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ABSTRACT
Petri nets, also known as vector addition systems, are a long estab-

lished model of concurrency with extensive applications in mod-

elling and analysis of hardware, software and database systems,

as well as chemical, biological and business processes. The central

algorithmic problem for Petri nets is reachability: whether from the

given initial configuration there exists a sequence of valid execution

steps that reaches the given final configuration. The complexity of

the problem has remained unsettled since the 1960s, and it is one

of the most prominent open questions in the theory of verification.

Decidability was proved by Mayr in his seminal STOC 1981 work,

and the currently best published upper bound is non-primitive re-

cursive Ackermannian of Leroux and Schmitz from LICS 2019. We

establish a non-elementary lower bound, i.e. that the reachability

problem needs a tower of exponentials of time and space. Until

this work, the best lower bound has been exponential space, due to

Lipton in 1976. The new lower bound is a major breakthrough for

several reasons. Firstly, it shows that the reachability problem is

much harder than the coverability (i.e., state reachability) problem,

which is also ubiquitous but has been known to be complete for

exponential space since the late 1970s. Secondly, it implies that

a plethora of problems from formal languages, logic, concurrent

systems, process calculi and other areas, that are known to admit

reductions from the Petri nets reachability problem, are also not ele-

mentary. Thirdly, it makes obsolete the currently best lower bounds

for the reachability problems for two key extensions of Petri nets:

with branching and with a pushdown stack.

At the heart of our proof is a novel gadget so called the facto-

rial amplifier that, assuming availability of counters that are zero
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testable and bounded by k , guarantees to produce arbitrarily large

pairs of values whose ratio is exactly the factorial of k . We also de-

velop a novel construction that uses arbitrarily large pairs of values

with ratio R to provide zero testable counters that are bounded by R.
Repeatedly composing the factorial amplifier with itself by means

of the construction then enables us to compute in linear time Petri

nets that simulate Minsky machines whose counters are bounded

by a tower of exponentials, which yields the non-elementary lower

bound. By refining this scheme further, we in fact establish hardness

for h-exponential space already for Petri nets with h + 13 counters.
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1 INTRODUCTION
Petri nets [45], also known as vector addition systems [23], [18,

cf. Section 5.1], [20], are a long established model of concurrency

with extensive applications in modelling and analysis of hardware

[7, 28], software [6, 17, 21] and database [4, 5] systems, as well as

chemical [1], biological [2, 44] and business [36, 50] processes (the

references on applications are illustrative). The central algorithmic

problem for Petri nets is reachability: whether from the given initial

configuration there exists a sequence of valid execution steps that

reaches the given final configuration.

There are several presentations of Petri nets, and a number of

variants of their reachability problem, all of which are equivalent.

One simple way to state the problem is: given a finite setT of integer

vectors in d-dimensional space and two d-dimensional vectors v
and w of nonnegative integers, does there exist a walk from v to

w such that it stays within the nonnegative orthant, and its every

step modifies the current position by adding some vector from T ?

Brief History of the Problem. Over the past half century, the com-

plexity of the Petri nets reachability problem has remained unset-

tled. The late 1970s and the early 1980s saw the initial burst of

https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
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activity. After an incomplete proof by Sacerdote and Tenney [47],

decidability of the problem was established by Mayr [39, 40], whose

proof was then simplified by Kosaraju [24]. Building on the further

refinements made by Lambert in the 1990s [25], there has been

substantial progress over the past ten years [29–31], culminating

in the first upper bound on the complexity [32], recently improved

to Ackermannian [33].

In contrast to the progress on refining the proof of decidability

and obtaining an upper bound on the complexity, Lipton’s landmark

result that the Petri nets reachability problem requires exponential

space [37] has remained the state of the art on lower bounds for over

40 years. Moreover, in conjunction with an apparent tightness of

Lipton’s construction, this has led to the conjecture that the problem

is ExpSpace-complete becoming common in the community.
1

Main Result and Its Significance. We show that the Petri nets

reachability problem is not elementary, more precisely that it is

hard for the class Tower of all decision problems that are solvable

in time or space bounded by a tower of exponentials whose height

is an elementary function of the input size [48, Section 2.3]. We see

this result as important for several reasons:

• It refutes the conjecture of ExpSpace-completeness, estab-

lishing that the reachability problem is much harder than the

coverability (i.e., state reachability) problem; the latter is also

ubiquitous but has been known to be ExpSpace-complete

since the late 1970s [37, 46].

• It narrows significantly the gap to the best known upper

bound [33] in terms of the Ackermannian function, which

is among the slowest-growing functions that dominate all

primitive recursive functions.

• It implies that a plethora of problems from formal languages

[9], logic [8, 10, 11, 22], concurrent systems [14, 16], pro-

cess calculi [42], linear algebra [19] and other areas (the

references are again illustrative), that are known to admit

reductions from the Petri nets reachability problem, are also

not elementary; for more such problems and a wider discus-

sion, we refer to Schmitz’s recent survey [49].

• It makes obsolete the Tower lower bounds for the reachabil-

ity problems for two key extensions of Petri nets: branching

vector addition systems [26] and pushdown vector addition

systems [27].

Petri Nets and Exponential Space Hardness. Before we present the
main ideas involved in the proof of the non-elementary lower bound

for the reachability problem, let us introduce some key aspects of

Petri nets by recalling the crux of Lipton’s construction for the

exponential space hardness.

Minsky machines, which can be thought of as deterministic

finite-state machines equipped with several registers, are one of

the classical universal models of computation [43, Chapter 14].

The registers, which are called counters, store natural numbers

(initially 0) and can be manipulated by only two simple operations:

increments (x += 1), and conditionals that either jump if a counter

is zero or decrement it otherwise (if x = 0 then goto L else x −=

1). With appropriate restrictions, the halting problem for Minsky

1
For an interesting post by Lipton about his exponential space hardness result, we refer

the reader to https://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/.

machines is complete for various time and space complexity classes.

Lipton’s proof proceeds by reducing from the following ExpSpace-

complete problem (cf. [15, Theorems 3.1 and 4.3]): given a Minsky

machine of size n with 3 counters, does it halt after a run in which

the counters remain bounded by 2
2
n
?

Petri nets can be construed as similar to Minsky machines, but

with two important differences. Firstly, Petri nets can increment

a counter always, and can decrement a counter if positive, but

cannot test whether a counter is zero. Secondly, Petri nets are

nondeterministic. Thus, a decrement of a counter either succeeds

and the run continues (if the counter was positive), or fails and the

current nondeterministic branch is blocked (if the counter was zero).

It is the lack of zero tests that makes decidable [40] the reachability

problem: given a Petri net and a subset of its counters, does it halt

in a configuration where all the counters from the subset are zero?

To construct a Petri net that simulates the given Minsky machine

of size n as long as its 3 counters are bounded by 2
2
n
, the main

task is therefore checking that such a counter x is zero. Lipton

observed that it suffices to introduce a counter x̂, set up andmaintain

the invariant x + x̂ = 2
2
n
, and implement a macro Decn x̂ that

decrements x̂ and increments x (i.e., performs the code x̂ −= 1

x += 1) exactly 2
2
n
times. That is because the codeDecn x̂ Decn x

(where, in the latter instance of the macro, x and x̂ are swapped)
then checks that counter x is zero: it either succeeds and leaves x
and x̂ unchanged if x was zero (i.e. x̂ was 2

2
n
), or fails otherwise.

Lipton’s construction meets that goal inductively, by setting up

pairs of counters such that xi + x̂i = 2
2
i
= yi + ŷi and implement-

ing a macro Deci that decrements a counter and increments its

complement exactly 2
2
i
times, for i = 0, 1, . . . ,n. Doing it for i = 0

is easy. To step from i to i + 1, consider the following code, where

the loops are repeated nondeterministic numbers of times:

loop
xi += 1 x̂i −= 1

loop
yi += 1 ŷi −= 1

x̂i+1 −= 1 xi+1 += 1

Deci yi
Deci xi .

Assuming that xi and yi are zero at the start, there is a unique

nondeterministic branch that runs the code completely (without

getting blocked): it repeats the outer loop 2
2
i
times with the final

Deci xi both checking that xi equals 2
2
i
(i.e. x̂i equals zero) and

resetting it to zero, and in each iteration similarly the inner loop is

repeated also 2
2
i
times. Hence, by squaring 2

2
i
, the code decrements

the counter x̂i+1 and increments the counter xi+1 exactly 2
2
i+1

times,

as required for an implementation of Deci+1 x̂i+1.

Obtaining the Tower Lower Bound. To prove that the Petri nets

reachability problem requires a tower of exponentials of time and

space, we have to tackle two major obstacles:

(1) The fact that Lipton’s construction applies also to the cover-

ability problem, which has an ExpSpace upper bound [46],

means that a construction that achieves a lower bound be-

yond ExpSpace cannot follow the same pattern. For example,

https://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/
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we cannot hope to implement a macro whose unique com-

plete execution performs some given counter operations

exactly a triply exponential number of times.

(2) It has been known for many years how Petri nets can com-

pute various functions weakly, in the sense that the result

may be nondeterministically either correct or smaller [34,

41]
2
. Most notably, for all natural numbers n, Grzegorczyk’s

function [38] Fn is computable weakly by a Petri net of

size O(n). However, even supposing that we have means of

simulating zero tests of several counters bounded by some k ,
it has been unknown how to compute exactly a value expo-

nential in k without using Ω(k) extra counters.

To overcome the ExpSpace barrier, we devise a novel construc-

tion for simulating zero tests of counters bounded by some R: in-
stead of relying on an ability to repeat some counter operations

exactly R times, it assumes that a pair of counters have been set

to sufficiently large values whose ratio is exactly R, and it ensures

that the simulations of zero tests are correct by testing that one of

the two auxiliary counters is zero in the final configuration of the

reachability problem instance.

In overcoming the second obstacle, surprisingly a central role

is played by the simple identity

∏k−1

i=1
(i + 1)/i = k . We devise a

gadget, so called the factorial amplifier, that sets two counters c
and d to arbitrarily large values such that d = c ·k! as follows. After

initialising both counters to a same value, the main loop uses some

extra machinery and a constant number of auxiliary counters to

attempt to multiply c and d by each of the fractions 1/i and (i + 1)/i
(respectively) for i = 1, . . . ,k − 1. Since the multiplications are

implemented by repeated additions and subtractions, and since the

factorial amplifier cannot zero-test counters that are not bounded

by k , we have that the resulting values of c and d are not necessarily
correct. Nevertheless, the construction (and here an appropriate

intertwining of the operations on c and d in the main loop is key) is

such that the computation is correct if and only if the final value of

d is at least (and thus exactly) k times the initialised one. Then c has
necessarily been divided by (k − 1)!, yielding the ratio k! between

counters c and d as required.

Organisation of the Paper. After the preliminaries in Section 2,

our scheme for simulating zero tests of bounded counters is devel-

oped in Section 3, and the factorial amplifier for setting up arbitrar-

ily large pairs of Petri net counters with ratio k! is programmed in

Section 4.

In Section 5, we put the pieces together to obtain the main result,

and then also show how the construction can be refined to establish

that, for each positive integer h, we have h-ExpSpace-hardness
(tower of exponentials of height h) of the reachability problem

already for Petri nets with h + 13 counters.

The last refinement (to h + 13 counters) is mostly relegated to

the appendix available online.

2 COUNTER PROGRAMS
Proving the main result of this paper, namely that solving the Petri

nets reachability problem requires a tower of exponentials of time

2
In their article, Mayr and Meyer establish that the containment problem between

finite sets of reachable configurations of two given Petri nets is ‘the first uncontrived

decidable problem which is not primitive recursive’.

and space, involves some intricate programming. For ease of presen-

tation, instead of working directly with Petri nets or vector addition

systems, our primary language will be imperative programs that

operate on variables which are called counters, and that range over

the naturals (i.e. the nonnegative integers).

To streamline the main constructions and proofs, it will be useful

to allow the programs to have two types of counters:

tested counters are bounded by a fixed positive integer B and

may be tested for equality with the end points of their range,

i.e. 0 and B;
untested counters are unbounded and the testing commands

may not be applied to them.

We remark that the availability of the testing commands will not

make counter programs more expressive than Petri nets, because

the finiteness of the range of tested counters means that their

values can be seen as components of net places (or of states in

vector addition systems). However, such an enumerative translation

involves a blow up proportional to the bound B.
Concretely, a counter program is a sequence of commands, each

of which is of one of the following five kinds:

x += 1 (increment counter x)
x −= 1 (decrement counter x)
goto L or L′ (jump to either line L or line L′)
zero? x (continue if counter x equals 0),

max? x (continue if counter x equals B),

except that the last command is of the form:

halt if x1, . . . , xl = 0 (terminate provided all

the listed counters are zero).

Note that the two types of counters are not declared explicitly:

without loss of generality, a counter x is regarded as tested (and

thus has the range {0, . . . ,B}) if and only if it occurs in a zero? x
ormax? x command in the program.

We use a shorthand halt when no counter is required to be zero

at termination.

To illustrate how the available commands can be used to express

further constructs, addition x += m and substraction x −= m of a

natural constantm can bewritten asm consecutive increments x +=
1 and decrements x −= 1 (respectively). As another illustration,

conditional jumps if x = 0 then goto L else x −= 1 which feature

in common definitions of Minsky machines can be written as:

1: goto 2 or 4

2: zero? x
3: goto L

4: x −= 1,

where goto L is a shorthand for the deterministic jump goto L or
L.

We emphasise that counters (both tested and untested) are not

permitted to have negative values. In the example we have just

seen, that is why the decrement in line 4 works also as a non-zero

test.

Two more remarks may be useful. Firstly, our notion of counter

programs only serves as a convenient medium for presenting both

Petri nets and Minsky machines with bounded counters, and the

exact syntax is not important; we were inspired here by Esparza’s

presentation [13, Section 7] of Lipton’s lower bound [37]. Secondly,
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although the halt if x1, . . . , xl = 0 commands could be expressed

by zero tests followed by just halt, having them as atomic com-

mands makes it possible to require untested counters to be zero at

termination. The latter feature makes untested counters correspond

to Petri net counters, which are unbounded, and can be zero tested

only at the start and finish of runs by specifying initial and final

configurations in instances of the reachability problem.

2.1 Runs and Computed Relations
A B-run of a program from an initial valuation of all its counters is

a run in which all values of all counters are at least 0, all values of

all tested counters are at most B, and the max tests are interpreted

as checks for equality with B.
We say that such a run is halted if and only if it has successfully

executed its halt command (which is necessarily the program’s

last); otherwise, the run is either partial or infinite. Observe that,
due to a decrement that would cause a counter to become negative,

or due to an increment that would exceed the bound of a tested

counter, or due to an unsuccesful zero or max test, or due to an

unsuccessful terminal check for zero, a partial run may be maximal

because it is blocked from further execution. Moreover, due to

nondeterministic jumps, the same program from the same initial

valuation may have various B-runs in each of the three categories:

halted runs, maximal partial runs, and infinite runs. We are mostly

going to be interested in final counter valuations that are reached

by halted runs.

We regard a run as complete if and only if it is halted and its

initial valuation assigns zero to every counter. Let x1, . . . , xl be
some (not necessarily all) of the counters in the program. We say

that the relation B-computed in x1, . . . , xl by a program is the set

of all tuples ⟨v1, . . . ,vl ⟩ such that the program has a complete B-
run whose final valuation assigns to every counter xi the natural
number vi .

We may consider the same program with more than one bound

for its tested counters. When the bound B is clear, or when it is

not important because there are no tested counters, we may write

simply ‘run’ and ‘computed’ instead of ‘B-run’ and ‘B-computed’

(respectively).

2.2 Examples
Example 1. Consider the following program, where C is a natural

constant, and we observe that all the counters are untested:

1: x′ += C
2: goto 6 or 3

3: x += 1 x′ −= 1

4: y += 2

5: goto 2

6: halt if x′ = 0.

It repeats the block of three commands in lines 3–4 some num-

ber of times chosen nondeterministically (possibly zero, possibly

infinite) and then halts provided counter x′ is zero. Replacing the
two jumps by more readable syntactic sugar, we may write this

code as:

1: x′ += C
2: loop
3: x += 1 x′ −= 1

4: y += 2

5: halt if x′ = 0.

It is easy to see that there is a unique complete run (and there

are no infinite runs), in which the loop is iterated exactly C times.

Thus, the relation computed in x, y is the set with the single tuple

⟨C, 2C⟩. �

Example 2. We shall need to reason about properties of counter

valuations at certain points in programs. As an example which

will be useful later for simulating tested counters by untested ones,

consider a fixed positive integer B and assume that

x + x̂ ≤ B and d ≥ c · B (1)

holds in a run at the entry to (i.e., just before executing) the program

fragment

loop
x += 1 x̂ −= 1

d −= 1

c −= 1.

The number of times the loop has been iterated by a run that also

exits (i.e., completes executing) the program fragment is nondeter-

ministic, so let us denote it by K . It is easy to see that property (1)

necessarily also holds at the exit, since:

• the sum x + x̂ is maintained by each iteration of the loop,

• we have that K ≤ B, and
• counters d and c have been decreased by K and 1 (respec-

tively).

Continuing the example, if we additionally assume that the exit

counter valuation satisfies d = c · B, then we deduce that:

• necessarily K = B,
• d = c · B also held at the entry, and

• x = 0 and x̂ = B at the entry, and their values at the exit are

swapped.

We have thus seen two small arguments, one based on propagat-

ing properties of counter valuations forwards through executions

of program fragments, and the other backwards. Both kinds will

feature in the sequel. �

2.3 Petri Nets Reachability Problem
It is well known that Petri nets [45], vector addition systems [23],

and vector addition systems with states [18, cf. Section 5.1], [20]

are alternative presentations of the same model of concurrent pro-

cesses, in the sense that between each pair there exist straightfor-

ward translations that run in polynomial time and preserve the

reachability problem; for further details, see e.g. the recent survey

[49, Section 2.1].

Since counter programs without tested counters can be seen as

presentations of vector addition systems with states, where the

latter are required to start with all vector components zero and

to finish with vector components zero as specified by the halt
command, the Petri nets reachability problem can be stated as:

Input A counter program without tested counters.

Question Does it have a complete run?

We remark that restricting further to programs where no counter

is required to be zero finally (i.e., where the last command is just



The Reachability Problem for Petri Nets Is Not Elementary STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

halt) turns this problem into the Petri nets coverability problem. In

the terminology of vector addition systems with states, the latter

problem is concerned with reachability of just a state, with no

requirement on the final vector components. Lipton’s ExpSpace

lower bound [37] holds already for the coverability problem, which

is in fact ExpSpace-complete [46].

2.4 A Tower-Complete Problem

Let us write !
n
for the nth iterate of factorial, so that a!

n = a

n︷︸︸︷
! · · ·! .

To prove that the Petri nets reachability problem is not elemen-

tary, we shall provide a linear-time reduction from the following

canonical problem. It is complete for the class Tower of all decision

problems that are solvable in time or space bounded by a tower of

exponentials whose height is an elementary function of the input

size [48, Section 2.3], with respect to elementary reductions.

Input A counter program of size n, without untested counters.

Question Does it have a complete 3!
n
-run?

For confirming that this problem is Tower-complete, we refer to

[48, Section 4.1] and [48, Section 4.2] for the robustness of the class

with respect to the choices of the fast-growing function hierarchy

(here based on the factorial operation) and of the computational

model (here nondeterministic Minsky machines), respectively.

3 SIMULATING TESTS
We now introduce our central notion of amplifier for a ratio, and de-

fine a special operator for composing themwith programs. Provided

the ratio of the amplifier is the same as the bound of the program’s

tested counters, the resulting composition will be an equivalent

program in which those counters have become untested. That is

accomplished through eliminating the original program’s zero and

max tests by simulating them and using the amplifier to check that

the simulations are correct, where a price to pay is introducing an

extra untested counter for each of the original tested ones.

The amplifiers themselves may have tested counters. An ampli-

fier whose tested counters are bounded by B and whose ratio is

a larger number R, called a B-amplifier by R, can then be seen, in

conjunction with the composition operator, as a means for trans-

forming programs whose tested counters are bounded by R into

equivalent programs whose tested counters are bounded by B. In
the special case when the amplifier has no tested counters, the same

will be true of the resulting programs.

Another feature, which will be key in Section 5, is that more

powerful amplifiers will be obtainable by composition: applying

the operator to a B-amplifier by B′
, and B′

-amplifier by B′′
, will

produce a B-amplifier by B′′
.

3.1 Construction
Suppose that:

• B and R are positive integers;

• A is a B-amplifier by R, i.e. a program such that the relation

it B-computes in counters b, c, d is

{⟨b, c,d⟩ : b = R, c > 0, d = c · b};

• P is a program.

Example 3. As an example to be used later, when R is sufficiently

small to write R consecutive increments explicitly, it is very easy

to code an amplifier by R:

1: b += R → set b to constant R
2: c += 1 d += R
3: loop
4: c += 1 d += R
5: halt.

Observe that this amplifier does not have any tested counters and

so, for every positive integer B, it is a B-amplifier by R. �

Under the stated assumptions, we now define a construction of a

programA ◃P which B-computes any relation that is R-computed

by P. The idea is to turn each tested counter x of P into an untested

one through supplementing it by a new counter x̂ and ensuring

that the invariant x + x̂ = R is maintained, so that zero tests of x
can be replaced by loops that R times increment x and then R times

decrement x, and similarly for max tests. Counter b provided by

A is employed to initialise each complement counter x̂, whereas c
and d are used to ensure that if d is zero at the end of the run then

all the loops in the simulations of the zero and max tests iterated R
times as required. Concretely, the program A ◃ P is constructed

as follows:

(i) counters are renamed if necessary so that no counter occurs

in both A and P;

(ii) letting x1, . . . , xl be the tested counters of P, new counters x̂1,

. . . , x̂l are introduced and the following code is inserted at the

beginning of P:

loop
x̂1 += 1 · · · x̂l += 1

b −= 1 d −= 1

c −= 1

(we shall show that complete runs necessarily iterate this loop

R times, i.e. until counter b becomes zero);

(iii) every xi += 1 command in P is replaced by two commands

xi += 1 x̂i −= 1;

(iv) every xi −= 1 command in P is replaced by two commands

xi −= 1 x̂i += 1;

(v) every zero? xi command in P is replaced by the following

code:

loop
xi += 1 x̂i −= 1

d −= 1

c −= 1

loop
xi −= 1 x̂i += 1

d −= 1

c −= 1

(we shall show that complete runs necessarily iterate each of

the two loops R times, i.e. they check that xi equals 0 through

checking that x̂i equals R by transferring R from x̂i to xi and
then back);

(vi) every max? xi command in P is replaced analogously, i.e. by

the code as for zero? xi but with the increments and decre-

ments of xi and x̂i swapped;
(vii) letting y1, . . . , ym (respectively, z1, . . . , zh ) be the counters

that are required to be zero at termination of A (respectively,
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P), the code of A ◃ P consists of the code of A concatenated

with the code of P modified as stated, both without their halt
commands, and ending with the command

halt if d, y1, . . . , ym, z1, . . . , zh = 0.

We remark that simulating zero tests of counters bounded by

some R using transfers from and to their complements is a well-

known technique that can be found already in Lipton [37]; the

novelty here is the cumulative verification of such simulations,

through decreasing appropriately the two counters d and c whose
ratio is R, and checking that d is zero finally.

3.2 Correctness
Correctness. The next proposition states that the construction

of A ◃ P is correct in the sense that its B-computed relations in

counters of P are the same as those R-computed by P. (We shall

treat any renamings of counters in step (i) of the construction as

implicit.) In one direction, the proof proceeds by observing that

A◃P can simulate faithfully any complete R-run of P. In the other

direction we argue that although some of the loops introduced

in steps (v) and (vi) may iterate fewer than R times and hence

erroneously validate a test, the ways in which counters c and d
are set up by A and used in the construction ensure that no such

run can continue to a complete one. Informally, as soon as a loop

in a simulation of a test iterates fewer than R times, the equality

d = c · R turns into the strict inequality d > c · R which remains for

the rest of the run, preventing counter d from reaching zero.

Proposition 1. For every valuation of counters of P, it occurs
after a complete B-run ofA◃P if and only if it occurs after a complete
R-run of P.

Proof. The ‘if’ direction is straightforward: from a complete

R-run of P with a total of q zero and max tests, obtain a complete

B-run of A ◃ P with the same final valuation of counters of P by

• running A to termination with b = R, c = 2q + 1, d = c · R
and all of y1, . . . , ym equal to 0, where the latter counters

will remain untouched for the rest of the run and hence

satisfy the requirement to be zero finally (cf. step (vii) of the

construction),

• iterating the loop in step (ii) R times to initialise each com-

plement counter x̂i to R, which also subtracts R and 1 from

d and c (respectively) as well as decreases b to 0, and

• in place of every zero or max test in P, iterating both loops in

step (v) or (vi) (respectively) R times, which subtracts 2R and

2 from d and c (again respectively), eventually decreasing

them both to 0.

For the ‘only if’ direction, consider a complete B-run of A ◃
P. Extracting from it a complete R-run of P with the same final

valuation of counters of P is easy once we show that, for each

simulation of a zero? xi or max? xi command by the code in step

(v) or (vi) of the construction, the values of xi at the start and at the
finish of the code are 0 or R (respectively).

Firstly, by step (vii) and the fact that counters y1, . . . , ym are

not used after executing the part of code from A, we have that the

values of b, c and d that have been provided by A satisfy b = R
and d = c · R. After the code in step (ii) we therefore have that

xi + x̂i ≤ R for all i . Recalling the reasoning in Example 2 and

arguing forwards through the run, we infer that

xi + x̂i ≤ R for all i , and d ≥ c · R

is an invariant that is maintained by the rest of the run.

Now, due to step (vii) again, d is zero finally, and so the inequal-

ity d ≥ c · R is finally an equality. Therefore, c is zero finally as

well. Recalling again the reasoning in Example 2 and arguing back-

wards through the run, we conclude that in fact d = c · R has been

maintained and that, for each simulation of a zero? xi or max? xi
command, each of the two loops has been iterated exactly R times,

and hence the values of xi at its start and at its finish have been as

required. Also, the loop introduced in step (ii) has been iterated R
times, and b is zero finally. �

4 FACTORIAL AMPLIFIER
This section is the technical core of the paper. It provides a single

program F called the factorial amplifier which is, for any positive

integer k , a k-amplifier by k!. Together with the composition op-

erator from Section 3, we shall then have all the tools needed for

obtaining our main result in Section 5: chains of compositions of

F with itself will yield amplifiers by ratios which are towers of

exponentials.

4.1 A simple program
As a warm up for the presentation of the main program and the

proof of its correctness, let us consider a simpler program E spec-

ified in Algorithm I. Two macros are used to aid readability, and

we now expand them, noting that hidden within them is another

counter i′:

x −= i: To subtract the current value of counter i, we employ

the auxiliary counter i′ to which the value of i is transferred
and then transferred back. At the start of the code, i′ is
assumed to be zero, and the same is guaranteed at the finish.

loop
i −= 1 i′ += 1 x −= 1

zero? i
loop

i′ −= 1 i += 1

zero? i′

x′ += i + 1: This is very similar, except for the extra increment

of x′.
x′ += 1

loop
i −= 1 i′ += 1 x′ += 1

zero? i
loop

i′ −= 1 i += 1

zero? i′

Program E has untested counters x, x′ and y, and tested counters
i and i′. Assuming that the bound for the tested counters is a positive

integer k , the program does the following:

• initialises x and y to some positive integer a chosen nonde-

terministically, which will be kept unchanged in counter y
until the final loop;

• in each iteration of the main loop, uses counter x′ to attempt

to multiply counter x by the fraction (i + 1)/i;
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Algorithm I Counter program E.

//Untested counters: x, y, x′

//Tested counters: i, i′

1: i += 1 x += 1 y += 1

2: loop
3: x += 1 y += 1

4: loop
5: loop
6: x −= i x′ += i + 1

7: loop
8: x′ −= 1 x += 1

9: i += 1

10: max? i
11: loop
12: x −= i y −= 1

13: halt if y = 0

• by the final loop and the terminal check that counter y is

zero, halts provided the value of x is at least a · k (in which

case it will be exactly a · k).

The first and easier part of the exercise is to show that, for any

positive a, there exists a complete k-run of E that initialises x and
y to a, then multiplies x exactly by all the fractions (i + 1)/i for
i = 1, . . . ,k − 1, and finally checks that x equals a · k .

The second part is to show the converse, i.e. that any complete

k-run of E is of that form. As a hint, we remark that this is the case

because as soon as a multiplication of x by a fraction (i + 1)/i does
not complete accurately (because either the first inner loop does

not decrease x to exactly zero, or the second inner loop does not

decrease x′ to exactly zero), it will not be possible to repair that

error in the rest of the run, in the sense that the value of x at the
end of the main loop will necessarily be strictly smaller than a · k
and thus it will be impossible to complete the run. We also remark

that this vitally depends on the fact that all the fractions (i + 1)/i
are greater than 1.

4.2 Amplifiers
The definition of F in Algorithm II is presented at a high level

for readability. In addition to the two macros for subtracting i and
adding i+1 presented in the previous subsection, one further macro

is used:

loop at most b times <body>: To express this construct, we

employ the auxiliary counter b′ to which the value of b is

transferred and then transferred back. Provided b′ is zero at

the start, the body is indeed performed at most b times.

loop
b −= 1 b′ += 1

loop
b′ −= 1 b += 1

<body>

Observe that the untested counters of program F are b, b′, c, c′,
d, d′, x and y, and the tested ones are i and i′ (counter i′ is hidden
in the macros).

Algorithm II Factorial Amplifier F .

//Untested counters: b, b′, c, c′, d, d′, x, y
//Tested counters: i, i′

1: i += 1 b += 1 c += 1 d += 1 x += 1 y += 1

2: loop
3: c += 1 d += 1 x += 1 y += 1

4: loop
5: loop
6: c −= i c′ += 1

7: loop at most b times
8: d −= i x −= i d′ += i + 1

9: loop
10: b −= 1 b′ += i + 1

11: loop
12: b′ −= 1 b += 1

13: loop
14: c′ −= 1 c += 1

15: loop at most b times
16: d′ −= 1 d += 1 x += 1

17: i += 1

18: max? i
19: loop
20: x −= i y −= 1

21: halt if y = 0

4.3 Correctness
Before proving that, for any positive integer k , the program F is

a k-amplifier by k!, which is the main technical argument in the

paper, we provide some intuitions:

• the counter d is used to preserve the value of x at the end of

the main loop, since x is modified in the final loop;

• the counter d′ acts as the auxiliary counter for both d and x,
so there is no need to have x′ as well;

• the counter c is initialised to the same positive integer a as

d, x and y, whereas the counter b is initialised to 1;

• at the start of any iteration of the main loop in a complete

run, the invariant d = c · b will hold, and so the first inner

loop will divide c by i accurately;
• in order for the last inner loop to transfer d′ fully to d and

x, the middle two inner loops will necessarily multiply b by

i + 1 accurately;

• at the end of the main loop, d, c and b will have values

a · k , a/(k − 1)! and k! (respectively), and in particular a is

necessarily divisible by (k − 1)!.

Lemma 2. For any positive integer k , the program F is a k-amplifier
by k!, i.e. the relation it k-computes in counters b, c, d is

{⟨b, c,d⟩ : b = k!, c > 0, d = c · b}.

Proof. We shall be considering k-runs of F whose initial valu-

ation assigns zero to every counter, and which are either halted or

blocked at the halt command because y is not zero. In particular,

any such run will have completed the main loop, which runs for

i = 1, . . . ,k − 1. Hence, we can introduce the following notations
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for counter values during the ith iteration of the loop, where v is
any of the counters b, b′, c, c′, d, d′:

v̄i : the final value of v after lines 5–10;
vi : the final value of v after lines 11–16.

It will also be convenient to write v0 for the value of v at the start
of the first iteration of the main loop. We emphasise that these

notations are relative to the run under consideration, which for

readability is not written explicitly.

The proof works for any positive integer k and consists of two

parts, that establish the two inclusions between the relation k-
computed by F in counters b, c, d and the relation in the statement

of the lemma.

The first part, where we assume b = k!, c > 0 and d = c · b, and
argue that F has a complete k-run whose final values of counters

b, c, d are exactly b, c,d , is the easier part.

Claim 1. For any a divisible by (k − 1)!, the program F has a

complete k-run which satisfies the equalities in Table 1.

Table 1: Equalities for counter values in complete k-runs of
program F , for all i = 0, . . . ,k − 1.

b0 = 1 c0 = a
b′

0
= 0 c′

0
= 0

¯bi = 0 c̄i = 0

¯b′i = bi−1 · (i + 1) c̄′i = ci−1/i
bi = ¯b′i ci = c̄′i
b′i = 0 c′i = 0

d0 = a
d′

0
= 0

¯di = 0

¯d′i = di−1 · (i + 1)/i
di = ¯d′i
d′i = 0

Proof of Claim 1. Such a run can be built by iterating each in-

ner nondeterministic loop the maximum number of times. Namely,

during iteration i of the main loop:

• the loop at line 5 is iterated ci−1/i times and in each pass

the loop at line 7 is iterated bi−1 times;

• the loop at line 9 is iterated bi−1 times;

• the loop at line 11 is iterated
¯bi times;

• the loop at line 13 is iterated c̄′i times and in each pass the

loop at line 15 is iterated bi times.

The divisibility of a by (k − 1)! ensures that all divisions in the

statement of the claim yield integers.

To see that the run thus obtained can be completed, observe that

from the equalities in Table 1 it follows that

bk−1
=

k−1∏
i=1

(i + 1) = k! ck−1
= a ·

k−1∏
i=1

1

i
=

a

(k − 1)!

dk−1
= a ·

k−1∏
i=1

i + 1

i
= a · k .

In particular, at the start of the final loop (at line 19), counter x
equals counter d and hence has value a · k , and counter y has

value a. Iterating the final loop a times therefore reduces y (and x)
to zero as required. �

To obtain b, c,d as the final values of counters b, c, d, we apply
Claim 1 with a = c · (k − 1)!.

We now turn to the remaining second part of the proof of the

lemma, where we consider any complete k-run and need to show

that the final values b, c,d of counters b, c, d satisfy b = k!, c > 0

and d = c · b.

Claim 2. For all i = 1, . . . ,k − 1, we have:

• ¯di + ¯d′i ≤ (di−1 + d′i−1
) · (i + 1)/i;

• ¯di + ¯d′i = (di−1 + d′i−1
) · (i + 1)/i if and only if ¯di = d′i−1

= 0;

• di + d′i =
¯di + ¯d′i .

Proof of Claim 2. Straightforward calculation based on (i +
1)/i > 1. �

Let a denote the value of counters c, d, x and y at the start of the

main loop.

Claim 3. The equalities in Table 1 for the values of counters d and

d′ are satisfied.

Proof of Claim 3. First, recall that at the start of the final loop

(at line 19) counters x and d are equal, and by Claim 2 they have

value at most a ·k . Since counter y has value a at that point and the

run is complete, it must actually be the case that the value of x here
equals a · k . By Claim 2 again, we infer that for all i = 1, . . . ,k − 1,

we indeed have:

¯di = 0
¯d′i = di−1 ·

i + 1

i
di = ¯d′i d′i = 0. �

Claim 4. We have that a is divisible by (k−1)! and that the equalities

in Table 1 for the values of counters b, b′, c and c′ are satisfied.

Proof of Claim 4. That a is divisible by (k−1)! will follow once

we establish the equalities for the values of c and c′, since they

involve dividing a by (k − 1)!.

For the rest of the claim, we argue inductively, where the hy-

pothesis is that the equalities for the values of b, b′, c and c′ are
satisfied for all indices less than i . Consequently, recalling Claim 3,

we have that

di−1 = ci−1 · bi−1. (2)

Consider the iteration i of the main loop. We infer from Claim 3

that the commands in line 8 must have been performed di−1/i times.

Hence, as the values of counters b and b′ remain unchanged until

line 9, using equation (2) we deduce that the commands in line 6

must have been performed ci−1/i times, and we have:

c̄i = 0 c̄′i = ci−1/i .

Also by Claim 3, the commands in line 16must have been performed

¯d′i = di−1 · (i + 1)/i times. From what we have just shown, that

number equals c̄′i · bi−1 · (i + 1), and so we conclude that indeed:

¯bi = 0 bi = ¯b′i ci = c̄′i
¯b′i = bi−1 · (i + 1) b′i = 0 c′i = 0. �
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As in the first part, we now conclude that the final values b, c,d
of counters b, c, d are k!,a/(k − 1)!,a · k , and in particular c · b =
a · k!/(k − 1)! = d . �

5 MAIN RESULT
As already indicated, the bulk of the work for our headline result,

namely Tower-hardness of the reachability problem for Petri nets,

is showing how to construct an amplifier without tested counters

and for a ratio which is a tower of exponentials. Most of the pieces

have already been developed in Sections 3 and 4, and here we

put them together to obtain a linear-time construction (although

any elementary complexity of the reduction would suffice for the

Tower-hardness).

Lemma 3. An amplifier by 3!
n without tested counters is computable

in time O(n).

Proof. Letting A be a trivial amplifier by 3 (cf. Example 3), the

program

n compositions︷                        ︸︸                        ︷
((A ◃ F ) ◃ F ) ◃ · · · F

is an amplifier by 3!
n
without tested counters by Proposition 1 and

Lemma 2, and it is computable in timeO(n) by the definition of the

composition operator (cf. Section 3). �

Theorem 4. The Petri nets reachability problem is Tower-hard.

Proof. We reduce in linear time from the Tower-complete halt-

ing problem for counter programs of size n with all counters tested

and bounded by 3!
n
(cf. Section 2).

LetM be such a program, and let T be an amplifier by 3!
n
with-

out tested counters which is computable in time O(n) by Lemma 3.

We have that the composite program T ◃M is without tested

counters, and that by Proposition 1 it has a complete run if and

only if the given programM does. �

Corollary 5. For any positive integer h, the Petri nets reachability
problem with h + 13 counters is h-ExpSpace-hard.3

Proof. We reduce in linear time from the h-ExpSpace-complete

halting problem for counter programs of size n with 3 counters,

which are all tested and bounded by n!
h+1

(cf. [15, Theorems 3.1

and 4.3]).

The reduction builds on the following refinement of Lemma 3,

whose proof is in the full version available online:

Lemma 6. For every h ≥ 0, an amplifier by n!
h+1 without tested

counters is computable in time O(n + h), such that:

• it has h + 13 untested counters,
• h + 1 counters are required to be zero by the terminal halt
command,

• 9 out of the 12 counters not appearing in the halt command
are zero at termination of every complete run of the amplifier.

3
We remark that, in the terminology of the classical definition of Petri nets [45], the

number of places will be h + 16 due to 3 extra places for encoding the control of

counter programs.

According to the last condition, the nine counters are forced to be

zero at termination of every complete run, without being tested to

be so.

Given a counter programM of size n with 3 counters, which are

all tested and bounded by n!
h+1

, the reduction builds the composite

program T ◃M where the amplifier T is given by Lemma 6, anal-

ogously as in the proof of Theorem 4. In order to keep the number

of counters in T ◃M not greater than h + 13, we reuse 6 out of the

9 counters not appearing in the halt command of T (and forced to

be zero at termination of T ) for simulation of the three counters of

M. �

6 CONCLUDING REMARKS
We have focussed on presenting clearly the result that the Petri

nets reachability problem is not elementary, leaving several arising

directions for future consideration. The latter include investigating

implications for the reachability problem for fixed-dimension flat

vector addition systems with states (cf. [3, 12, 35]).
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