
The Library
Machine-learning approaches to exoplanet transit detection and candidate validation in wide-field ground-based surveys
Tools
(2019) Machine-learning approaches to exoplanet transit detection and candidate validation in wide-field ground-based surveys. Monthly Notices of the Royal Astronomical Society, 483 (4). pp. 5534-5547. doi:10.1093/mnras/sty3146 ISSN 0035-8711.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1093/mnras/sty3146
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||||
Journal or Publication Title: | Monthly Notices of the Royal Astronomical Society | ||||||
Publisher: | Wiley | ||||||
ISSN: | 0035-8711 | ||||||
Official Date: | March 2019 | ||||||
Dates: |
|
||||||
Volume: | 483 | ||||||
Number: | 4 | ||||||
Page Range: | pp. 5534-5547 | ||||||
DOI: | 10.1093/mnras/sty3146 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |