</td>
<td>9.4</td>
<td>6.39</td>
<td>23.5 ± 3.6 ABC</td>
<td>1568 ± 85 A</td>
<td>2.2 ± 0.3 E</td>
</tr>
<tr>
<td>HAMS-6</td>
<td>105</td>
<td>130</td>
<td>30</td>
<td>9.9</td>
<td>7.36</td>
<td>22.0 ± 5.0 ABCD</td>
<td>1528 ± 73 A</td>
<td>2.1 ± 0.3 E</td>
</tr>
<tr>
<td>HAMS-7</td>
<td>135</td>
<td>70</td>
<td>30</td>
<td>9.3</td>
<td>8.72</td>
<td>24.5 ± 4.2 AB</td>
<td>1510 ± 141 A</td>
<td>2.5 ± 0.7 E</td>
</tr>
<tr>
<td>HAMS-8</td>
<td>135</td>
<td>130</td>
<td>30</td>
<td>8.5</td>
<td>9.33</td>
<td>35.0 ± 5.1 A</td>
<td>1898 ± 253 A</td>
<td>2.8 ± 0.6 E</td>
</tr>
</tbody>
</table>
Extrudates are obtained in the previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013). Plasticizer content is the amount of plasticizer used in extrusion, which is used to describe different films, whereas the aged films with same plasticizer content may lose similar amount of moisture during storage.

R_h, average hydrodynamic radius.

The degree of crystallinity from compression molded starch materials after being stored at 54% relative humidity for 2 weeks.

Means ± standard deviations.

Numbers in the same column with different letters are significantly different at $p < 0.05$.

Page 32 of 38
Table 2. Treatments and characterization methods for different thermoplastic starch extrudates.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Extrudates (^a)</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated pellet</td>
<td>WMS-7 and HAMS-7</td>
<td>SEM, SEC</td>
</tr>
<tr>
<td>CM</td>
<td>WMS-7 and HAMS-7</td>
<td>SEM, SEC</td>
</tr>
<tr>
<td>CM and conditioning at 33, 54, and 75% RH</td>
<td>WMS-7, HAMS-7</td>
<td>Water absorption</td>
</tr>
<tr>
<td>CM and conditioning at 54% RH</td>
<td>All of WMS, NMS, and HAMS</td>
<td>Tensile test</td>
</tr>
<tr>
<td>CM, HTT, and conditioning at 54% RH</td>
<td>NMS-1, -2, -3, and -4</td>
<td>Tensile test, XRD, DSC</td>
</tr>
</tbody>
</table>

\(^a\) The processing conditions of the extrudates are listed in Table 1.
Table 3. Mechanical properties, degree of crystallinity, and moisture content of normal maize starch films before and after hydrothermal treatment

<table>
<thead>
<tr>
<th>Starch film b</th>
<th>Degree of crystallinity %</th>
<th>Moisture content c %</th>
<th>Tensile strength MPa</th>
<th>Young’s Modulus MPa</th>
<th>Elongation at break %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMS-1</td>
<td>11.2</td>
<td>12.7</td>
<td>5.3 ± 0.5 A<sup>d</sup></td>
<td>217 ± 15 D</td>
<td>17.1 ± 2.1 A</td>
</tr>
<tr>
<td>NMS-1 HTT</td>
<td>13.0</td>
<td>11.3</td>
<td>8.6 ± 1.9 A</td>
<td>651 ± 107 AB</td>
<td>10.1 ± 1.3 AB</td>
</tr>
<tr>
<td>NMS-2</td>
<td>12.6</td>
<td>11.4</td>
<td>8.2 ± 0.8 A</td>
<td>388 ± 52 BCD</td>
<td>20.7 ± 1.7 A</td>
</tr>
<tr>
<td>NMS-2 HTT</td>
<td>22.2</td>
<td>11.0</td>
<td>10.2 ± 0.8 A</td>
<td>761 ± 50 A</td>
<td>9.9 ± 2.1 AB</td>
</tr>
<tr>
<td>NMS-3</td>
<td>15.3</td>
<td>10.3</td>
<td>5.5 ± 0.3 A</td>
<td>332 ± 33 CD</td>
<td>8.9 ± 1.4 AB</td>
</tr>
<tr>
<td>NMS-3 HTT</td>
<td>16.6</td>
<td>12.1</td>
<td>8.0 ± 1.1 A</td>
<td>784 ± 64 A</td>
<td>2.9 ± 1.2 B</td>
</tr>
<tr>
<td>NMS-4</td>
<td>13.2</td>
<td>13.9</td>
<td>8.4 ± 0.4 A</td>
<td>613 ± 17 ABC</td>
<td>12.9 ± 4.8 AB</td>
</tr>
<tr>
<td>NMS-4 HTT</td>
<td>24.2</td>
<td>11.0</td>
<td>10.2 ± 0.6 A</td>
<td>768 ± 48 A</td>
<td>7.8 ± 3.0 AB</td>
</tr>
</tbody>
</table>

^a Numbers in the same column with different letters are significantly different at p < 0.05.

^b The extrusion processing conditions of the film prior to compression molding are listed in Table 1.

^c Moisture content of film after being conditioning at 54% RH for 14 days.

^d Means ± standard deviations.
Table 4. Mechanical properties of waxy and high-amylose maize starch films after being stored at different relative humidities for 14 days.\(^a\)

<table>
<thead>
<tr>
<th>Starch film</th>
<th>Relative humidity (%)</th>
<th>Tensile strength (MPa)</th>
<th>Young’s Modulus (MPa)</th>
<th>Elongation at break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS-7</td>
<td>33</td>
<td>13.6 ± 2.8 BC(^c)</td>
<td>1940 ± 171 A</td>
<td>0.9 ± 0.2 A</td>
</tr>
<tr>
<td>WMS-7</td>
<td>54</td>
<td>15.8 ± 2.8 BC</td>
<td>1453 ± 171 A</td>
<td>1.4 ± 0.2 A</td>
</tr>
<tr>
<td>WMS-7</td>
<td>75</td>
<td>5.2 ± 1.1 C</td>
<td>197 ± 42 B</td>
<td>10.1 ± 3.0 A</td>
</tr>
<tr>
<td>HAMS-7</td>
<td>33</td>
<td>34.8 ± 4.5 A</td>
<td>1944 ± 223 A</td>
<td>4.2 ± 1.0 A</td>
</tr>
<tr>
<td>HAMS-7</td>
<td>54</td>
<td>24.5 ± 4.2 AB</td>
<td>1510 ± 141 A</td>
<td>2.5 ± 0.7 A</td>
</tr>
<tr>
<td>HAMS-7</td>
<td>75</td>
<td>8.7 ± 1.2 BC</td>
<td>256 ± 70 B</td>
<td>23.1 ± 2.7 B</td>
</tr>
</tbody>
</table>

\(^a\) Numbers in the same column with different letters are significantly different at p < 0.05.

\(^b\) The extrusion processing conditions of the film prior to compression molding are listed in Table 1.

\(^c\) Means ± standard deviations.
Table 5. Correlations between starch structures and the tensile mechanical properties of starch films stored at 54% RH a

<table>
<thead>
<tr>
<th>Samples</th>
<th>Tensile mechanical properties</th>
<th>Amylose content</th>
<th>\bar{R}_h</th>
<th>Crystallinity</th>
<th>ΔCrystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS films with 40% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>-0.487</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>0.820</td>
<td>-0.845</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>0.492</td>
<td>-0.556</td>
<td></td>
</tr>
<tr>
<td>WMS films with 30% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>-0.886</td>
<td>-0.225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>0.060</td>
<td>0.776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>-0.467</td>
<td>0.320</td>
<td></td>
</tr>
<tr>
<td>HAMS films with 40% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>-0.176</td>
<td>0.645</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>0.045</td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>0.876</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>HAMS films with 30% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>-0.946</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>-0.954*</td>
<td>0.743</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>-0.895</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>All the three types of films with 40% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>0.749*</td>
<td>-0.456</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>0.517</td>
<td>-0.483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>0.377</td>
<td>-0.350</td>
<td></td>
</tr>
<tr>
<td>All the three types of films with 30% plasticizer content</td>
<td>Elongation at break</td>
<td>NA</td>
<td>0.158</td>
<td>-0.048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensile strength</td>
<td>NA</td>
<td>0.492</td>
<td>-0.307</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Young’s modulus</td>
<td>NA</td>
<td>0.140</td>
<td>-0.121</td>
<td></td>
</tr>
</tbody>
</table>

a WMS, NMS, and HAMS represent for waxy maize starch, normal maize starch and high amylose starch.

b Significant correlations ($p<0.05$) are represented by *, very significant correlations ($p<0.01$) are represented by **. The numbers in the table are the correlation coefficients.
Δ crystallinity is the different values between the degree of crystallinity before and after HTT (values are shown in Table 3)
Highlights:

- Thermoplastic starches (TPS) are “green” but mechanical properties are often poor
- The properties of TPSs were related with varied molecular and crystalline structures induced by extrusion
- Crystalline structure had the greatest effect
- Mechanisms of property enhancement were explored
- Amylopectin degradation induced by extrusion did not affect mechanical properties