Nitrous Oxide

Rhodium(I) Pincer Complexes of Nitrous Oxide

Matthew R. Gyton, Baptiste Leforestier, and Adrian B. Chaplin*

Abstract: The synthesis of two well-defined rhodium(I) complexes of nitrous oxide (N₂O) is reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature, enabling comprehensive structural interrogation by ¹⁵N NMR and IR spectroscopy, and single-crystal X-ray diffraction. These methods evidence coordination of N₂O through the terminal nitrogen atom in a linear fashion and are supplemented by a computational energy decomposition analysis, which provides further insights into the nature of the Rh–N₂O interaction.

The synthetic exploitation of nitrous oxide (N₂O) is an enduring challenge that draws topical interest as a means to remediate the detrimental impact emission of this kinetically stable gas on the environment.¹ Whilst the application of homogeneous transition-metal complexes is an attractive prospect, the underpinning inorganic chemistry is conspicuously under-developed.² Indeed, the number of discrete transition-metal complexes of N₂O is currently limited to a handful of examples (A–D), of which only two have been structurally characterised in the solid state using X-ray diffraction (Figure 1).³–⁷ This paucity is attributed to the extremely poor ligand properties of N₂O, conferred by a low dipole moment, weak σ-donor and π-acceptor characteristics, and the propensity of these adducts for subsequent N–N or N–O bond cleavage.⁸

Inspired by work by Brookhart and Caulton⁹,⁹ and building upon that conducted in our laboratories,¹⁰ we chose cationic phosphine-based pincer complexes of rhodium(I) as a platform for studying the coordination chemistry of N₂O. Our approach utilises dimeric [Rh(pincer)₂(μ-η¹-η¹-COD)]⁻[BARF]₂⁺, (1a, pincer = 2,6-(Bu₃PO)₂C₆H₄N; 1b, pincer = 2,6-((Bu₃PCH₂)₂C₆H₄N: COD = cyclooctadiene, Ar⁺ = 3,5-(CF₃)₂C₆H₄) as synthons for reactive [Rh(pincer)]⁺ fragments in the weakly coordinating solvent 1,2-F₂C₆H₄ (DFB).¹¹ Satisfactorily, reactions of 1 with N₂O (1.5 bar) at room temperature afforded well-defined adducts [Rh(pincer)-(N₂O)][BARF]₂ in quantitative yield by ³¹P NMR spectroscopy, as evidenced by resonances at δ 210.4 (2a, J_{Rh,P} = 134 Hz, t < 3 h); δ 70.9 (2b, J_{Rh,P} = 127 Hz, t < 5 min) that display diagnostic ¹⁰₉Rh coupling (Figure 1). These Rh–N₂O complexes were subsequently isolated as analytically pure materials in good yield on precipitation with hexane at low temperature and extensively characterised (2a, 65%; 2b 78%). Both can be stored under argon in the solid state, but decompose slowly in DFB solution at room temperature (2a, t⁰₅%dec ≈ 4 h; 2b, t⁰₅%dec ≈ 2.5 h), with generation of the known dinitrogen complexes [Rh(pincer)(N₂)][BARF]⁺ (3a, δ 211.3, J_{Rh,N} = 133 Hz; 3b, δ 71.2, J_{Rh,N} = 126 Hz).¹² By drawing parallels with the reaction of a neutral rhodium PNP analogue with N₂O, where formation of a discrete adduct is inferred but not experimentally corroborated, we suggest 2 decomposes by a bimetallic oxygen atom transfer mechanism that is initiated by dissociation of N₂O and proceeds via [pincer]Rh⁺–N–N–O–Rh⁺(pincer)²⁺.¹³ Consistent with this assertion, enhanced solution stability was observed under a N₂O atmosphere (2%–30% decomposition of 2a/b after 24 h).

