Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats

Tools
- Tools
+ Tools

Boltze, Johannes, Schmidt, Uwe R., Reich, Doreen M., Kranz, Alexander, Reymann, Klaus G., Strassburger, Maria, Lobsien, Donald, Wagner, Daniel-Christoph, Förschler, Annette and Schäbitz, Wolf-Rüdiger (2012) Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplantation, 21 (6). pp. 1199-1211. doi:10.3727/096368911X589609 ISSN 0963-6897.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.3727/096368911X589609

Request Changes to record.

Abstract

Experimental treatment strategies using human umbilical cord blood mononuclear cells (hUCB MNCs) represent a promising option for alternative stroke therapies. An important point for clinical translation of such treatment approaches is knowledge on the therapeutic time window. Although expected to be wider than for thrombolysis, the exact time window for hUCB MNC therapy is not known. Our study aimed to determine the time window of intravenous hUCB MNC administration after middle cerebral artery occlusion (MCAO). Male spontaneously hypertensive rats underwent MCAO and were randomly assigned to hUCB MNC administration at 4, 24, 72, and 120 or 14 days. Influence of cell treatment was observed by magnetic resonance imaging on days 1, 8, and 29 following MCAO and by assessment of functional neurological recovery. On day 30, brains were screened for glial scar development and presence of hUCB MNCs. Further, influence of hUCB MNCs on necrosis and apoptosis in postischemic neural tissue was investigated in hippocampal slices cultures. Transplantation within a 72-h time window resulted in an early improvement of functional recovery, paralleled by a reduction of brain atrophy and diminished glial scarring. Cell transplantation 120 h post-MCAO only induced minor functional recovery without changes in the brain atrophy rate and glial reactivity. Later transplantation (14 days) did not show any benefit. No evidence for intracerebrally localized hUCB MNCs was found in any treatment group. In vitro hUCB MNCs were able to significantly reduce postischemic neural necrosis and apoptosis. Our results for the first time indicate a time window of therapeutic hUCB MNC application of at least 72 h. The time window is limited, but wider than compared to conventional pharmacological approaches. The data furthermore confirms that differentiation and integration of administered cells is not a prerequisite for poststroke functional improvement and lesion size reduction.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- )
Journal or Publication Title: Cell Transplantation
Publisher: Sage Publications Ltd.
ISSN: 0963-6897
Official Date: June 2012
Dates:
DateEvent
June 2012Published
Volume: 21
Number: 6
Page Range: pp. 1199-1211
DOI: 10.3727/096368911X589609
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us