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Abstract

When the spatial density of both prey and predators is very low, the problem
they face may be modeled as a two-person game (called a ‘search game’)
between one member of each type. Following recent models of search and
pursuit, we assume the prey has a fixed number of heterogeneous ‘hiding’
places (maybe ice holes for a seal to breathe) and that the predator (maybe
polar bear) has the time or energy to search a fixed number of these. If
he searches the actual hiding location and also successfully pursues the prey
there, he wins the game. If he fails to find the prey, he loses. In this paper
we modify the outcome in the case that he finds but does not catch the prey.
He now is vulnerable to capture while relocating, with risk depending on
the intervening terrain. This generalizes the original games to a stochastic
games framework, a first for search and pursuit games. We outline a general
solution and also compute particular solutions. This modified model now
has implications for the question of when to stay or leave the lair and by
what routes. In particular, we find the counter-intuitive result that in some
cases adding risk of predation during prey relocation may result in more
relocation. We also model the process by which the players can learn about
the properties of the different hiding locations, and find that having to learn
the capture probabilities is favorable to the prey.
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1 Introduction

Foraging theory is generally concerned with groups of predators and prey
and considerations of spatial densities are important. However when both
predator and prey density is very small, it may be a good approximation
to assume that the local environment contains one predator and one prey
(or none, in which case the predator is doomed anyway). In this case a
two person zero sum win-lose game model may be useful, where the predator
wins the local game if it finds and successfully pursues the prey and otherwise
the prey wins. Such a model, with both search and pursuit considered, was
introduced in [1]. In this and the following models, the prey could hide among
a fixed number n of ‘locations’(hiding places), and the predator had enough
time or energy to look into only k of them in any period. The locations i
are heterogeneous in the probability pi that the predator successfully pursues
a prey found at location i. This model was extended to multiple periods in
[2] in the case that the prey is found but not caught, in which case it can
relocate at any hiding place in the next period. The relocation process was
assumed to be riskless for the prey. In this paper that unrealistic assumption
has been relaxed in that the prey is assumed to be captured by the predator
when relocating from location i to location j with known probabilities αi,j,
representing the danger of such a relocation in terms of the terrain that
needs to be crossed. This realistic modification to relocation risk was indeed
suggested by an anonymous referee of that paper. This paper also introduces
a model where the capture probabilities pi are not know initially by the
players, but are learned over time. Thus while, we model precisely the hide-
seek part of the game, the pursuit part is simplified by the adoption of
known values of the pi. That part of the game might also be modeled, as in
[3]. To make the relationship of the published and new models clearer, Table
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1 compares their various properties.

Table 1. Comparison and Progression of the Hide-Seek-Pursuit Models
One Period Repeated Learning Stochastic

symbol for game Gk L ∆k

publication reference, section [1], 4.1 [2], 4.2 8 5,6,7
number of periods 1 ∞ 2,3 ∞
searches within a period k k 1 k
capture between periods? - no no yes
state dependent transitions? - no no yes
discounting? - yes,no no yes,no
probabilities pi known? yes yes no yes

A final caution is that our notion of prey animals ‘hiding’should not be taken
too literally or restrictively. In fact the prey are usually carrying some other
activity, like seals choosing an ice hole for breathing [4], which they wish to
do repeatedly in an unpredictable manner to avoid the predator polar bear.
It could be choosing a water hole, as in [12]. We use the metaphor of hiding
to put this problem into the hide-seek literature, which we already extended
to hide-seek-pursuit. From the point of view of the predator, the location of
the prey is ‘hidden’, not known in advance of the search procedure.

1.1 Qualitative summary of main results

The main results of this paper are mathematical theorems distributed through-
out Sections 5 to 8. Most of these are quantitative in nature, for example we
give precise optimal probabilities for the prey to hide at each location, possi-
bly based on its prior location. However we believe it is useful to give rough
qualitative versions of some of these results here. For the precise results on
which these summaries are based, refer to the specific results quoted.

1. In a two location model analyzed in Section 7, there is only a risk of
inter-period capture if the prey moves to the other location (relocates)
rather than remaining at its original location. We find the counter-
intuitive result that increasing the risk of relocation (higher capture
probability during the move) may also increase the frequency of relo-
cation by the prey under its optimal hiding strategy.
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2. For certain data on the pi, if the prey hides optimally in terms of the
predator strategy, rather than simply hiding randomly, it can reduce
the probability of eventually capture from about 0.46 to about 0.29.
This is a reduction of about 37%. See equation (31)

3. When there is learning, higher variability of locations with respect to
their capture probabilities favors the predator if these probabilities are
high; but favors the prey if these probabilities are low. (Proposition 9)

4. When the patch is disrupted by some event (hurricane, drought) which
may change the pursuit characteristics of the different locations, the
fact that their capture probabilities must be learned again is favorable
to the prey. (Proposition 8)

2 The Search Game Literature

The field of search games is an area of two person zero-sum games where the
hider and Searcher are in a known search region and choose their motions:
the hider (mobile or immobile) wishes to avoid or delay capture. In the search
games most relevant to our model, the hider chooses to locate at one of a
finite number of locations (called cells, boxes, etc.) and then the Searcher
looks sequentially into these boxes to try to find the hider. These boxes may
be heterogeneous in the overlook probability (that the Searcher looks into
the correct location but does not see the hider) and the cost of searching.
The literature on this aspect of our model when the Searcher has a limited
amount of time to find the Hider has been discussed in [1]. A related paper
is the study of [5], who find a search strategy independent of the limited
time horizon. The repetition of search in repeated periods is modeled in [6]
and [7], where during the search the prey (Hider) may attempt to flee the
search region. The prey will succeed in this attempt if the predator is in a
cruise search mode, but not if he is in an ambush mode. In those models, a
successful flight by the prey is definitely followed by a renewed attempt by
the predator to find it. Search games with a network structure (related to
transitions in our model) are studied in [8] and [9]. To extend our work to
multiple hidden prey, the abstract model of [10] would be useful.
The problem of where to hide food (in discrete packages such as nuts)

rather than where to hide oneself, has been analyzed in a search game played
between a scatter hoarder such as a squirrel and a pilferer in [11]. The squirrel
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has limited digging energy and has to decide between placing nuts deeply
hidden in one place or alternatively widely scattered at shallower depths.
This problem is somewhat analogous to the problem of a prey hiding in a
good location or randomly choosing among less good locations. Of course
the payoffs are of a different kind as the prey either gets caught or not; while
the squirrel either has enough nuts left to survive the winter, or not. Also,
there is no pursuit phase in the squirrel’s problem.
The work of [12] and [13] included ambush modes for the searching preda-

tor. A ‘silent predator’(whose approach is not observable by the prey) was
considered in [14]. More biologically realistic models were considered by [15]
and [16]. The wider subject of search games is the subject of the monograph
[17].