The structures of 2 were definitively established in DFB solution using ¹⁵N NMR spectroscopy, aided by samples prepared using isotopically labelled N₂O (98%¹⁵N, Figure 2 and the Supporting Information). Intact coordination of N₂O through the terminal nitrogen atom is evident by an upfield shift of Δδ 43.3/37.0 for the corresponding ¹⁵N resonances, comparable to that of B,¹⁴ which exhibit J_{Rh,N} coupling of
These are not the final page numbers!

Figure 2. Solid-state structures (150 K) and 15N NMR spectra (15N$_2$O atmosphere, DFB, 61 MHz, 298 K) of 2. Thermal ellipsoids drawn at 50% (2a) and 30% (2b) probability; minor disordered components (pincer ligand in 2b) and anions omitted for clarity. Selected bond lengths and angles: 2a Rh1–P2 2.2677(5) Å, Rh1–P3 2.2688(5) Å, Rh1–N4 1.989(2) Å, N4–N5 1.128(11) Å, N5–O6 1.184(11) Å, Rh1–N20 2.006(2); 2b Rh1–P2 2.282(2) Å, Rh1–P3 2.288(2) Å, Rh1–N4 1.962(7) Å, N4–N5 1.111(11) Å, N5–O6 1.192(11) Å, Rh1–N20/N20A 2.071(7)/2.052(8) Å; N20/N20A–Rh1–N4 178.1(5)/175.4(5), N4–N5–O6 178.7(14), Rh1–N20 2.007(2); N20–Rh1–N4 178.05(8), N4–N5–O6 178.5(3). The internal 15N resonances are conversely shifted downfield (J_{NN} coupling of 4/5 Hz for 2a/b, respectively). The former is well-ordered, but the latter features dynamic isomerism in the lattice (J_{NN} = 1 Hz), albeit with commensurate reductions in magnitude. Nevertheless, the pertinent data associated with coordination of N$_2$O in 2 point to very similar bonding characteristics. When normalising by the sum of the covalent radii, the extent of the M–N interactions in 2a (1.981(2) Å) and 2b (1.962(7) Å) are in close agreement with those previously determined in C (2.1389(10) Å) and D (1.890(8) Å); r(M-N)/r(M) + r(N) = 0.93, 2a: 0.92, 2b: 0.95, C: 0.93, D.[5,6] There is a trend for the N–N bonds (1.1058(3)/1.111(1) compared to 1.128 Å) to be shortened and the N–O bonds (1.194(3)/1.192(11) compared to 1.184 Å) to be elongated in 2a/b relative to free N$_2$O,[5,6] but these changes are marginal.

Supplementing the experimental work, the geometries and thermodynamics of 2 were interrogated in silico at the DLPNO-CCSD(T)/def2-TZVP/ob97X-D3/def2-TZVP(-f) level of theory.[8] Whilst the trend for a longer Rh–N contact in 2a (2.006 Å) relative to 2b (1.989 Å) established by X-ray diffraction is reproduced, it is for the former that binding of N$_2$O is predicted to be most exergonic ($\Delta G_{\text{Diss}} = -68.5$ kJ mol$^{-1}$, 2a; -67.6 kJ mol$^{-1}$, 2b). The magnitude of these values is consistent with slow exchange on the 15N NMR timeframe (61 MHz, 298 K; Figure 2), with the difference congruent with the relative rate of decomposition observed in solution. Only very small perturbations to the N–N and N–O bond lengths are computed on coordination (less than 0.005 Å), but the associated vibrations corroborate the experimental pattern and are discernibly blue and red shifted.

