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Abstract

The study of palaeoclimates relies on information sampled in natural archives
such as deep sea cores. Scientific investigations often use such information in multi-
stage analyses, typically with an age model being fitted to a core to convert depths
into ages at stage one. These age estimates are then used as inputs to develop,
calibrate, or select climate models in a second stage of analysis. Here we show
that such multi-stage approaches can lead to misleading conclusions, and develop
a joint inferential approach for climate reconstruction, model calibration, and age
estimation. As an illustration, we investigate the glacial-interglacial cycle, fitting
both an age model and dynamical climate model to two benthic sediment cores
spanning the past 780 kyr. To show the danger of a multi-stage analysis we sample
ages from the posterior distribution, then perform model selection conditional on
the sampled age estimates, mimicking standard practice. Doing so repeatedly for
different samples leads to model selection conclusions that are substantially different
from each other, and from the joint inferential analysis. We conclude that multi-
stage analyses are insufficient when dealing with uncertainty, and that to draw
sound conclusions the full joint inferential analysis should be performed.
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1 Introduction

Our understanding of palaeoclimates is based on data taken from climate archives that
are proxy for climatic variables, such as temperature, as well as models of the climate
that mathematically formulate hypotheses about long-term climate dynamics. Sediment
cores are commonly used climate archives, with measurements from different depths in
the core relating to the climate at different points in time. These data can be used to
produce reconstructions of past climates by converting depths into ages through the use of
an age model, but doing so is a difficult process as the age-depth relationship is nonlinear,
and there are typically only a few features present in a climate archive that can be used
directly for dating. Mathematical models are used to investigate climate dynamics, and
are often calibrated using these reconstructions in a separate stage of analysis. Care must
be taken when interpreting the results of such calibrations, as any inferences from the
model calibration might otherwise result from assumptions artificially embedded in the
age model. In particular, many age models rely on assumptions about climate dynamics,
creating a risk of circular reasoning when climate models are calibrated using the output
of said age models [1].

There are numerous sources of uncertainty in each stage of the analysis; for example
uncertainties in the age and parameter estimates, discrepancies between models and real-
world system dynamics, and in how proxy measurements relate to climatic variables.
Accurately quantifying these uncertainties, and in particular propagating uncertainties
through the entire analysis, is essential if we are to trust in the conclusions from these
investigations [2]. A multi-stage analysis offers no natural way to do so when strong
dependencies exist between stages. The aim of this article is to demonstrate that a single
joint inferential analysis of the problem can and should be performed. This has been
made possible by advances in computational Bayesian statistical methodology that allow
us to simultaneously solve the probability calculus for all of the unknowns. Using a joint
inferential analysis avoids issues with circular reasoning, and ensures that uncertainties
are propagated correctly throughout the investigation.

Our motivating example is the study of the glacial-interglacial cycle over the past
780 kyr. Over this period the climate oscillated between cold periods in which glaciers
extended, and warm periods in which the glaciers retreated [3]. This is clear in, for
example, benthic cores of δ18O, which is a measurement of the ratio between 18O and 16O
taken from calcite shells embedded in deep-sea sediment cores, and is primarily a function
of global temperature and ice volume at the time the calcite shell was deposited [4, 5]. The
tasks we aim to perform are fitting an age model to the sediment cores (age estimation),
reconstructing components of the climate over time (climate reconstruction), estimating
the parameters of a climate model (model calibration), and determining which models
are best supported by the data (model selection). This is in some sense the statistical
holy grail for analysing this problem [6], and has not been achieved before now (even for
simple models) due to the computational complexities of such an approach.

Numerous climate reconstructions over this period have been obtained by averaging
δ18O measurements over multiple cores (known as stacking), and then fitting an age
model [7, 8, 9]. In line with Milankovitch theory [10] (translation in [11]), the age models
have usually relied on astronomical tuning, aligning features in the archives to variations
in the Earth’s orbit over time [7, 8]. Alternative approaches not relying on astronomical
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tuning have been developed with the aim of verifying the Milankovitch hypothesis [9, 12].
Phenomenological models of the glacial-interglacial cycle are often characterized as

either ordinary differential equations (ODEs) or stochastic differential equations (SDEs)
that explicitly model a small number of climatic variables [13, 14]. These are consistent
with the underlying dynamics of the system, but are not analytically derived from the laws
that govern the physical processes. The models are typically astronomically forced, and
so in a multi-stage analysis there is a clear risk of circular reasoning from calibrating such
models using astronomically tuned age estimates. This danger has been demonstrated
for model calibration and selection, which are extremely sensitive to the age estimates
[15, 16]. However, this sensitivity is apparent even when different sets of age estimates are
consistent with the estimated age uncertainty in the data [16]: two sets of age estimates
that differ by an amount that is less than the error in the age estimates lead to conflicting
conclusions about which models are more strongly supported by the data. This shows
that fixing the age estimates and ignoring the age uncertainty can severely bias the results
of a multi-stage analysis, regardless of the choice of age model. Due to strong mutual
dependencies between the age estimates and the climate model, namely that the forcing
in the climate model constrains the age estimates, and the age estimates influence the
amount of forcing inferred in the model calibration, we must account for the uncertainty
in these investigations by using a joint inferential analysis.

In this article we develop an approach for joint age, state, and parameter estimation,
involving models of the climate and sediment accumulation, and proxy measurements
taken from sediment cores. The algorithm we present is an extension of that employed in
[16], which calibrates dynamical climate models using fixed age estimates. This extension
is highly challenging, as to jointly infer the observation ages we must add a significant
number of hidden variables that increase the dimension of the problem dramatically. We
introduce a novel stochastic age model to reflect our prior beliefs about how age varies
as a function of depth, and construct suitable proposal distributions to sample from the
joint distribution of the ages and climate states. The output is a sample of age estimates,
reconstructions, and estimates of the parameters in the age and climate models, that
characterise the uncertainty in the inference. We believe that this is the first algorithm
shown to be capable of jointly fitting an age model and a nonlinear dynamical climate
model. The approach is tested on synthetic data, and then applied to two cores from the
Ocean Drilling Program, ODP677 [17] and ODP846 [18], so that the age estimates from
these cores can be compared with those of [8] and [9].

An additional output and advantage of our approach is that it allows for the estimation
of the model evidence, which can be used for model selection. We investigate the impact
of ignoring age uncertainty by sampling age estimates from the joint inferential analysis,
and then keeping them fixed in a subsequent computational analysis in order to mimic
a multi-stage analysis. We demonstrate that conclusions differ greatly between different
sampled age estimates, further motivating the need for a joint inferential analysis.

2 Data and Models

Our approach uses forward-models of each aspect of the system that results in the palaeo-
climate data, and then learns all unknown quantities in a joint inferential analysis.
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Figure 1: Illustration of the inverse problem. A set of models are used to describe the
data generation process, and then the data are used to learn about these models.

Combining forward-models in an appropriate way for performing statistical inference
in palaeoclimate investigations is discussed in [19]. The components we include are an
astronomical forcing model (a) that drives a climate model (b); an archive model (c)
that incorporates an age model relating core depths to ages, and a function linking proxy
and climate variables; and a measurement model (d) relating observations (e) to the true
values. This is summarized in Figure 1. The models used here are relatively simple,
but even for these the inference is computationally challenging. However, in principle
each component could be replaced by a more sophisticated choice, and, notwithstanding
computational challenges, the inference methodology described in this article could still
be used.

2.1 Forcing

The prevailing theory is that the glacial–interglacial cycle is primarily driven by the
seasonal and spatial variation of incoming solar radiation, termed “insolation”, due to
variations in the Earth’s orbit around the Sun. The orbit is characterized by precession,
obliquity, and eccentricity. Precession refers to the angle, $, made between the point of
perihelion (the point of the orbit when the Earth is closest to the Sun) and the vernal point
marking the spring equinox, and as such determines when in the seasonal cycle the Earth
is closest to the Sun. Obliquity is the angle between the equator and the orbital plane, and
determines the insolation contrast between summer and winter. Eccentricity measures
how much the Earth’s orbit deviates from a perfect circle (indicated by zero eccentricity),
and hence modulates the effect of precession. It is often convenient to refer to climatic
precession, e sin$, which combines the effects of eccentricity and precession in order to
indicate the effect on the Northern Hemisphere summer insolation. Climatic precession
can be complemented with coprecession, e cos$, to effectively compute insolation at any
time of year at any latitude [20]. In this article we compute these quantities using the
algorithm in [20], which is suitably accurate over the past ∼ 1 Myr.

Phenomenological models are typically forced by an astronomical forcing function that
summarizes the effect of the seasonal and spatial distribution of insolation [14]. Here we
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use a forcing function of the form

F (t;γ) = γPΠP (t) + γCΠC(t) + γEE(t), (1)

where ΠP (t), ΠC(t), and E(t), are the normalized climatic precession, coprecession, and
obliquity respectively. The parameter γ = (γP , γC , γE)> weights the linear combination.
Particular choices of γ correspond to several forcing functions used in the literature, for
example caloric summer insolation at 60◦ N as advocated by [10], or daily mean insolation
at 60◦ N summer solstice as used in [21]. The model is unforced when γ is set to zero.

2.2 Climate model

The astronomical forcing alone does not explain all of the features of the glacial-
interglacial cycle, and so the internal dynamics of the climate system must also be con-
sidered [21, 22]. The approach we follow is to model the Earth’s climate as a dynamical
system forced by the variation in the insolation [14]. The complexity of the climate model
is necessarily limited by the computational cost of generating model simulations. Many
simple phenomenological models have been proposed, which typically comprise of a small
number of differential equations representing hypothesized relationships between different
aspects of the climate. Here we take the CR14 model (a modified version of [13]), which
treats the climate model as a forced oscillator, i.e., the Earth’s climate would fluctuate
between hot and cold periods in the absence of forcing, but the oscillation is paced by the
astronomical forcing. In addition, we represent atmospheric variability as a stochastic
process, resulting in the following SDE (suppressing dependence on time)

dX1 = −
(
β0 + β1X1 + β2

(
X3

1 −X1

)
+ δX2 + F (γ)

)
dt+ σ1dW1

dX2 = αδ

(
X1 +X2 −

X3
2

3

)
dt+ σ2dW2,

in which X1 is taken to be ice volume, and X2 is a non-physical variable acting to
switch between glacial and interglacial states. The parameter β0 scales the ice accumu-
lation/ablation process depending on the sign, β1 scales a linear feedback process, β2
stabilizes the system when positive, δ is an inverse time scale, α controls the ratio of time
scales between X1 and X2, and σ1 and σ2 scale the stochastic fluctuations. Finally, F (γ)
is the forcing function given in Equation 1.

2.3 Archive model

There are no direct measurements of the Earth’s climate or ice sheet extent over the time
scale of interest. Information about the past state of the climate is stored in climate
archives. For example, the quantity of δ18O in the ocean varies as a function of global
temperature and sea ice extent. This information can be extracted from sediment cores,
for example, in order to study the climate history. Our model for this process, termed
the archive model, consists of two components: A model relating the proxy and climate
variables, and an age model governing the age-depth relationship. In general, larger
values of δ18O are indicative of a cold climate with a large amount of sea ice. Hence for
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the proxy model we assume a simple linear relationship between ice volume (X1), and
δ18O (denoted Z), i.e.,

Z = ψ + λX1,

The δ18O datasets we use in this article are taken from benthic sediment cores. Sed-
iment accumulation is inherently stochastic, so as a starting point for the age model we
model sediment accumulation by

dS = µsdt+ σsdWs, (2)

where S is the amount of sediment (in meters), Ws a standard Brownian motion, and
the parameters µs and σs respectively control the mean and variance of the sediment
accumulation process. Under this model, sediment can accumulate and dissipate, but
when µs > 0 the trend is for linear accumulation over time.

Equation 2 can be inverted to give a model for the time, Tm, corresponding to some
core depth Hm, where 1 ≤ m ≤ M identifies core slices. Notationally we take larger
values of m to be nearer the top of the core (Hm < Hm−1), T = 0 as the present, S = 0
as the present sediment level, and H = 0 as the top of the core. When a core is sampled
at depth Hm, the climate information recorded corresponds to the most recent time at
which S = −Hm. This gives a first passage time problem under the time reversal of
Equation 2, the solution of which is an inverse Gaussian distribution, so that

Tm − Tm−1 | Tm ∼ IG

(
Hm−1 −Hm

µs
,
(Hm−1 −Hm)2

σ2
s

)
. (3)

We can obtain p (Tm | Tm−1) using Bayes theorem by noting that p (Tm) follows Equation
3 conditioned on present values.

This age model satisfies many of the desirable properties for Bayesian age models as
summarised in [23]. In particular, age is a monotonic function of depth, the sediment rate
can quickly vary between large and small values, and age uncertainty increases as the
distance away from fixed age points (such as the present/core top) and dated core slices
increases. However, in contrast to other Bayesian age models [23, 24] we have relaxed
the monotonicity assumption for sediment accumulation over time. This is important
because sediment erosion and dissolution are causes of hiatus events (in which a small
change in depth is associated with a large difference in age) in benthic sediment cores
[25].

A realisation of the sediment accumulation model and the implied inverse Gaussian
distribution for the age model are shown in Figure 2. For small values of σs the inverse
Gaussian distribution is centered around the mean, and hiatus events from sediment
erosion and dissolution are rare. As σs increases, the sediment accumulation process is
more volatile, increasing the frequency of hiatus events resulting from sediment erosion
and dissolution. Consequently, the inverse Gaussian distribution becomes increasingly
skewed.

Following the sediment accumulation process the sediment is subject to post-
deposition effects such as core compaction, which we can include by extending the model.
In order to model compaction, we utilize the linear porosity model of [9], which should
be suitable for the core depths of interest [26]. This compaction adjustment introduces
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Figure 2: Left: Realisation of the sediment accumulation model with µs = 4.5 × 10−5

and σs = 2× 10−3. Horizontal lines show a sequence of core slices at 0.1 m intervals, and
the corresponding vertical lines show the associated ages. Right: The implied inverse
Guassian profile for a depth change of 0.1 m with µs = 4.5 × 10−5 and σs = 2 × 10−3

(solid curve), and µs = 4.5× 10−5 and σs = 4× 10−4 (dashed curve). As σs increases the
inverse Gaussian distribution becomes increasingly skewed.

two additional parameters that need to be inferred, the gradient, η, and the intercept, φ.
The model transforms depth measurements into a non-compacted equivalent, using

Ĥm = Hm +
η

1− φ
H2
m,

which can then be substituted into Equation 3.

2.4 Measurement model

The final component in the forward modelling approach relates the output of the climate
model to measurements taken from palaeoclimate archives. For δ18O we use Gaussian
white noise measurement error,

Ym ∼ N (Zm, σ
2
y),

where Ym denotes the observation at depth Hm, Zm = Z(Tm), and σy scales the amount
of measurement error. In addition, there are often features in cores that have been
independently dated, providing valuable information for age estimation. Geomagnetic
reversals, for instance, have been independently dated to high accuracy, and are frequently
observable in benthic cores. However, these are rare events, with the most recent being the
Brunhes-Matuyama (BM) reversal, which occurred approximately 780 kyr ago. Where
the BM reversal can be observed within a core, we use 780 kyr as the age estimate of the
associated δ18O observation, and assume Gaussian error with a standard deviation of 2
kyr [27].
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2.5 Data

We use the ODP677 [17] and ODP846 [18] benthic sediment cores. Both an astronomically
tuned age model [8] and a non-astronomically tuned age model [9] have been fitted to
each core, giving two different sets of age estimates for each core for comparison. The
BM reversal is identifiable in both ODP677 (at 30.4 m) and ODP846 (at 28.7 m), and
so we take the measurements at these depths as the starting values. The number of
observations following the BM reversal are M = 363 and M = 308, for ODP677 and
ODP846 respectively.

2.6 Inverse problem

We employ a Bayesian approach that simultaneously estimates ages, model parameters,
climate states, and chooses between models by estimating Bayes factors. Formally, we
target the posterior distribution

p (θ, T1:M ,X1:M | Y1:M) ∝ p (Y1:M | θ, T1:M ,X1:M) p (X1:M | θ, T1:M)×
p (T1:M | θ) p (θ) , (4)

where p (Y1:M | θ, T1:M ,X1:M), p (X1:M | θ, T1:M), and p (T1:M | θ) are densities induced
by the forward models described in (a)–(d), and p (θ) is the user defined prior distribu-
tion. Where possible we base our prior distribution on physical grounds. We constrain
γP and γE to be positive in line with Milankovitch theory, which suggests that a pos-
itive northern hemisphere insolation anomaly in summer encourages a reduction in ice
volume over time [28]. Specifically, we choose exponential prior distributions for these
parameters, allowing for the system to be weakly forced. The final astronomical forcing
parameter, γC , influences the seasonal distribution of insolation. Since we lack knowledge
about whether more insolation in spring at the expense of autumn results in a positive or
negative contribution to ice accumulation, we choose a Gaussian prior distribution cen-
tred on zero (indicating summer solstice insolation). The prior distributions for the age
model parameters, µs and σs, were selected by examining the sediment cores presented
in [8, 9], and the prior distributions for the compaction adjustment parameters, φ and η,
were chosen based on the porosity profiles presented in [12]. The remaining parameters do
not represent measurable quantities, making prior distribution specification on physical
grounds impossible. Instead, prior distributions were selected based on trial simulations
so that undesirable behaviours such as non-oscillating regimes, having extremely short
or long cycles, and trajectories that diverge to infinity were all discouraged. Broadly
speaking we choose weakly or moderately informative prior distributions depending upon
the parameter. This approach for prior specification was taken in [16] for similar phe-
nomenological models, and produced reasonable results that were robust to variations in
the prior hyperparameters. The complete set of prior distributions for all three models
is given in Table 1.

3 Methods

Since the posterior distribution has no analytical solution, we use a Monte Carlo approach
that characterizes the posterior distribution with a large number of random samples, each
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Table 1: List of parameters used to generate data for the simulation study, and the
associated prior distributions used in the statistical analysis.

Parameter True Value Prior Distribution

β0 0.65 N (0.4, 0.32)

β1 0.2 N (0, 0.42)

β2 0.5 exp (1�0.5)

δ 0.5 exp (1�0.5)

α 11 Γ (10, 2)

γP 0.2 exp (1�0.3)

γC 0.1 N (0, 0.32)

γE 0.3 exp (1�0.3)

σ1 0.2 exp (1�0.3)

σ2 0.5 exp (1�0.5)

σY 0.1 exp (1�0.1)

ψ 4.2 U (3, 5)

λ 0.8 U (0.5, 2)

µs 4.5× 10−5 Γ (180, 1�4× 106)

σs 2× 10−3 exp(500)

φ 0.8 β(45, 15)

η 3.5× 10−4 exp(4000)

X1(t1) −1 U (−1.5, 1.5)

X2(t1) −1.5 U (−2.5, 2.5)

one of which consists of a set of parameter values, climate reconstructions, and age es-
timates. Specifically we employ the sequential Monte Carlo squared (SMC2) algorithm
[29], which was previously implemented in [16] to test between competing phenomeno-
logical models of the glacial-interglacial cycle in the absence of any age uncertainty. Here
we extend the target distribution to also estimate the ages. SMC2 is advantageous as it
requires little user input in selecting tuning parameters, and so can be applied to multiple
models and data sets with relative ease.

Sequential Monte Carlo (SMC) algorithms [30] sample a target distribution, pM , by
propagating a weighted collection of ‘particles’ through a series of intermediary distribu-
tions, {pm}Mm=1. The particles are initially sampled from an arbitrary tractable distribu-
tion, p1, and the intermediary distributions are then chosen so as to gradually morph from
p1 to pM . The gradual transition between distributions allows for the implementation of
an efficient sampling scheme in every iteration. The reason for using SMC methods is
that they provide an unbiased estimate of the normalizing constant for each distribution
that can then be used in parameter estimation or model selection.

For state space models it is common to initialize by setting p1 to be the prior distribu-
tion, and to then add a single data point for every intermediary distribution. A well known
example is the particle filter (PF) [31], which uses the sequence of filtering distributions
pm(X1:m) := p(X1:m | Y1:m,θ). Particles are sampled and propagated via importance
sampling, so that at initialization a sample of Nx particles are sampled from some pro-
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posal density r1(X1 | Y1,θ), and given importance weight p(X1, Y1 | θ)�r1(X1 | Y1,θ).
In subsequent iterations the particles are resampled using a multinomial scheme, propa-
gated via some proposal distribution rm(Xm | X1:m−1, Y1:m,θ), and reweighted so that
the particles are a weighted sample of the posterior p(X1:m | Y1:m,θ).

Here we extend the target distribution to also sample the ages, i.e., we use the se-
quence of intermediary distributions pm(X1:m, T1:m) = p(X1:m, T1:m | Y1:m,θ). This
in turn requires us to extend the proposal distribution. Our approach is to use
a two-step proposal, proposing Tm from bm (Tm | Tm−1, Ym,θ), followed by Xm from
rm (Xm | Tm−1, Tm,Xm−1, Ym,θ). The full algorithm is described in Algorithm 1.

Using the PF, unbiased estimates of the normalizing constants p(Y1:m | θ) (termed
the likelihood) can be obtained in each iteration by noting that this normalizing constant
can be decomposed as

p(Y1:m | θ) = p(Y1 | θ)
m∏
j=2

p(Yj | Y1:j−1,θ).

Unbiased estimates of each of the components can be obtained by averaging the unnor-
malised weights in the particle filter in each iteration, i.e.,

p̂(Ym | Y1:m−1,θ) =
1

Nx

Nx∑
k=1

ω(k)
m .

Taking the product of these unbiased estimates in turn gives an unbiased estimate,
p̂(Y1:m | θ), of p(Y1:m | θ) [32].

At the conclusion of the PF (once all of the data have been assimilated), we have an
unbiased estimate of the likelihood, p̂(Y1:M | θ). The unbiased likelihood estimates can
then be embedded within another Monte Carlo algorithm in order to perform parameter
estimation (sampling from p(θ | Y1:M)). These are termed pseudo-marginal algorithms,
and are constructed in such a way as to target the correct posterior distribution, despite
using the approximate likelihood p̂(Y1:M | θ) in the Monte Carlo scheme [33]. Recent
examples include PMCMC [34], which embeds the PF within an MCMC algorithm, and
SMC2 [29], which embeds the PF within a second SMC algorithm. As we are interested in
obtaining estimates of the normalizing constant p(Y1:M), we focus on the SMC2 algorithm.

The SMC2 algorithm [29] embeds the particle filter within another SMC algorithm in
order to target the sequence of posterior distributions

p0 = p(θ), pm = p(θ,X1:m | Y1:m),

for m = 1, . . . ,M . The first step samples Nθ parameter particles, {θ(n)}Nθn=1, from the
prior distribution, and attaches a PF of Nx state particles to each parameter particle.
As observations are assimilated, the attached PFs return unbiased estimates of the likeli-
hoods, p(Y1:m | θ(n)), which are used to weight the parameter particles. The weights must
be carefully monitored in each iteration as a small number of particles tend to accumulate
most of the weight, dominating the particle approximation. This is referred to as particle
degeneracy, and is often monitored by tracking the effective sample size (ESS), defined
as

ESS =

(
Nθ∑
i=1

(
W (i)
m

)2)−1
,
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Algorithm 1 Particle filter targeting p (T1:M ,X1:M | Y1:M ,θ).
for k = 1, ..., NX do

Sample T
(k)
1 ∼ b1 (T1 | Y1,θ).

Sample X
(k)
1 ∼ r1

(
X1 | T (k)

1 , Y1,θ
)

.

Set the importance weight

ω
(k)
1 =

p
(
T

(k)
1 | θ

)
p
(
X

(k)
1 | T (k)

1 ,θ
)
p
(
Y1 | T (k)

1 ,X
(k)
1 ,θ

)
b1

(
T

(k)
1 | Y1,θ

)
r1

(
X

(k)
1 | T (k)

1 , Y1,θ
) .

end for
Normalize the weights. For k = 1, ..., NX

Ω
(k)
1 =

ω
(k)
1∑NX

i=1 ω
(i)
1

.

for m = 2, ...,M do
for k = 1, ..., NX do

Sample ancestor particle index a
(k)
m−1 with replacement from 1 : Nx according to weights Ω

(1:NX)
m−1 .

Sample T
(k)
m ∼ bm

(
Tm | T

(
a
(k)
m−1

)
m−1 , Ym,θ

)
.

Sample X(k)
m ∼ rm

(
Xm | T

(
a
(k)
m−1

)
m−1 , T

(k)
m ,X

(
a
(k)
m−1

)
m−1 , Ym,θ

)
.

Extend the particle trajectory{
T

(k)
1:m,X

(k)
1:m

}
=

{(
T

(a
(k)
m−1)

1:m−1 , T (k)
m

)
,

(
X

(a
(k)
m−1)

1:m−1 ,X
(k)
m

)}
.

Set the importance weight

ω(k)
m = p

(
Ym |X(k)

m ,θ
) p

(
T

(k)
m | T

(
a
(k)
m−1

)
m−1 ,θ

)

bm

(
T

(k)
m | T

(
a
(k)
m−1

)
m−1 , Ym,θ

)×

p

(
X(k)
m |X

(
a
(k)
m−1

)
m−1 , T

(k)
m , T

(
a
(k)
m−1

)
m−1 ,θ

)

rm

(
X(k)
m | T

(
a
(k)
m−1

)
m−1 , T

(k)
m ,X

(
a
(k)
m−1

)
m−1 , Ym,θ

) .

end for
Normalize the weights. For k = 1, ..., NX

Ω(k)
m =

ω
(k)
m∑NX

i=1 ω
(i)
m

.

end for
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where
{
W

(i)
m

}Nθ
i=1

are the normalized weights in population m. The particles can be re-

sampled when the ESS falls below some threshold (usually Nθ/2), so that low-weight
particles are discarded. Doing so equalizes the weights between particles, but leads to
few unique particles in the parameter space. In SMC2 particle diversity can be improved
after the resampling step by running a PMCMC algorithm that leaves p(θ,X1:m | Y1:m)
invariant [34], i.e. new values are proposed for each parameter particle, and a PF per-
formed up to time m conditional on the proposed parameters. The new parameter values
are then accepted or rejected according to the ratio of the posterior density estimates.
The full algorithm, extended to include T1:M in the target, is given in Algorithm 2.

SMC2 also provides an estimate to the normalizing constant to Equation 4, termed
the model evidence. As with the PF, SMC2 makes use of the decomposition

p(Y1:M) = p(Y1)
M∏
m=2

p(Ym | Y1:m−1).

The components are then estimated by averaging the unnormalised weights in each iter-
ation, i.e.,

p̂(Ym | Y1:m−1) =

Nθ∑
n=1

W
(n)
m−1p̂(Ym | Y1:m−1,θ(n)),

and an estimate of the model evidence is then obtained by substituting p(Ym | Y1:m−1)
with p̂(Ym | Y1:m−1). The ratio of model evidence terms between two models, i.e.
p(Y1:M | M1)/p(Y1:M | M2) where M1 and M2 are model identifiers, is the Bayes factor
of model M1 over M2, and indicates the relative explanatory power between the two
models [35]. Bayes factors are a commonly used tool for performing model selection in
a Bayesian framework. Standard interpretations of the Bayes factor are described in
[36]. The Bayes factors provide a principled way to undertake model selection, such as
comparing two different phenomenological models, or different astronomical forcings.

3.1 Implementation details

There are several user-defined choices to make when implementing the algorithm. Firstly
there are the proposal distributions in both the PF and the SMC algorithm in which
it is contained. An advantage of SMC approaches is that we have a collection of par-
ticles in each iteration that permits some automation of the proposals. For example,
for the model parameters in the PMCMC component we use independent Gaussian
proposals with the sample mean and covariance. In the PF, in the first iteration we
initialize with the proposals b1 (T1 | Y1,θ) ∼ N (780, 2) (kyr ago), which is the obser-
vation error distribution of the Brunhes-Matuyama (BM) geomagnetic reversal, and
r1 (X1 | T1, Y1,θ) = p (X1), which is the prior distribution. Within the PMCMC steps,
whenever the PF is reinitialized we replace these proposals with independent Gaussian
proposals using the sample mean and covariance. As the PF progresses, for the ages we
use the proposal bm (Tm | Tm−1, Ym,θ) ∝ p (Tm−1 | Tm), which is a reasonable approxima-
tion to simulating from the age model. Developing proposal distributions for the state
variables is more difficult as the transition densities p(Xm | Tm−1, Tm,Xm−1,θ) are not
available in closed form for the models of interest. One option is to choose the particle
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Algorithm 2 SMC2 algorithm targeting p (θ,X1:M , T1:M | Y1:M).
for n = 1, ..., Nθ do

Sample θ(n) from the prior distribution, p (θ).
Set the importance weight

W
(n)
0 =

1

Nθ
.

end for
for m = 1, ...,M do
if ESS< Nθ

2 then
for n = 1, ..., Nθ do

Sample θ∗(n), T
∗(1:NX ,n)
1:m−1 and X

∗(1:NX ,n)
1:m−1 from θ(1:Nθ), T

(1:NX ,1:Nθ)
1:m−1 and X

(1:NX ,1:Nθ)
1:m−1 , according

to weights W
(1:Nθ)
m−1 .

Sample θ∗∗(n), T
∗∗(1:NX ,n)
1:m−1 and X

∗∗(1:NX ,n)
1:m−1 from a PMCMC algorithm targeting

p (θ,X1:m−1, T1:m−1 | Y1:m−1) initialised with θ∗(n), T
∗(1:NX ,n)
1:m−1 and X

∗(1:NX ,n)
1:m−1 .

end for
Set θ(1:Nθ) = θ∗∗(1:Nθ), T

(1:NX ,1:Nθ)
1:m−1 = T

∗∗(1:NX ,1:Nθ)
1:m−1 and X

(1:NX ,1:Nθ)
1:m−1 = X

∗∗(1:NX ,1:Nθ)
1:m−1 .

Set the importance weights

W
(n)
m−1 =

1

Nθ
for n = 1, ..., nθ.

end if
for n = 1, ..., Nθ do

Sample T
(1:NX ,n)
1:m , X

(1:NX ,n)
1:m by performing iteration m of the particle filter, and record estimates

of p̂
(
Ym | Y1:m−1,θ

(n)
)

and p̂
(
Y1:m | θ(n)

)
.

Set the importance weights

w(n)
m = W

(n)
m−1p̂

(
Ym | Y1:m−1,θ

(n)
)
.

end for
Evaluate

p̂ (Ym | Y1:m−1) =

Nθ∑
i=1

w(i)
m .

Normalise the weights

W (n)
m =

w
(n)
m∑Nθ

i=1 w
(i)
m

for n = 1, ..., Nθ.

end for
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proposal distributions so that the transition density cancels from the importance weights,
which can be achieved by simulating each Xm from the climate model, i.e., by setting
rm = p(Xm | Tm−1, Tm,Xm−1,θ). However, this will typically lead to too many pro-
posals being far from the observations, leading to particle degeneracy. Instead we use
the proposals developed in [16] that guide proposals towards the next observation, giving
more equal weights.

Secondly, we need to decide on a resampling scheme. Here we use multinomial re-
sampling, which is the most commonly used resampling scheme, but alternatives such as
stratified resampling usually give improvements in sample variance [37, 38].

Thirdly, we need to decide on the number of particles, Nθ and Nx, and the chain
length for the PMCMC rejuvenation steps. These choices are typically dictated by the
available computational resources. We use Nx = Nθ = 1000, and a chain length of 10,
which seems to maintain high particle diversity.

Finally, we check whether the algorithm has converged by ensuring that the results
are consistent between independent runs.

4 Results

4.1 Joint inferential analysis reliably infers unobserved compo-
nents from synthetic data

We begin with a simulation study to demonstrate the ability of our joint inferential anal-
ysis for age estimation, state estimation, parameter estimation, and model selection. We
simulate a set of observations from the forward models, and then attempt to recover the
true parameters, states, and ages. We also estimate the Bayes factors between the forced
and unforced model to ensure that we can determine the importance of the astronomical
forcing. Specifically, observation times were drawn from an imagined core of length 32m
sampled at 0.1 m intervals, giving M = 321 observations. The first observation is a noisy
measurement of the true age, where the noise is sampled from a Gaussian distribution
with mean zero and a standard deviation of 2 kyr, as if we had observed the BM reversal.

Figure 3 shows the simulated observations, and compares them with the 95% highest
density regions (HDRs) for the estimated ages and states. The linear trend has been
removed from the age versus depth plot so that the variation is more clearly visible. Note
that the age-depth relationship is not a linear relationship (which would be a horizontal
line), and in particular, there is a large period of time in which little sediment is deposited
in the middle of the record. Despite this hiatus, the true ages are in regions of high pos-
terior probability density throughout the dataset, showing that we are able to recover the
ages. Likewise, the majority of the true values for both the observable and unobservable
state variables lie within the 95% HDRs throughout the core. As would be expected,
the posterior variance for the unobservable state is larger than for the observable state,
particularly when the system switches between glacial and interglacial periods.

The marginal posterior distributions of the parameters and their true values are shown
in Figure 4. The true parameter values lie in regions of high posterior probability density,
demonstrating that we are able to recover the values used to generate the data. However,
note that for some parameters, most notably φ, the marginal posterior distributions
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Figure 3: Simulated data (black line) and estimated 95% HDRs (grey) for the ages and
states from the joint inferential analysis. Age estimates are shown with the linear trend
removed. Points show true simulated values.
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Figure 4: Estimated marginal posterior distributions for the simulation study using the
joint inferential analysis. Vertical lines indicate the values used to generate the data, and
the dashed lines show the prior distributions.
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are very close to the prior distributions. This suggests that data are not informative
about these parameters. For the purposes of interpretation we need to be careful, as
estimates of these parameters will obviously be highly sensitive to the choice of prior
distributions. Furthermore, care must be taken using SMC algorithms when the initial
target distribution (in this case the prior distribution) concentrates mass in regions of low
posterior density. In these cases very few particles will be initialised in regions of high
posterior density, potentially leading to slow convergence of the algorithm or resulting in
high variance estimates. Since we were conservative in our prior specification, selecting
weakly or moderately informative prior distributions, this was not an issue here.

We repeat the analysis for these data but now using an unforced version of the CR14
model. We focus on the Bayes factor to determine whether we can infer the impor-
tance of the astronomical forcing. The Bayes factor is approximately 109 in favour of
the forced model, suggesting that even with the age uncertainty, the data strongly sup-
port the forced model [16, 36]. The strength of the Bayes factor may result from the
volatility of the driving Brownian motion. In the forced model the inferred value of σ1
is [0.126, 0.281] (95% credible interval), whereas in the unforced model this increases to
[0.323, 0.493]. This suggests that in the unforced model the drift of the SDE frequently
pulls the trajectory away from observations, which then needs to be corrected by large
stochastic perturbations in order to fit the data.

This result suggests that even though we have a relatively small number of noisy
measurements from a single core, we are able to correctly infer the importance of the
astronomical forcing in the climate record, even after accounting for the uncertainty that
arises from estimating 17 model parameters, the age-depth relationship, and the climate
states. To ensure that this is a reasonable result, we can perform the model selection
experiment on simulated data that has been generated with the unforced model. In this
case, we find that the Bayes factor is 102 in favour of the unforced model, demonstrating
that we are inferring the forcing parameters, and not simply assuming that the forcing
plays a crucial role.

4.2 Reconstructions from ODP677 and ODP846 are consistent
with LR04 but not H07

We now analyse ODP677 and ODP846, which are shown in Figure 5 with the estimated
sequence of 95% HDRs for the ages. We include the age estimates from the LR04 [8] and
H07 [9] stacks for comparison. The age uncertainties are larger than in the simulation
study, likely as a result of model discrepancies. Between the two cores, the age uncer-
tainties are typically larger in ODP846 than ODP677, with the mean standard deviation
of the age estimates being 6.5 kyr in ODP846 and 3.5 kyr in ODP677. Both are smaller
than previous uncertainty estimates, which were up to 11 kyr [8, 12, 9]. Additionally,
the most uncertain estimates are not necessarily at the mid-point between age control
points (such as the present, or geomagnetic reversals), which has previously been assumed
[12, 9]. Rather, the age control points only seem to constrain the ages within a few meters
of the core. Our age estimates for ODP677 are consistent with the LR04 age estimates,
which lie in credible intervals throughout the sediment core. On the other hand, the H07
estimates deviate greatly from our estimates between 11 m and 16 m. Our age estimates
for ODP846 are consistent with both LR04 and H07, primarily due to the larger variance
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in the age estimates. However, the LR04 estimates are notably closer to the posterior
mean. For both datasets it can be seen that using a linear age-depth relationship will
lead to poor estimates of observation times.

The sequence of 95% HDRs of the normalized ice volume vs time are shown in Figure 6.
We include the LR04 and H07 stacks for comparison. It is reassuring that our ice-volume
reconstructions from ODP677 and ODP846 are remarkably similar despite being obtained
independently. The similarities with LR04 are again very striking, whereas H07 is out of
agreement between 200 and 400 kyr ago. The likely reason is that the age estimates in the
H07 stack are purely depth derived, and since this period is distant from the age-control
points provided by the BM reversal and the present (core-top), the H07 reconstruction
has low accuracy here.

Our approach has the advantage of using information on climate forcing, while pre-
serving the possibility to test the alternative hypothesis that the astronomical forcing
has no influence. Repeating the experiment using the unforced CR14 model yields Bayes
factors in favour of the forced model against the unforced model of approximately 105

in ODP677, and 1 in ODP846. In other words, the forced model is strongly supported
by ODP677, while evidence about astronomical forcing from ODP846 is weaker, but not
contradictory.

4.3 Joint inferential analysis, as opposed to a multi-stage anal-
ysis, is essential

In [16] it was demonstrated that model selection experiments for models of the glacial-
ingerglacial cycle are sensitive to the choice of age model. Specifically, two sets of age
estimates consistent with the reported uncertainty lead to different conclusions, and it
was thus argued that the age uncertainty must be incorporated into any analysis. In
order to further illustrate this statement we propose the following experiment. In per-
forming a joint inferential analysis we have randomly generated realizations of the ages
of each sediment core. By sampling from these realizations we can obtain plausible age
estimates that differ from each other consistently with the age uncertainty. We can then
repeat the analysis with the fixed age estimates in order to test whether our conclusions
significantly differ when the age uncertainty is ignored. Taking four realizations of the
ages for ODP677, and then obtaining the Bayes factor in favour of the forced over the
unforced model, yields Bayes factors of approximately 104, 108, 109, and 1015. Likewise
for ODP846 we obtain Bayes factors of 10−2, 101, 105, and 108; values less than one
are evidence in favour of the unforced model. In ODP677 we always favour the forced
model, but with varying degrees of confidence. In ODP846 our conclusions can change
drastically, likely because the age uncertainty is greater. In either case it is demonstrated
that ignoring the age uncertainty can significantly alter the results of such analyses. In
some situations it may be possible to fully quantify age uncertainty in a first stage of
analysis, and then propagate these uncertainties into downstream analyses. However,
when there are strong couplings between the different components of the system, as is
the case here, accurately characterizing and propagating uncertainties requires a joint
inferential analysis.
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Figure 5: Observed δ18O values and age estimates from the joint inferential analysis for
ODP677 (top), and ODP846 (bottom). 95% HDRs for the observation ages are shown in
grey. Age estimates from the LR04 benthic stack are shows as a solid blue line, and age
estimates from the H07 stack are shown as a dashed red line.
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Figure 6: 95% HDRs for the normalised ice volume over time from the joint inferential
analysis for ODP677 (top) and ODP846 (bottom), shown in grey. The normalised LR04
stack is shown as a solid blue line, and the normalised H07 stack is shown as a dashed
red line.
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5 Conclusion

We have investigated an approach to calibrating dynamical climate models and testing
between competing hypotheses via model selection, whilst jointly fitting an age model to
a sediment core. Performing a joint inferential analysis in this manner is highly challeng-
ing, requiring state of the art statistical methods and intensive computation (the analyses
presented here each took six days on a standard desktop computer). Nevertheless there
are notable advantages in undertaking a joint inferential analysis over splitting the anal-
ysis between multiple stages. Firstly, the joint inferential analysis both estimates climate
dynamics and forcings, and uses this information to constrain the ages, without the risk
of circular reasoning. Secondly, we are able to characterize a range of uncertainties, and
push these uncertainties forward into our conclusions, making those conclusions more
reliable.

There are several ways in which the approach presented here could potentially be
extended. Firstly, in each experiment we only utilize data from a single sediment core,
and a natural extension is to combine observations from multiple cores. However, this
is a non-trivial extension; with multiple cores the order in time of the observations is
unknown, and so developing effective proposal distributions in a Monte Carlo approach is
significantly more difficult. Secondly, numerous sources of uncertainty are not accounted
for here. Examples include identification error for the BM reversal, and bioturbation in
the sediment core. Such sources of uncertainty could be incorporated into the analysis by
extending the models. Finally, the models considered here are all relatively simple, and
could be replaced with more complex models. A primary obstacle in these extensions
is the computational cost involved, which is already high when using simple models.
Fortunately, sequential Monte Carlo methods such as those used here are amenable to
parallelization, giving the possibility of dramatically improving computation times.

Our focus for model selection was testing between a forced and an unforced model
for the glacial–interglacial cycle, but the joint inferential approach is relevant to a much
wider range of investigations. Dynamical models can be used to investigate, for exam-
ple, changes in oscillation regimes such as the mid-Pleistocene transition, abrupt changes
during glacial periods such as Dansgaard–Oeschger events, and relationships between dif-
ferent climate variables such as ice volume and CO2. In each of these cases the calibration
of the dynamical model will be sensitive to the inferred ages of the observations. Testing
between different hypotheses therefore requires effective joint quantification of age and
model uncertainties, which can only be achieved by performing a joint inferential analysis.
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