
The Library
Macroscopic limits of individual-based models for motile cell populations with volume exclusion
Tools
Dyson, Louise, Maini, Philip K. and Baker, Ruth E. (2012) Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Physical Review E, 86 (3). 031903 . doi:10.1103/PhysRevE.86.031903 ISSN 1539-3755.
|
PDF
WRAP-macrosopic-limits-models-motile-cell-volume-exclusion-Dyson-2012.pdf - Published Version - Requires a PDF viewer. Download (688Kb) | Preview |
Official URL: http://dx.doi.org/10.1103/PhysRevE.86.031903
Abstract
Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenological description of events which can be analyzed and simulated using a wide range of existing tools. However, these models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional and more complex systems and thereby provides a framework for deriving biologically realistic, continuum descriptions of motile populations.
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics Q Science > QH Natural history |
||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||
Library of Congress Subject Headings (LCSH): | Differential equations, Partial, Cell populations, Stochastic models | ||||||
Journal or Publication Title: | Physical Review E | ||||||
Publisher: | American Physical Society | ||||||
ISSN: | 1539-3755 | ||||||
Official Date: | 5 September 2012 | ||||||
Dates: |
|
||||||
Volume: | 86 | ||||||
Number: | 3 | ||||||
Article Number: | 031903 | ||||||
DOI: | 10.1103/PhysRevE.86.031903 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Reuse Statement (publisher, data, author rights): | © 2012 American Physical Society | ||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||
Date of first compliant deposit: | 2 August 2019 | ||||||
Date of first compliant Open Access: | 28 August 2019 | ||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year