28/27 Hz[14] and 2J$_{PN}$ coupling of 4/5 Hz for 2a/b, respectively. The internal 31P resonances are conversely shifted downfield by 0.84 Hz[14] and 3P (1P$_{PN}$ = 8 Hz) and 31P (2P$_{PN}$ = 1 Hz), albeit with commensurate reductions in magnitude. The 1J$_{PN}$ coupling constant of free N$_2$O (9 Hz) is small and appreciably reduced on complexation to rhodium; to the extent that it is only just resolved (1 Hz). Analysis of natural abundance and isotopically labelled (powdered) solid samples of 2 using ATR IR spectroscopy enabled unambiguous assignment of the principal ν(N-N) and ν(N-O) bands of 2a (2279, 1228 cm$^{-1}$, respectively) and 2b (2267, 1285 cm$^{-1}$, respectively). The former are significantly blue shifted, relative to the free ligand, whilst the latter are red shifted (2224, 1252 cm$^{-1}$, respectively) and ν(N–O) bands of 2b are also observed for N$_2$O in a linear fashion (Rh–N–N > 173° and N–N–O > 178°; Figure 2). The former is well-ordered, but the latter features an extensively disordered pincer ligand symmetric of dynamic isomerism in the lattice ($C_1 = C_s$ conformations).[22] Whilst this disorder was modelled satisfactorily, the metal–ligand metrics in 2b are inevitably determined with reduced precision in comparison to 2a. Nevertheless, the pertinent data associated with coordination of N$_2$O in 2 point to very similar bonding characteristics. When normalising by the sum of the covalent radii, the extent of the M–N interactions in 2a (1.981(2) Å) and 2b (1.962(7) Å) are in close agreement with those previously determined in C (2.1389(10) Å) and D (1.890(8) Å); r(M-N)/r(M) + r(N) = 0.93, 2a: 0.92, 2b: 0.95, C: 0.93, D.[5,6] There is a trend for the N–N bonds (1.1058(3)/1.111(1) compared to 1.128 Å) to be shortened and the N–O bonds (1.194(3)/1.192(11) compared to 1.184 Å) to be elongated in 2a/b relative to free N$_2$O,[5,6] but these changes are marginal.

Supplementing the experimental work, the geometries and thermodynamics of 2 were interrogated in silico at the DLPNO-CCSD(T)/def2-TZVP/ob97X-D3/def2-TZVP(-f) level of theory.[8] Whilst the trend for a longer Rh–N contact in 2a (2.006 Å) relative to 2b (1.989 Å) established by X-ray diffraction is reproduced, it is for the former that binding of N$_2$O is predicted to be most exergonic ($\Delta G_{\text{Diss}} = -68.5$ kJ mol$^{-1}$, 2a; -67.6 kJ mol$^{-1}$, 2b). The magnitude of these values is consistent with slow exchange on the 15N NMR timeframe (61 MHz, 298 K; Figure 2), with the difference congruent with the relative rate of decomposition observed in solution. Only very small perturbations to the N–N and N–O bond lengths are computed on coordination (less than 0.005 Å), but the associated vibrations corroborate the experimental pattern and are discernibly blue and red shifted.
Table 1: LED results for $\text{2} \to \left[\text{Rh}(\text{pincer})\right]^+ + \text{N}_2\text{O} \left(\text{kJ mol}^{-1}\right)$.

<table>
<thead>
<tr>
<th></th>
<th>2a</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{\text{interaction}}$</td>
<td>−124.8</td>
<td>−119.8</td>
</tr>
<tr>
<td>$\Delta E_{\text{dispersion}}$</td>
<td>−70.0</td>
<td>−76.5</td>
</tr>
<tr>
<td>ΔE_{elec}</td>
<td>+476.8</td>
<td>+519.1</td>
</tr>
<tr>
<td>$\Delta E_{\text{exchange}}$</td>
<td>−359.0</td>
<td>−385.5</td>
</tr>
<tr>
<td>ΔE_{total}</td>
<td>−140.9</td>
<td>−148.0</td>
</tr>
<tr>
<td>ΔE_{total} (σ donation)$^{[a]}$</td>
<td>−79.8 (57%)</td>
<td>−83.3 (56%)</td>
</tr>
<tr>
<td>ΔE_{total} (π backbonding)$^{[a]}$</td>
<td>−56.2 (40%)</td>
<td>−59.2 (40%)</td>
</tr>
<tr>
<td>$\Delta E_{\text{radical}}$</td>
<td>−31.7</td>
<td>−33.1</td>
</tr>
<tr>
<td>$\Delta E_{\text{polarization}}$</td>
<td>+2.5</td>
<td>+3.8</td>
</tr>
<tr>
<td>ΔE_{bagel}</td>
<td>−122.3</td>
<td>−120.1</td>
</tr>
</tbody>
</table>

$^{[a]}$ Determined by application of the extended transition state method for energy decomposition analysis combined with the natural orbitals for chemical valence theory (ETS-NOCV). The character of the interaction is deduced from visual inspection of the natural orbitals. Percentage of total orbital interaction ΔE_{total} in parenthesis.

respectively (see the Supporting Information). To gain deeper insight into the nature of the Rh–N$_2$O interaction, a local energy decomposition analysis (LED) was carried out using ORCA 4.1.2. (Table 1; Supporting Information).$^{[18–20]}$ The results reiterate marginally stronger N$_2$O binding in 2a ($D_e = +122.3$ kJ mol$^{-1}$) compared to 2b ($D_e = +120.1$ kJ mol$^{-1}$) and highlight the important role of dispersion, which accounts for approximately 12% of the total stabilising interactions.$^{[21]}$ The interfragment orbital energies are small and reflect the presence of weak σ-donation and π-back bonding; with the former predominating (ca. 56% vs. 40%). When the two complexes are compared, the combined stabilising interactions are most pronounced for 2b, but counteracted by even more extensive Pauli repulsion (i.e. steric) than in 2a. The latter difference is reconciled by the more obtuse bite angle of the PNP ($\text{P}–\text{Rh}–\text{P} = 169.24(8)^{[a]}$, exp) vs. PONOP ($\text{P}–\text{Rh}–\text{P} = 162.77(2)^{[a]}$, exp) pincer ligand, which causes greater buttressing between the tBu substituents and the coordinated N$_2$O ligand.

In summary, the synthesis and comprehensive characterisation of two rhodium(I) pincer complexes of N$_2$O are reported. Through an unprecedented combination of 15N NMR and IR spectroscopy, and single crystal X-ray diffraction the discrete nature of these complexes and the coordination of N$_2$O to the metal through the terminal nitrogen atom in a linear fashion is unequivocally established. Subtle differences in the characteristics of the Rh–N$_2$O interaction associated with the ancillary pincer ligand employed have been reconciled using a computational energy-decomposition analysis, which highlights the weakly interacting nature of N$_2$O, the important stabilising role of dispersion interactions, and the effect of steric buttressing with the pincer substituents.

Acknowledgements

We thank the European Research Council (ERC, grant agreement 637313; M.R.G., B.I.L., A.B.C.) and Royal Society (UF100592, UF150675, A.B.C.) for financial support. Crystallographic data were collected using an instrument that received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 637313). Computing facilities were provided by the Scientific Computing Research Technology Platform of the University of Warwick.

Conflict of interest

The authors declare no conflict of interest.

Keywords: coordination chemistry · nitrous oxide · pincer ligands · rhodium · structure elucidation

[13] Correspondingly we suggest paramagnetic rhodium oxyls of the form $[\text{Rh}^{II}(\text{pincer})\text{O}]^+$ are also generated, but we have so far been unable to confirm this experimentally. Time-course data collected under argon is consistent with formation of NMR-silent species and second-order decomposition with respect to 2 (see the Supporting Information). For other precedents for this type of mechanism see: a) J.T. Groves, J.S. Roman, J. Am. Chem. Soc. 1995, 117, 5594–5595; b) H. Yu, G. Jia, Z. Lin,
Only the metal cations are considered. In the case of 2b there are two possible isomers, related to the conformation the pincer ligand adopts, but for simplicity the discussion is focused exclusively on the lower energy C2-symmetric isomer in the main text. The C3-symmetric isomer is ΔG298K = +3.7 kJ mol⁻¹ higher in energy and the LED analysis is provided in the Supporting Information.

Manuscript received: July 4, 2019
Version of record online: ■ ■ ■ ■ ■ ■ ■ ■
Characterisation? NNO worries: The synthesis and comprehensive characterisation of two rhodium(I) complexes of nitrous oxide are reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature.