Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Autonomous landing control of highly flexible aircraft based on Lidar preview in the presence of wind turbulence

Tools
- Tools
+ Tools

Qi, Pengyuan, Zhao, Xiaowei and Palacios, Rafael (2019) Autonomous landing control of highly flexible aircraft based on Lidar preview in the presence of wind turbulence. IEEE Transactions on Aerospace and Electronic Systems . p. 1. doi:10.1109/TAES.2019.2892639

[img]
Preview
PDF
WRAP-autonomous-landing-control-highly-flexible-aircraft-Lidar-wind-Qi-2019.pdf - Accepted Version - Requires a PDF viewer.

Download (3016Kb) | Preview
Official URL: http://dx.doi.org/10.1109/TAES.2019.2892639

Request Changes to record.

Abstract

This paper investigates preview-based autonomous landing control of a highly flexible flying wing model using short range Lidar wind measurements in the presence of wind turbulence. The preview control system is developed based on a reduced-order linear aeroelastic model and employs a two-loop control scheme. The outer loop employs the LADRC (linear active disturbance rejection control) and PI algorithms to track the reference landing trajectory and vertical speed, respectively, and to generate the attitude angle command. This is then used by the inner-loop using H∞ preview control to compute the control inputs to the actuators (control flaps and thrust). A landing trajectory navigation system is designed to generate real-time reference commands for the landing control system. A Lidar (light detection and ranging) simulator is developed to measure the wind disturbances at a distance in front of the aircraft, which are provided to the inner-loop H∞ preview controller as prior knowledge to improve control performance. Simulation results based on the full-order nonlinear flexible aircraft dynamic model show that the preview-based landing control system is able to land the flying wing effectively and safely, showing better control performance than the baseline landing control system (without preview) with respect to landing effectiveness and disturbance rejection. The control system’s robustness to measurement error in the Lidar system is also demonstrated.

Item Type: Journal Article
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: Faculty of Science, Engineering and Medicine > Engineering > Engineering
Library of Congress Subject Headings (LCSH): Airplanes -- Design and construction, Landing aids (Aeronautics), Optical radar
Journal or Publication Title: IEEE Transactions on Aerospace and Electronic Systems
Publisher: IEEE
ISSN: 0018-9251
Official Date: 11 January 2019
Dates:
DateEvent
11 January 2019Available
4 January 2019Accepted
Page Range: p. 1
DOI: 10.1109/TAES.2019.2892639
Status: Peer Reviewed
Publication Status: Published
Reuse Statement (publisher, data, author rights): © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us