3 Behavioral Ecology Literature

The study of predator optimal foraging for stationary prey has a long history
since the 60s ( [18], [19]). Simple situations can be formalized using graphic
methods, as for the patch leaving rule, while complex situations, as foraging
in a stochastic environment, require elaborate formalism such as stochastic
dynamic programming [20]. These studies show that predators follow optimal
solutions, but also use simpler rules of thumb. The study of optimal escape
of prey is more recent [21]. Indeed, the advent of new tracking devices, from
accelerometers to UAVs, enabled the collection of massive precision data
about predator and prey movements only recently (see for example [22], [23])
and the recording of the paths of both antagonists even more recently, see [24].
The field is thus currently experiencing an explosion in terms of observation
and experiments, while the modeling formalism is lagging behind. Here again,
several key aspects have been formalized using graphical arguments. The
number of models addressing more realistic situations is however much lower.
In all these approaches, the consideration is focusing on a single agent, the
predator or the prey, acting in a possibly changing environment. This is the
heart of optimal foraging theory.
Cases in which antagonists have no or incomplete information during the

interaction have been rarely studied, both phenomenological and in terms of
optimal behavior. This is surprising given their frequent occurrence in Na-
ture. Biological examples fitting such description include polar bears hunting
for seals at breathing holes, parasitic wasps hunting host larvae hidden inside
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leaves or wolves hunting elk in deep forests. While the first two examples
have been described in detail earlier in this context ([1],[2]), the interaction
between wolves and their prey was not, and is thus summarized here. The
authors of [25] have patiently collated numerous observations of wolf packs
pursuing many species of prey. Elk in particular (p. 68) seem to use features
of the landscape to escape. They prefer areas where dead trees have top-
pled, creating an entanglement of logs diffi cult to travel through. Mountain
sheep, another prey, are also unique in their agility, sure-footedness and ma-
neuverability over rugged terrain. The hide and seek games reported in that
book are great examples of search games, including the added complexity
displayed by wolves, sometimes able to predict the escape route of their prey
and to position themselves accordingly. As exemplified by these case studies,
Nature seems replete with predator-prey interactions which are best viewed
as search games. While repeated search games [2] represent the most realistic
types of interactions modeled so far, they still lack essential ingredients of
interactions between foraging predators and escaping prey. We focus here
on two such wanting elements, the spatial distribution of risk between and
among hiding sites and the change of the environment during the interaction.
The spatial distribution of the risk of predation among and between dis-

crete hiding locations can be categorized into two extreme cases. In the first
case, the locations are relatively safe places. Examples include retreat holes
for mammals, hiding crevices for lizards, bushes for small passerine birds or
feeding tubes for worms in the sea [21] Here, the most dangerous moments are
when animals are away or out of these positions, or when they move to them.
By contrast, once the retreat is reached, the probability of being caught is
decreased to a large degree, at times null. In the second case, the locations
represent zones of high attack probabilities, while moving between them is
risk-less. Breathing holes of seals attacked by polar bears or feeding windows
of caterpillars attached by wasps are of this type ([1],[2]). Indeed, polar bears
cannot attack seals while their travel below the ice sheet and wasps cannot
attack leafminer larvae if they rest under the intact thick cuticula of a leaf.
There is of course a continuum of cases spanning the two extremes. Thus,
the most general model should allow capture both on site and while moving
from site to site. The capture probability might be furthermore depending
on the predator strategy, for example when predators choose which of the
sites to visit, but might also be independent of the predator. The amount of
vegetation cover, or the diffi culty of progressing on the terrain between two
sites are two such possible influencing factors. In these cases, there still exist
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site-to-site path dependent capture probabilities. We thus conclude that a
realistic model should make the distinction between these risks among sites
and between sites. In previous work, we dealt so far only with among site
variability in predation risk. The present work is addressing both types of
risks.
The search games played by foraging predators and escaping prey of-

ten unfold in conditions which usually change, possibly under the action of
the players. These conditions, called environment, are here understood in a
liberal fashion, being either external (time of day, for example) or internal
(hunger level, for example). The proper formalism for such situations is the
realm of stochastic games [39]. Furthermore, a classical optimal foraging
model would not make the movement of the prey (if any) a function of the
behavior of the predator. Would such two-ways interactions modify the out-
come of the game? If so, in which way? These are the kind of questions we
are interested in. Our aim is to develop a stochastic game framework includ-
ing simultaneous decisions of two antagonists during a hide and seek game
with multiple bouts in which the motivation of the predator fluctuates. This
works represents therefore the natural bridge between the commonly used
single predator, multiple stationary prey, optimal foraging theory described
earlier and search games.

4 Overview of previous results

The current paper can be seen as an extension of [1] and [2]; we summarize
those models, calling them respectively the one stage game and the repeated
game. Table 2 explains most of the important notations used in the different
models.
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Table 2. List of common notations
n total number of locations i, j = 1, . . . , n
k number of locations searched in each period
pi probability of capture if prey found at location i, p = (pi)
hi probability of prey hiding at location i (strategy), h = (hi)
ri probability that location i is searched (strategy), r = (ri)

λ a constant equal to
(∑

i=1,...,n p
−1
i

)−1
Gk the repeated game with k searches
∆k the stochastic game with k searches
v the game value, probability of eventual capture
β discount factor
a, b low and high capture probabilities in learning case
()∗ superscript ∗ indicates optimal strategy

As related notational convention in game theory is to use "he and she" to
distinguish between the two players: here we will use "he" for the Searcher
and "she" for the Hider, reverting to "it" when we refer to predator and prey
animals.

4.1 The One Stage game

We now review in more detail the One Stage (period) game of [1]. A (sta-
tionary) Hider locates in one of n locations i ∈ N = {1, 2, ..., n} while the
Searcher inspects k of these, where n and k are parameters of the game. The
order of inspection is not important. If the Searcher inspects the location i
chosen by the Hider, the Hider is captured with a probability pi that depends
on the location i. For convenience we assume that p1 ≤ p2 ≤ ... ≤ pn, that
is, the locations are numbered in decreasing order of attractiveness to the
Hider. The Searcher wins the game if he finds and then captures the Hider.
The Hider wins if she is not found or if she is found but not captured. So if
the Hider hides at location i and the Searcher inspects a k-subset S (subset
of cardinality k) of N then the payoff P to the maximizing Searcher, the
probability that the Searcher wins, is given by

P (S, i) =

{
pi if i ∈ S,
0 if i /∈ S. (1)
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If we say that the payoff to the Hider is the probability she is not found and
captured, then the game has constant sum 1 (the Hider’s payoff is 1− P ).
A mixed Hiding strategy is a probability vector of hiding probabilities h =

(h1, h2, ..., hn) where hi is the probability that the Hider hides at location i.
A mixed strategy for the Searcher is a probability distribution over k-subsets
of N . Clearly to every such mixed search strategy there is a probability ri
that location i is inspected. Conversely, if we know all the probabilities ri,
we can determine the mixed search strategy. This leads us to the following
equivalent, and more useful, definition of the mixed Searcher strategy.

Definition 1 Amixed search strategy is a vector of probabilities r = (r1, r2, ..., rn)
where ri ≤ 1 is the probability that the Searcher visits location i during the
k rounds, satisfying

n∑
1

ri = k, and ri ≥ 0, for all i ∈ N . (2)

In this constant sum game, the value v is the probability of capture P,
with best play on both sides. Note that if the Searcher inspects location i
when the Hider is adopting the mixed strategy h, the Searcher wins with
probability hi pi, the probability that the Hider is found multiplied by the
probability she is then captured. We will often consider the mixed hiding
strategy called h∗ which makes all these probabilities the same, that is,

hipi = λ, for all i ∈ N (3)

and for some constant λ.We say that h∗ is the Hider strategy which makes all
locations equally attractive for the Searcher. These equations have a unique
solution given by

λ =
1
n∑
1

1
pi

, and (4)

h∗i = λ/pi, i ∈ N . (5)

It follows from the formula for λ and the assumption that the pi are increasing
in i that 1 ≤ p1/λ ≤ n.
The solution of the game is easy to see in the two extreme cases where k =

1 and where k = n.When k is 1 this is a standard hide-seek game, sometimes
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called a diagonal game. The value of this game is λ, the Hider should adopt
h∗ to make all locations equally attractive, and the Searcher should inspect
locations with probabilities proportional to their capture probabilities pi. On
the other hand, when k = n and all locations are inspected, only the Hider
has a strategic choice and she is captured with probability pi if she chooses
location i, so clearly location i = 1 is best for her, with a value of p1. The
surprising finding of [1] is that for small k the solution is like that for k = 1
and for large k the solution is like that of k = n. The dividing value of k is
given by p1/λ. This result is stated below.

Theorem 2 The solution of the one-stage game described above depends on
the value of k relative to p1/λ.

1. If k < p1/λ then the optimal hiding strategy is h∗, the optimal search
strategy visits each location i with probability ri = kλ/pi and the value
is kλ.

2. If k ≥ p1/λ then the value is p1. The Hider can guarantee paying at
most p1 by always hiding at location 1 and the Searcher can guarantee
at least p1 by choosing r1 = 1 < kλ/p1 and ri ≥ min(kλ/pi, 1) for all
2 ≤ i ≤ k.

This presentation of the one stage game of [1] is a good place to mention
the distinction of our approach with evolutionary game theory. We note that
our game is a big generalization of the so called matching pennies game,
where each player chooses H or T and the maximizer wins if they choose the
same and the minimizer wins if they are different. This is our game with
n = 2 locations called H and T, with both capture probabilities equal to 1
and k = 1 searches. This game is mentioned in Section 4.2 of [40]. After
observing that the game is not symmetric it is further observed, "Thus,
matching pennies games fall outside the domain of evolutionary stability
analysis." This applies equally well to our more general hide-seek-pursuit
games, as well as any asymmetric game (see [41]). Obviously we cannot
expect pure strategy solutions (saddle points) in hide-seek games, as certain
knowledge of the hiding place ensures the prey will be found. However in
matrix games such as the one presented here, iterative methods of solution
are known. An evolutionary approach to search games would indeed be an
interesting and useful contribution, but to our knowledge no attempts in this
direction have been made, and we do not make such an attempt here. In
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our later stochastic game, the optimal strategies are indeed obtained by an
iterative process (Corollary 6), though not exactly an evolutionary one.

4.2 Repeated Games

In [2], the one stage game was extended to a repeated game. We briefly
review the model and results for the undiscounted and discounted versions
of that game here.

4.2.1 The repeated game Gk

During the k looks among the different locations within a single patch, there
can be any of the following three events:

1. If the Searcher does not find the Hider, then the game ends with zero
payoff for the Searcher and a payoff of one to the Hider. (Hider wins.)

2. If the Searcher finds the Hider and captures it, then the game ends
with a payoff of one to the Searcher and a payoff of zero to the Hider.
(Searcher wins.)

3. If the Searcher finds the Hider but does not catch it, then the Hider
escapes to another patch and the process restarts. (Game continues.)

Here the payoff PS to the Searcher is the probability that the Hider is
eventually captured (at some stage of the game). The value v of the game is
obtained by solving the equation

n∑
1

v

pi + (1− pi) v
= k. (6)

The equally attractive hiding strategy is given by

h∗i =
v/k

pi + (1− pi) v
(7)

Note that the "attractiveness" of location i in a repeated game is given by
hi [pi + (1− pi) v]. The hiding strategy h∗ is optimal for all k, whereas in the
one stage game it was optimal only if k was below a threshold!
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4.2.2 The Discounted Repeated Game

The repeated game can also be studied under the assumption that the payoff
is discounted by a discount factor β, 0 ≤ β ≤ 1, in each stage. If β = 0 we
have the one stage game and if β = 1 we have the undiscounted repeated
game. In [2] we have shown that the value v of the discounted game is given
as the unique solution of the equation

n∑
1

v

pi + (1− pi) β v
= k, when (8)

k ≤
n∑
1

p1
pi(1− β) + p1β

, (9)

and that in this case the strategy h∗ is optimal for the Hider.
Otherwise, the ‘stay at 1’ solution h1 = 1 is optimal for the Hider, with

the value

v =
p1

1− β + p1β
. (10)

We have also proved the following theorem:

Theorem 3 Consider the repeated discounted game with k looks and a dis-
count factor β. Consider the equation (11).

k =
n∑
1

p1
pi(1− βk) + p1βk

. (11)

If there is a solution βk to equation (11), then it is unique and

• If β < βk, then the ‘stay at 1’strategy h1 = 1 is the optimal strategy
for the Hider.

• If β > βk , then the ‘equally attractive’ is the only solution to the
game.

If equation (11) has no solution in [0, 1], then the ‘equally attractive’strat-
egy h∗ is the only optimal Hider strategy.
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5 The Stochastic Game ∆k

We now present our new model. In this section we modify our repeated
game model so that after a prey escapes capture at location i, she may still
be captured in the course of moving to her chosen next location j (possibly
the same as i if she chooses not to move between periods). We assign a
fixed probability αi,j, which depends on the two locations, to this capture
probability. The probability αi,j is a reflection of the properties of the terrain
between locations i and j. For example αi,j might be high if the terrain in
between is very open and has high visibility to the predator. In practice, this
probability might depend on choices (such as where to position between peri-
ods) of the predator, but for simplicity we assume here that it is independent
of any such choices. Note that if all the transition capture probabilities αi,j
are taken to be 0, then the new stochastic game model, which we will denote
by ∆k, reduces to the previous repeated game model Gk of ([2]).
To formally define the stochastic game∆k = ∆k (n, p, αi,j) , we must make

two changes to the notation of the repeated game model. First, we need to
add two additional artificial states, in addition to our n original location
states, to indicate ending situations for the game. If the Hider has not been
found at the end of the k searches allowed in a period, then the Hider wins
and we say that the game moves to the artificial state i = −1. Alternatively,
if the Searcher wins because he has found and captured the Hider, we say
that the game moves to the artificial state i = 0. Clearly the n location states
i ∈ {1, 2, . . . , n} are non-absorbing (the game continues from such a state)
while the two artificial states i = −1, 0 are absorbing states, where one of the
players has won. The location state i denotes the state of the game when the
Hider has been found at location i but has escaped the pursuing Searcher.
Our previous models were constant-sum, rather than zero-sum because

the payoffs to the players were the probabilities that they would win the
game. These probabilities sum to 1 rather than to 0. The theory of stochastic
games we use here applies to zero-sum games, so we need to make a simple
affi ne transformation of the payoffs that takes 1 to 1 and 0 to −1. (This
transformation is x → 2x − 1.) In the new notation the winner’s payoff is
+1 and the loser’s payoff is −1, so the game is zero-sum. To transform
the probability PS that the Searcher wins (payoff in the repeated game)
into a constant sum payoff C , we adopt the monotone increasing affi ne
transformation given by

C = 2PS − 1. (12)

12



Thus when the Searcher wins we have PS = 1 and C = 1; but when the Hider
wins we have PS = 0 and hence C = −1. The same transformations applies
as well to the values v of the repeated and stochastic games. For example a
value of v = 0 now means that with best play either player is equally likely
to win the game (the same as the value 1/2 in our previous models). Note
that the probability of capture PS satisfies

PS = (1 + C) /2. (13)

The dynamics of the stochastic game ∆k (in both the undiscounted and
discounted versions) are as follows. The location state i corresponds to the
situation where the Hider has been found at location i and has successfully
escaped capture. Her pure choice is her next location and so her mixed choice
variable at i is her distribution h = hi = hi1, . . . , h

i
n over where to locate in

the next period. The choice variable for the Searcher at state i consists of
the k locations to search in the next period, given that the Hider has just left
location i. The Searcher’s mixed strategy from state i can be represented by
the variable r = ri, where rij denotes the probability that location j is among
the locations he will search. Suppose the Hider chooses location j. Then

1. She is captured before reaching the new location with probability αi,j.
Otherwise,

2. With probability 1 − rij she will not be found at j, and the next state
is the absorbing state −1 (Hider wins, payoff is -1).

3. With probability rij she will be found at j. In this case

(a) With probability pj she will be captured at j and the next state
is 0 (Searcher wins)

(b) With probability 1− pj she will not be captured and will have to
choose a new location for hiding. The new state is j.

5.1 The undiscounted and discounted stochastic games

Suppose that there exist values vi, i = 1, . . . , n, for the stochastic game when
the state is a location state i, i = 1, . . . , n, . It is a standard matter to find an
equation which relates all the vi. Suppose that at state i the Hider chooses
to go to location j and the Searcher chooses strategy r = ri. Then it is easy
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to see that the next state is either a location state j or one of the artificial
states −1, 0 with the following probabilities and payoffs.

next state probability payoff
0 (captured in transit) αi,j 1 (Searcher wins)
0 (found and captured at j) (1− αi,j) rj pj 1 (Searcher wins)
−1 (not found at j) (1− αi,j) (1− rj) −1 (Hider wins)
j (found but not captured at j) (1− αi,j) rj (1− pj) vj (game continues)

It follows that the expected payoff if the Hider goes to location j and the
Searcher uses the search strategy r = ri = (r1, . . . , rn) is given by

αi,j (1) + (1− αi,j) (rjpj (1) + (1− rj) (−1) + rj (1− pj) (vj))

Consequently the expected payoff if the Hider adopts the mixed strategy
h is given by

C (i, r, h, v) =
n∑
j=1

hj [αi,j + (1− αi,j) (rjpj − (1− rj) + rj (1− pj) vj)] .

Theorem 4 If the values vi exist for all i = 1, . . . , n, then they must satisfy
the equations for all i = 1, 2, ..., n.

vi = min
h

max
r
C (i, r, h, v) .

5.1.1 Existence of a value for ∆k

The theory of stochastic games shows that the game ∆k has a value vector
v = (v1, . . . , vn), where vi is the value of the game starting at location state
i. A stationary strategy is a strategy which chooses actions depending on the
current hiding place only.
The game ∆k is two-person zero-sum with finite state and action spaces

with a positive probability to stop for any state and any actions by the players:
If the Searcher does not visit the hiding location the game stops (escape),
and if the Searcher visits the hiding location the game stops (with capture)
with probability at least p1 > 0. Thus, we can use the fundamental result of
[26] on stochastic games, that in the above mentioned conditions equilibrium
exists in stationary strategies. This result is valid both for the undiscounted
and the discounted stochastic games so we have the following theorem.
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Theorem 5 There exist unique values vi , i = 1, . . . , n, for the stochastic
game ∆k. This result holds both for the undiscounted and the discounted ver-
sion. there exist optimal stationary strategies for both players.

5.1.2 Value iteration algorithm

This algorithm has been devised by Shapley in his fundamental paper [26].
We now adapt it to the game ∆k.

Corollary 6 Consider the following iteration scheme, where i = 1, 2, . . . , n:

vi (0) is any initial guess. Then for L = 1, 2, . . . , we define iteratively,
(14)

vi (L) = min
h

max
r

(
n∑
j=1

hj [αi,j + (1− αi,j) (rjpj − (1− rj) + rj (1− pj) (vj (L− 1)))]).

(15)

Then limL→∞ vi (L) = vi.This value iteration scheme converges with a geo-
metric rate (1− p1)L .

This algorithm works for the undiscounted and even faster for the dis-
counted stochastic game ∆k .

5.1.3 The value at the beginning

At the beginning of the game no location has been chosen yet. The Hider
chooses a location i, i = 1, ..., n and the Searcher chooses a set of k loca-
tions. What is the probability qi of eventual capture in the game under the
condition that the prey was discovered at location i at the first stage? With
probability pi (by definition) there is a successful pursuit and the Hider is
captured with probability PS = 1. With complementary probability 1 − pi
the pursuit is not successful, and since the game is in state i (the Hider has
escaped from location i) the definition of vi says that the expected payoff
C = vi. By our affi ne transformation relating payoff and capture probability,
equation (13), we have in this case that PS = (1 + C) /2 = (1 + vi) /2. Thus
overall we have
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qi = pi + (1− pi)× (1 + vi)/2, (16)

Thus, the game at the beginning is equivalent to the one stage game with

probability of capture qi for location i, that is, qi plays the role of what we
called pi in the one stage game. The solution of this game is thus given by

Theorem 7 The optimal solution of the game ∆k can be obtained from The-
orem 2 as follows:
The capture probabilities qi, i = 1, ..., n , are given by (16)

p1 = min
i=1,...,n

qi. (17)

and
λ =

1
n∑
1

1
qi

. (18)

Then we transform the optimal probability of capture PS into the zero-sum
payoff C = 2PS − 1 (see (12)).

6 A Comparative Example

We now look at the effect of both optimizing (rather than simply random)
prey movement and of adding risk to inter-period prey movement (allowing
αij > 0 rather than riskless αij = 0). We do this we by comparing our models
of Section 4.2 (repeated games) and Section 5 (stochastic games) with the
Markov Decision Process solution to the one sided optimization of a Searcher
against a random Hider, in a simple example with just two locations.
Consider a patch with two locations ( n = 2), p1 = 0.1, p2 = 0.8, and

k = 1. In case of capture the payoff is 1 for the Searcher and 0 for the
Hider and in case of ultimate escape the payoff for the Searcher (Hider)
is 0 (1) so the ultimate payoff to the Searcher is the overall probability of
capture. Assume that if the Hider was discovered but not captured she
succeeds to reach another patch and the process continues until capture or
ultimate escape. We use the undiscounted case. We denote v as the overall
probability of capture in all the models of our toy example.
A Markov Decision Process (MDP) model for the Searcher is a framework

in which his actions are optimal based on his knowledge about the current

16



state and the strategy of the Hider. This state is fixed at the beginning
but at any further stage it is the location at which the Hider was discovered
(but not captured) at the previous stage. We now compare the MDP to
the stochastic game version of this model. At first we neglect the capture
risk of the Hider during changing locations, and then we take this risk into
consideration. Then we consider the possibility of inter period capture.

6.1 Model without risk when changing location

We now consider the earlier model where between periods the Hider prey
can move between locations without risk of capture, so that all the transition
capture probabilities αij are 0.We first consider that the prey acts randomly
and then considers that the prey acts so as to minimize capture probability.
In both cases (8.1.1 and 8.1.2) we assume that the searching predator acts
to maximize capture probability.

6.1.1 Random prey, optimizing predator (MDP model)

Assume that the Hider always hides randomly and uniformly, i.e., h =
(0.5, 0.5), and that there is no risk for the Hider to change locations. That
is, the Hider equiprobably stays or changes location between periods. In this
case the optimal strategy of the Searcher is to always look at location 2 (or
adopt strategy R = (0, 1) in our notation) at each stage.
The ultimate probability of capture v satisfies

v = .5× (.8 + .2× v) + 0, giving v =
.4

.9
' 0.44 (19)

6.1.2 Optimal play in repeated game model

Here also we assume no risk to change locations, so this is the repeated game
∆. The optimal strategies are for both players to hide/search at location 1
with probability about 0.73 and at location 2 with probability about 0.27.
The equation of the value of the game is given by equation (6), so we have

v

p1 + (1− p1) v
+

v

p2 + (1− p2) v
= 1, since n = 2, k = 1. So (20)

v

.1 + .9v
+

v

.8 + .2v
= 1, giving v ' 0.22 (21)
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Thus by hiding at the better location (location 1) with higher probabil-
ity (.73 rather than .50) the Hider prey reduces the probability of eventual
capture from about .44 to about .22, that is, by about 50%.

6.2 Model with risk when Hider changes locations

We now make the main assumption of this paper, that the Hider can be
captured between periods when moving from location i to location j, with
a possibly positive probability αij. For this example we make the simple as-
sumption that the Hider cannot be captured if she stays at the same location,
αii = 0 for i, j = 1, 2, but that any move between distinct locations has cap-
ture probability 0.3, that is αij = .3 for i 6= j. State i = 1, 2 corresponds to
the event that the Hider has been discovered but not caught at location i
and vi is the overall probability of capture at that state.

6.2.1 Hider moves randomly, Searcher optimizes (MDP model)

We assume that from any state i = 1, 2, the Hider moves equiprobably to
either location and that the Hider starts equiprobably at either location (not
equiprobably in either state). Clearly in this case the Searcher should always
look at location 2, where he has a higher chance of capturing the prey if she
is there. We therefore have the following equations for v1 and v2,

v1 = .5× 0 + .5× [.3 + .7× (.8 + .2v2)] (22)

v2 = .5× (.8 + .2v2) + .5× .3, giving (23)

v1 ' 0.47, v2 ' .61 (24)

If the Hider starts in location 1, she will not be found and so the payoff is
0. If she starts at location 2, she will be found and she will be captured with
probability p2 = .8. she will not be captured with probability .2 in which case
the eventual capture probability is v2. So overall the capture probability in
this scenario at the beginning of the game is given by

v = .5 (0) + .5 (.8 + .2 v2) ' 0.46 (25)

6.2.2 Both Hider and Searcher optimize (stochastic game model)

We now analyze the model of this paper, covering the scenario with inter-
period capture risk and two optimizing players in a stochastic game. State
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i = 1, 2 corresponds to the event that the Hider has been discovered but not
caught at location i and vi is the overall probability of capture at that
location (this is different from the notation in chapter 5). For the stochastic
game we have the following equations, where the minimum is with respect
to the Searcher looking at location 1 (left) or location 2 (right):

v1 = max min
0≤x≤1

[x(.1 + .9v1) + (1− x) (.3) ; (1− x) (.3 + .7(.8 + .2v2))] (26)

v2 = max min
0≤y≤1

[y(.8 + .2v2) + (1− y) (.3) ; (1− y) (.3 + .7(.1 + .9v1))], (27)

where x and y are the probabilities that the Hider will stay at the same
node after escaping capture at locations 1 and 2 respectively. The solution
is v1 ' .39 and v2 ' .45, with x ' .60, y ' .27. Note that x, the probability
to stay at location 1, is smaller than the corresponding result in the model
without risk in moving. This is, obviously, counter intuitive and will be later
explained in the Section 7.
At the beginning of the game, the overall probabilities of eventual capture

if the Hider is discovered at location 1 is

q1 = p1 + (1− p1)× v1 = .44 (28)

and at location 2 is

q2 = p2 + (1− p2)× v2 = .89. (29)

The optimal hiding policy at the beginning , as given by Theorem 2 case 1, is
about

(
2
3
, 1
3

)
, the same as the optimal search strategy for the first stage. Thus

the overall probability of capture, since both must go to the same location,
is given by

v =

(
2

3

)2
q1+

(
1

3

)2
q2 = .29, which can also be obtained from Theorem 7 as

(30)

λ =
1

1
.44

+ 1
.89

= .29. (31)

The Hider thus reduces the probability of capture from about 0.46 for the
random strategy to about 0.29 when playing optimally in the stochastic game.
This is a reduction of about 37% if she uses the optimal hiding strategy, a
function of the predator’s actions rather than a random choice of locations.
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Either if we neglect the risk of moving, or if we take it into account, there is
thus a marked difference in the probabilities of capture and escape between
the stochastic and the single agent games, as used in most optimal foraging
theory.

7 Relocation Probability and Relocation Risk

In Section 6 we noted the seemingly counter intuitive numerical result that
the probability of moving increased when such a move became more risky.
We now present a very simple numerical example that will enable us to
understand why it happens. Assume we have two locations with probability
of capture p1 = p2 = 1 − ε and k = 1. Consider first the repeated game
with no risk of moving. The optimal strategy for the Hider is always to
hide at each location with probability 1/2. Now consider the same example
with risk α = 1/2 for changing location. If the Hider has been discovered
but not captured then it is easy to see that she should make both locations
equally attractive for the Searcher so she chooses the probability to stay at
her present location equal to 1/3. This means she will be captured in transit
with probability (2/3)α = 1/3, she will be at location 1 in the next period
with probability 1/3, and she will be at location 2 with probability (2/3)
(1− α) = 1/3. So, conditional on her still playing the game, she is equally
likely to be at either location. This choice guarantees her to lose the game
with probability about 2/3 which is the minimum possible, while staying
with probability 1/2 leads to losing with probability 3/4. The paradox is
that we have the same (simple) model but increasing the risk of moving also
increases the probability of moving.

We now give an example which makes this phenomenon simpler, without
any numbers. We consider the following general case of two identical loca-
tions with a common capture probability p = p1 = p2 < 1. We suppose that
staying still is safe (α11 = α12 = 0) and relocating either way has the same
probability α of being captured. The symmetry of the two locations ensures
that v1 = v2 = v. From state 1 (after a successful escape at location 1) the
game matrix is as follows:

stay at 1 move to 2
look in 1 p+ (1− p) v a
look in 2 0 a+ (1− a) (p+ (1− p) v)

PayoffMatrix when Hider starts at location 1
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The existence of a value for this game, which we denote by v, follows from
Shapley’s result, our Theorem 5. First note that there is no pure strategy
equilibrium. Suppose the Hider stays at location 1 with probability q,moving
to location 2 with complementary probability 1 − q. The equation obtained
by equating the payoffs (eventual capture probabilities) when the Searcher
looks at location 1 (top row, left side of equation) and location 2 (bottom
row, right side of equation) is given by

q (p+ (1− p) v) + (1− q) (a) = q (0) + (1− q) (a+ (1− a) (p+ (1− p) v)) , or

q (p+ (1− p) v) = (1− q) (1− a) (p+ (1− p) v) , or

q = (1− q) (1− a) , (independent of v) with solution

q =
1− a
2− a, which is decreasing in a. (32a)

Note that the optimal probability q of staying at 1 (or at 2, by symmetry)
does not depend on the common capture probability p or the common value
v. The optimal probability is q = 1/2 when there is no relocation risk (a = 0).
This makes sense because it makes the Hider distribution most random. As
the relocation risk a goes to 1, the probability 1 − q of relocating goes to 1
as shown in Figure 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

relocation cost a

1q

Fig 1. Relocation probability 1− q as function of a.

We note that this symmetric model extends easily to n identical locations,
where by symmetry of locations the Hider has the two choices: remain at her
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current location or move to a randomly selected new location. For n such
locations the formula for remaining becomes q = (1− a)/(n− a).
Thus the prey may have more incentive to relocate when this move be-

comes riskier. We note that a somewhat similar observation was made, in a
slightly different context, in [43] and [44]. There, a prey had to decide when
to change locations when facing a predator who might either be in cruising
search mode or in ambush mode. If the predator was in ambush mode then
changing locations resulted in capture. However it was found that as the
unsearched region decreased in size, the predator was more likely to be in
ambush mode (so a higher "relocation cost" for the prey), but nevertheless
the predator optimally increased her likelihood of relocating. The specifics
of the calculations are different than those given here, as the model is only
partly similar. The idea is that the relocation cost α in the current model
has some similarity to the ambush frequency in the earlier papers in that
both incur a risk to a prey who changes location. It would be useful to have
an additional explanation for the counter intuitive result that could be put
purely in words, without the necessity of a mathematical model.

8 Learning the Capture Probabilities

An anonymous referee has asked how the predator and prey know the capture
probabilities pi; can they be learned? To answer this question we give a simple
learning model. We consider the simplest case that allows for learning: two
locations and two (or more) periods and only k = 1 location to be searched
in each period. We assume that at each location the capture probabilities
are known to be a or b equiprobably and independently, with a < b. (If
a = b there is nothing to be learned.) This means locations either have a
low capture probability or a high capture probability, only it is not known
which. At a location where the prey has escaped j times, the conditional
probability that the capture probability is a (low) is denoted by g (j) , where
g (0) = 1/2 and by Bayes Law,

g (j) =
(1− a)j

(1− b)j + (1− a)j
, with lim

j→∞
g (j)↗ 1. (33)

In other words, each successful escape from a location makes it more likely
that it has a low capture probability and hence makes it more attractive to
the prey and hence also to the predator. The effective capture probability,
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denoted p̂, is initially given simply by p̂ (0) = (a+ b) /2, and more generally
by

p̂ (j) = g (j) a+ (1− g (j)) b =
a (1− a)j + b (1− b)j

(1− a)j + (1− b)j ↘ a (34)

For example, if a = 1/3 and b = 2/3, then the first values of g (j) given by 1/2,
2/3, 4/5, . . . , 2j/ (2j + 1) and the p̂ (j) by 1/2, 4/9, .400, .370, 0.353, 0.343, 0.338.
Note that when only one location is searched in each period, the payoff

matrix has 0 entries off the diagonal (when Hider is not in the searched
location) so the matrix is a diagonal matrix. For two locations this is a
matrix of the form(

d1 0
0 d2

)
, with value λ (d1, d2) = (1/d1 + 1/d2)

−1 (35)

and optimal probability (for both players) of strategy i is given by λ (d1, d2) /di.
So in the final period of a game, if there have been i escapes from location
1 and j escapes from location 2, the payoff matrix of this one stage game,
called Li,j,1, is simply λ (p̂ (i) , p̂ (j)) .More generally let Li,j,m be the learning
game where location 1 has had i escapes, 2 has had j escapes, and there are
m more plays of the game. These games are recursively described by the
matrix

Li,j,m =

(
p̂ (i) + (1− p̂ (i)) Li+1,j,m−1 0

0 p̂ (j) + (1− p̂ (j)) Li,j+1,m−1

)
, with value

v (i, j,m) = λ (p̂ (i) + (1− p̂ (i)) v(i+ 1, j,m− 1)) , p̂ (j) + (1− p̂ (j)) v(i, j + 1,m− 1),

In the game Li,j,m it is easy to show that the optimal probability of hid-
ing/searching in location 1 is given by

xi,j,m = v (i, j,m) / (p̂ (i)) + (1− p̂ (i)) v (i+ 1, j,m− 1) . (36)

For our example a = 1/3, b = 2/3, the values v (0, 0,m) for games with
m = 1, . . . , 6 periods are given by

λ (1/2, 1/2) =
1

1/ (1/2) + 1/ (1/2)
= 0.25,

21

68
' 0.309, 0.324, 0.327, 0.328, 0.32895, 0.3290

(37)
For the two-stage gamem = 2, the players randomize between the symmetric
locations 1 and 2 in the first period, and assuming we name the location of
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escape in the first period as location 1, they go back to the same location in
the second period with probability x1,0,1 = 9/17 > 1/2. Now suppose that
there are three stages. Clearly in the first stage the players have no choice
but to locate equiprobably to the two locations. But how do they play in
the second stage (assume there was an escape at location 1) if they know
it is a three stage game? In this case the probability of choosing location 1
(for both hiding and searching) is given by x1,0,2 = 99/191 < 9/17 = x1,0,1.
This says that the presence of an additional final (third) period decreases the
probability of going back to the same location as the escape in the previous
period, but this probability is still greater than one half. In fact we find this
phenomenon is true in general, learning reduces the bias toward returning to
locations one has escaped from. This phenomenon obviously requires three
stages in our model. Using numerical methods, this can be shown to be true
for all a and b.
It is useful to compare the learning game with low and high capture

probabilities a and b with the similar non-learning game with a fixed and
known capture probability (a+ b) /2 which is the effective capture probability
of the learning game. We consider both in the setting of a two stage game
with identical locations. If the capture probability in the non learning game
is c at both locations, then the value of the second stage is given by λ (c, c) =
1/ (1/c+ 1/c) = c/2 and hence in the first stage has value (1/2)(c · 1 +
(1 − c) (c/2)) = (3− c) c/4 (half the time they go to the same location,
capture (payoff1) has probability c and escape (with payoff c/2 from previous
calculation) has payoff c/2. For the example a = 1/3, b = 2/3, c = 1/2 the
non learning game has value (3− 1/2) (1/2) /4 = 5/16 = 0.3125 while the
learning game has the lower value v0,0,2 = 21/68 ' 0.3088. This means that
the capture probability is lower (better for the Hider) when there is learning.
We show that this observation holds in general, at least for the two stage
game.

Proposition 8 When there are two stages and identical locations (a priori),
the optimal capture probability (value) is lower in the learning game with cap-
ture probabilities a < b < 1 than in the game where the fixed capture prob-
ability is set equal to the effective capture probability p̂ (0) = c = (a+ b) /2.
That is, v (0, 0, 2) < (3− c) c/4.

Proof. After some algebraic simplification, the difference in the values be-
tween the no learning and learning games can be written as
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(3− c) c
4

− v (0, 0, 2) =
(a− b)2 (2− a− b) (a+ b)

16 (3(a− a2) + 3(b− b2) + 1(a+ b− 2ab))
> 0,

(38)
because all the factors in the numerator are positive, and for the denominator
we note that a > a2, b > b2 and a+ b > 2a > 2ab.
An interesting question concerns the variability of the capture proba-

bilities. For example in a final period, is it better for the Hider to have
escaped twice from one location (and face varied capture probabilities p̂ (2)
and p̂(0) = (a + b)/b) or once from each location (with an effective cap-
ture probability p̂ (1) at each location). In other words, what is the sign of
v(2, 0, 1) − v(1, 1, 1)? It turns out that the answer depends in a simple way
on the size of the two probabilities a and b. If a + b > 1, then the Hider
prefers the low variability case L1,1,1; if a+ b < 1 the Hider prefers the high
variability case L2,0,1; if a + b = 1 the players are indifferent between these
cases. In particular we have the following.

Proposition 9 Highly varying capture probabilities favor the Searcher if these
probabilities are high; otherwise they favor the Hider. In particular, the sign
of v(2, 0, 1)− v(1, 1, 1) is positive if a+ b > 1; negative if a+ b < 1 and zero
if a+ b = 1.

Proof. The difference v(2, 0, 1)− v(1, 1, 1) is given by the fraction

(a− b)4 (a+ b− 1)

2 (2− a− b)
(
3a3 + a2 (b− 6) + a (b− 2)2 + b (4− 6b+ 3b2)

) . (39)

The multinomial in the denominator has a minimum of 0 at a = b = 1, so
for 0 < a < b ≤ 1 the sign of the fraction is the sign of a+ b− 1, as claimed.
(Note that if we allowed a = b then the escapes are irrelevant to current
probabilities and the difference would also be 0.)
A normal form game (not a dynamic game) which considers this type of

learning was analyzed in [48].

9 Discussion

Biology, economics, computer science and studies of human behavior have
since long considered stochastic games ([45],[46]). A recent important per-
spective is presented by [39]. What is therefore new here is application to
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the context of search games and behavioral ecology. Hence, our work has
implications beyond behavioral ecology for any situation described by hide
and seek games, from ecology, immune systems to computer science [1]. We
are now in the position to assess the change in success of attack and escape
in stochastic search games, compared to the situation in which one player
is against another one which is moving randomly. This later case is known
to be equivalent of games in which only one player is behaving optimally, a
Markov Decision Process (MDP), see [42] or [27]. Of course it is necessary
to observe that our modelling is appropriate only in the case of low densities
for both predator and prey, allowing each to assume that there is at most
one of the opposite type in the search region.
While we have given a complete solution to these problems in the text,

the specific example of Section 6 is suffi cient to indicate some differences in
the capture time for differing assumptions. See Table 3.

Table 3. Expected eventual capture probabilities v for various assumptions

capture on transition no transition capture % reduction
random prey, MDP .46 .44 4%
optimizing prey, Game .29 (stochastic game) .22 (repeated game) 24%
% reduction 37% 50%

It is of course obvious that optimizing prey do better (lower v) than ran-
dom prey and that prey would benefit from having a risk free transition
between locations between periods. In general, the prey reduces the capture
probability by about 37-50% if she uses the optimal hiding strategy rather
than moving and/or hiding randomly. There is thus a marked difference in
the probabilities of capture and escape between our (repeated or stochastic)
game theoretic models and single agent predator optimization models, as
used in most optimal foraging theory. This marked difference extends to the
use of space by the protagonists, as in our no transition capture example of
Section 6 (middle column) the predator should always visit location 2 in the
first case, and should concentrate its visits on the first location in the second
case: a complete reversal of distribution of effort as function of the tightness
of the interaction!
These differences are the explanation why organisms tend to act according

to the other player’s actions and why the stochastic/repeated search game
approach supersedes the classical optimal foraging one for modelling such
interactions: the more complex modelling approach reflects the complex,
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multi-step trajectories of the antagonists as we observe them. The myriad
of delicate and intricate biochemical, physiological or behavioral adaptations
of prey for escaping predators and of predators for successfully attacking
and subduing their prey [47] show that natural selection is acting on all
these traits. A stochastic game formulation is thus definitely required when
players do behave according to what the other is doing. The model can
be developed in two promising directions. First, we did not consider prey
fatigue or more complex situations in which prey balance risk of predation
with risk of starvation. A refined model taking fatigue into account would
have then three state variables - motivation, fatigue, and the recent location
of encounter and its development would follow lines similar as the ones we
have proposed.
Finally, our model is a zero-sum game. One may argue that a real game

between a predator and a prey is not a zero-sum game, as the predator
is running after its dinner while the prey is running for its life. This is
an important if diffi cult aspect to deal with. Indeed, while non-zero sum
stochastic games have been modeled only a few years after zero-sum games
were developed, the level of complexity is strongly increased. The value of
the game cannot indeed be taken as granted, in contrast to zero-sum games.
For search games, implementing non-zero sum games represents a virgin and
much needed field. We advocate future analysis of the following non-zero
sum model. In the single period problem we could require the predator to
search the k locations sequentially. If the prey is found on the j’th search
and successfully pursued the payoff to the predator would be 1− jc for some
small fixed search cost c, modeling the effort or energy of a search. The cost
could also be location dependent, ci. The prey also might prefer later capture
within a period in such a model, but this would still not make it zero-sum,
as survival would be more significant.
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