Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/125663

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
CUBIC DIOPHANTINE INEQUALITIES FOR SPLIT FORMS

SAM CHOW

Abstract. Denote by $s_0^{(r)}$ the least integer such that if $s \geq s_0^{(r)}$, and F is a cubic form with real coefficients in s variables that splits into r parts, then F takes arbitrarily small values at nonzero integral points. We bound $s_0^{(r)}$ for $r \leq 6$.

1. Introduction

Let F be an indefinite homogeneous polynomial of degree $d \geq 2$ in s variables, with real coefficients. The form F takes small values if there exists $x \in \mathbb{Z}^s \setminus \{0\}$ such that

$$|F(x)| < 1.$$ (1.1)

Schmidt [18] showed that if d is odd then there exists $s_0 = s_0(d)$ such that if $s \geq s_0$ then F takes small values.

Henceforth, let s_0 be the least integer with the above property, whenever such an integer exists. Naturally we seek upper bounds for s_0. For cubic forms, Freeman [8] holds the record $s_0(3) \leq 359 551 882$, improving significantly on previous work of Pitman [17]. Contrastingly, Baker, Brüdern and Wooley [2] have shown that any additive cubic form in seven variables takes small values (Baker [1] had already shown this for integral forms).

We consider an intermediate case where only some additive structure is present, a game recently played in a different context by Browning [3] (see also [4]) and continued by Dai and Xue [7]. Let r be a positive integer. A cubic form F in s variables splits into r parts if there exist positive integers a_1, \ldots, a_r and nonzero cubic forms C_1, \ldots, C_r such that $a_1 + \ldots + a_r = s$ and

$$F(x_1, \ldots, x_s) = \sum_{j=1}^r C_j(x_{A_{j-1}+1}, \ldots, x_{A_j}),$$

where $A_0 = 0$ and $A_j = a_1 + \ldots + a_j$ for $j = 1, 2, \ldots, r$. Denote by $s_0^{(r)}$ the least integer such that if F is a cubic form that splits into r parts and $s \geq s_0^{(r)}$ then F takes small values.

Theorem 1.1.

$$s_0^{(1)} \leq 358 817 445, \quad s_0^{(2)} \leq 120 897 257, \quad s_0^{(3)} \leq 35 042 291,$$

$$s_0^{(4)} \leq 8 324 100, \quad s_0^{(5)} \leq 1 164 774, \quad s_0^{(6)} \leq 77 027.$$
Note that if $s \geq s_0^{(r)}$ and $\eta > 0$ then the inequality
\[|F(x)| < \eta \]
has a nontrivial solution for any cubic form F that splits into r parts, since the form $\eta^{-1}F$ takes small values. Note also that any cubic form that splits into seven parts takes small values, since any additive cubic form in seven variables takes small values. The improvement in $s_0^{(1)} = s_0(3)$ is obtained via two suggestions made in the introduction of [8]. Though this improvement is minor, we will justify it, since the ideas will also improve our other bounds and perhaps future related results. If one assumed that the parts were of roughly equal dimensions a_1, \ldots, a_r, then much better bounds could be obtained. For instance our methods easily show that if F splits into three parts of dimension at least 270 187 then F takes small values.

We briefly discuss the case that F has integer coefficients, wherein the inequality [1.1] reduces to $F(x) = 0$. Heath-Brown [10] has shown that 14 variables suffice to ensure that a cubic form has a nontrivial zero, improving on Davenport’s already spectacular previous record [6] of 16 variables. Under the additional premise that F is nonsingular, Heath-Brown [9] proved that only ten variables are necessary. This has been sharpened by Hooley [12, 13, 14, 15], who established the Hasse principle for nonary cubic forms defining hypersurfaces with at most ordinary double points.

For quadratic forms we have Margulis’ celebrated proof of the Oppenheim conjecture (see [16]). This states that the values taken at integral points by an indefinite quadratic form in at least three variables, whose coefficients are not all in rational ratio, are dense on the real line. Margulis’ result shows that $s_0(2) \leq 5$, since Meyer demonstrated that indefinite quadratic forms with integer coefficients in at least five variables represent zero nontrivially (see [19]). In fact $s_0(2) = 5$, for if $p \equiv 3 \mod 4$ is a prime then
\[a^2 + b^2 - p(c^2 + d^2) = 0 \]
has no nontrivial integer solutions.

Now we summarise some of Freeman and Wooley’s work on additive forms (see [20]). Let $F(d)$ denote the least integer t such that any indefinite diagonal form of degree d with real coefficients in at least t variables takes small values. Then
\[F(4) \leq 12, \quad F(5) \leq 18 \]
and
\[F(d) \leq d(\log d + \log \log d + 2 + o(1)). \]
Our discussion up to this point implies that $F(2) = 5$ and $F(3) \leq 7$.

Much less is known about diophantine inequalities for general forms. The only successful approach thus far has been to ‘quasi-diagonalise’ and then use results about additive forms. We shall also follow this pattern. If a cubic form F splits into r parts, we will use on each part a quasi-diagonalisation procedure due to Freeman [8], thereby approximating F by a diagonal form in some subspace. The resulting error term necessitates that we find a small
solution to a diophantine inequality for additive cubic forms, and for this we use the work of Brüdern [5].

This paper is organised as follows. In §2, we slightly modify some results of Freeman [8], thereby obtaining the bound $s_0^{(1)} \leq 358,817,445$. We then recall two results of Brüdern [5]. In §3, we elaborate on our strategy for deducing the remaining bounds stated in Theorem 1.1. We quasi-diagonalise using different exponents for different parts. In §4 we implement our strategy.

Bold face will be used for vectors, for instance we shall abbreviate (u_1, \ldots, u_n) to u and write $|u| = \max |u_i|$. For a form F, denote by $|F|$ the maximum of the absolute values of its coefficients.

The author thanks his supervisor Trevor Wooley for suggesting this problem, as well as for his continued support and encouragement.

2. Preliminary manoeuvres

In [8], “a trick used by Pitman [17]” is asserted to give $s_0(3) \leq 359,547,172$. Our treatment of this more closely resembles [11, p. 10]. Note that a finite number of integral vectors are linearly dependent over \mathbb{Z} if and only if they are linearly dependent over \mathbb{R}.

Lemma 2.1. Let F be a cubic form with real coefficients in s variables, let E be a positive real number, and let $n \geq 2$ be an integer. Let $N > 0$ be sufficiently large in terms of E and F. Suppose there exist linearly dependent nonzero vectors $x_1, \ldots, x_n \in \mathbb{Z}^s$ such that for any $u \in \mathbb{R}^n$ we have

$$F(u_1x_1 + \ldots + u_nx_n) = \sum_{i \leq n} F(x_i)u_i^3 + O(N^{-E}|u|^3),$$

where the implicit constant may depend on F. Then F takes small values.

Proof. There exists $c \in \mathbb{Z}^n - \{0\}$ such that

$$c_1x_1 = c_2x_2 + \ldots + c_nx_n,$$

and without loss of generality $c_2 \geq |c_i|$ for $i = 1, 2, \ldots, n$. Specialising $u = (c_1, c_2, 0, \ldots, 0)$ in (2.1) yields

$$F(c_1x_1 + c_2x_2) = c_1^3F(x_1) + c_2^3F(x_2) + O(N^{-E}c_2^3),$$

and we also have

$$F(c_1x_1 + c_2x_2) = F(2c_2x_2 + c_3x_3 + \ldots + c_nx_n)$$

$$= 8c_2^3F(x_2) + \sum_{i=3}^n c_i^3F(x_i) + O(N^{-E}c_2^3),$$

so

$$c_1^3F(x_1) = 7c_2^3F(x_2) + \sum_{i=3}^n c_i^3F(x_i) + O(N^{-E}c_2^3).$$

(2.2)
Moreover,
\[c_3^3 F(x_1) = F(c_1 x_1) = F(c_2 x_2 + \ldots + c_n x_n) = \sum_{i=2}^{n} c_i^3 F(x_i) + O(N^{-E} c_2^3). \]

Equations (2.2) and (2.3) yield
\[F(x_2) \ll N^{-E}. \]
Since \(N \) is large we conclude that \(|F(x_2)| < 1 \), so \(F \) takes small values. \(\square \)

The following is the same as \(\text{[8, Definition 2]} \), except we do not insist that the quasi-diagonalising vectors be linearly independent.

Definition 2.2. Let \(n \) be a positive integer and \(E \) a positive real number. Let \(\hat{w}_3^{(n)}(E) \) be the least nonnegative integer \(t \) such that if \(F \) is a form in more than \(t \) variables and \(N \) is sufficiently large in terms of \(s \) and \(E \), then there exist \(x_1, \ldots, x_n \in \mathbb{Z}^s \setminus \{0\} \) with \(|x_j| \leq N \) for \(j = 1, 2, \ldots, n \) such that if \(u \in \mathbb{R}^n \) then
\[F(u_1 x_1 + \ldots + u_n x_n) = \sum_{i \leq n} F(x_i) u_i^3 + O(N^{-E} |F| \cdot |u|^3). \]

Lemma 2.3. Let \(0 < \delta < 1 \), let \(E_1, E_2 \) and \(E_3 \) be positive real numbers, and let \(n \) be a positive integer. Put
\[E = \min(E_1 \delta + \delta - 3, E_2 - E_2 \delta - 3 \delta, E_3 - 2), \quad M = \hat{w}_3^{(n)}(E_2) \]
and
\[s = 1 + w_1^{(0)}(n(n+1)/2, E_3), \]
where \(w_1^{(\cdot, \cdot)} \) is the positive integer defined in \(\text{[8, Definition 1]} \). Assume that \(E > 0 \). Then
\[\hat{w}_3^{(n+1)}(E) \leq \max(s - 1, w_1^{(M)}(s(s+1)/2, E_1)). \]

Proof. We follow, mutatis mutandis, the proof of \(\text{[8, Lemma 3]} \). Let
\[B > \max(s - 1, w_1^{(M)}(s(s+1)/2, E_1)), \]
let \(F \) be a cubic form with real coefficients in \(B \) variables, and let \(N > 0 \) be large. Again \(T \) is a subspace of \(\mathbb{R}^B \), but now \(x \) is free to be any vector in \(\mathbb{R}^B \), and \(d_1, \ldots, d_{M+1} \) are not restricted to lie in \(U \) either. The vectors \(a_1, \ldots, a_n \in \mathbb{Z}^{M+1} \setminus \{0\} \) are no longer necessarily linearly independent. The independence of the vectors \(d_1, \ldots, d_{M+1} \) nonetheless ensures that the vectors \(b_i \) are nonzero. The rest of the proof is identical to that of \(\text{[8, Lemma 3]} \). \(\square \)

The next corollary now follows in the same way as \(\text{[8, Corollary 2]} \).

Corollary 2.4. Let \(0 < \delta < 1 \), let \(E \) be a positive real number, let \(n \) be a positive integer, and put
\[s = 1 + [(E + 3)n(n+1)/2]. \]
Then

\[\hat{w}_3^{(n+1)}(E) \leq \left[s(s + 1)(E + 3)/(2\delta) \right] + \hat{w}_3^{(n)}((E + 3\delta)/(1 - \delta)). \]

We can now follow the proof of [8, Theorem 1] on [8, p. 34], for if \(x_1, \ldots, x_9 \) were linearly dependent then \(F \) would take small values by Lemma 2.1. This leads to the following observation.

Lemma 2.5. Let \(\varepsilon \) be a positive real number, and let \(F \) be a real cubic form in \(s \) variables. Put \(n = 9 \), write \(E = 24 + \varepsilon \), and let \(N > 0 \) be sufficiently large in terms of \(E \) and \(F \). Suppose there exist \(x_1, \ldots, x_9 \in \mathbb{Z}^s \setminus \{0\} \) with \(|x_i| \leq N \) for \(i = 1, 2, \ldots, 9 \) such that (2.1) holds for any \(u \in \mathbb{R}^9 \). Then \(F \) takes small values.

In particular \(s_0^{(1)} = s_0(3) \leq 1 + \hat{w}_3^{(9)}(24 + \varepsilon) \), so it remains to bound \(\hat{w}_3^{(9)}(24 + \varepsilon) \) for some positive real number \(\varepsilon \). To do so, we apply Corollary 2.4 eight times in succession, with well-chosen parameters \(\delta \). Firstly, \(\hat{w}_3^{(1)}(E_1) = 0 \) for any positive real number \(E_1 \). For \(n = 1, 2, \ldots, 8 \), Corollary 2.4 recursively bounds \(\hat{w}_3^{(n+1)}(E_{n+1}) \), where

\[E_{n+1} = (1 - \delta_n)E_n - 3\delta_n. \]

Given \(E_9 = 24 + \varepsilon \), note that \(E_8, \ldots, E_1 \) are determined by \(\delta_8, \ldots, \delta_1 \).

Using Freeman’s choice of parameters \(\delta_8, \ldots, \delta_1 \) on [8, p. 35] and \(\varepsilon = 0.00001 \) yields \(\hat{w}_3^{(9)}(24 + \varepsilon) \leq 359547171 \), which recovers \(s_0(3) \leq 359547172 \), as claimed in [8]. With \(\delta_1 = 0.99999999999 \) and \(\varepsilon = 10^{-13} \), the choice of parameters given in Table 1 yields \(\hat{w}_3^{(9)}(24 + \varepsilon) \leq 358817444 \), so

\[s_0^{(1)} = s_0(3) \leq 358817445. \]

We use this method to obtain upper bounds for general \(\hat{w}_3^{(n)}(E) \). The bound obtained is a function of \(\delta_{n-1}, \ldots, \delta_1 \), so a numerical optimisation procedure is necessary. We choose \(\delta_1 = 0.99999999999 \), and optimise the remaining parameters using the Microsoft Excel ‘Solver’, choosing the ‘Evolutionary’ method.

We shall also need the following results of Brüdern.

Theorem 2.6. [5, p. 2] Let \(\theta > 0 \), and let \(\lambda \in \mathbb{R}^9 \) with \(|\lambda_1|, \ldots, |\lambda_9| \geq 1 \). Then there exists a solution \(t \in \mathbb{Z}^9 \) to the system

\[|\lambda_1 t_1^3 + \ldots + \lambda_9 t_9^3| < 1, \quad 0 < \sum_{i \leq 9} |\lambda_i t_i^3| \ll |\lambda_1 \cdots \lambda_9|^{1+\theta}. \]

Theorem 2.7. [5, p. 1] Let \(\theta > 0 \), and let \(\lambda \in \mathbb{R}^8 \) with \(|\lambda_1|, \ldots, |\lambda_8| \geq 1 \). Then there exists a solution \(t \in \mathbb{Z}^8 \) to the system

\[|\lambda_1 t_1^3 + \ldots + \lambda_8 t_8^3| < 1, \quad 0 < \sum_{i \leq 8} |\lambda_i t_i^3| \ll |\lambda_1 \cdots \lambda_8|^{15/8+\theta}. \]
For the remainder of this paper, let F be a cubic form with real coefficients in s variables that splits into r parts of dimensions $a_1 \leq \ldots \leq a_r$, put $\varepsilon = 10^{-13}$, and let N denote a large positive real number. Implicit constants in Vinogradov and Landau notation may henceforth depend on F.

We expect good bounds if many of our parts are large, since we can then quasi-diagonalise each large part. For example, if $r \geq 3$ and $a_1 > \hat{w}_3^{(10-r)}(24 + \varepsilon)$ then F takes small values, by Lemma 3.2. (By the procedure outlined after Lemma 2.5, with $\delta = 0.480769$, we obtain $\hat{w}_3^{(10)}(24 + \varepsilon) \leq 270 \cdot 186$.) Consequently, in proving Theorem 1.1 we need a method that is effective in the case that a_1, \ldots, a_{r-2} are small. We will either quasi-diagonalise the largest part or the largest two parts.

Case: $r = 2, 3, 4$. Here we use nine quasi-diagonalising vectors.

Lemma 3.1. Suppose $a_{r-1} < (s - \hat{w}_3^{(10-r)}(27 - 3r + \varepsilon))/(r - 1)$. Then F takes small values.

Proof. Now $a_r > s - (r - 1)a_{r-1} > \hat{w}_3^{(10-r)}(E)$, where $E = 27 - 3r + \varepsilon$. By letting x_i be the $(A_{i-1} + 1)$st standard basis vector for $i = 1, 2, \ldots, r - 1$ and choosing $x_r, \ldots, x_9 \in \mathbb{Z}^s \setminus \{0\}$ using the definition of $\hat{w}_3^{(10-r)}(E)$, we deduce for all $u \in \mathbb{R}^9$ that

$$F(u_1 x_1 + \ldots + u_9 x_9) = \sum_{i \leq 9} F(x_i) u_i^3 + O(N^{-E}c),$$

where $c = \max(|u_1|, \ldots, |u_9|)^3$. For $j = 1, \ldots, r - 1$ we have $F(x_j) \ll 1$, while for $i = r, \ldots, 9$ we have $|x_i| \leq N$, and so $F(x_i) \ll N^3$.

We may assume that $|F(x_1)|, \ldots, |F(x_9)| \geq 1$, since otherwise F takes small values. Let θ be sufficiently small compared to $\varepsilon = 10^{-13}$. By Theorem 2.6 we may choose $u \in \mathbb{Z}^9 \setminus \{0\}$ such that

$$\left| \sum_{i \leq 9} 2F(x_i) u_i^3 \right| < 1$$

and $c \ll (N^3)^{9-r+r^\theta}$, giving $|F(u_1 x_1 + \ldots + u_9 x_9)| < 1$. This implies that F takes small values, for if x_1, \ldots, x_9 were linearly dependent then by (3.1) we could apply Lemma 2.1. \[\square\]

We wish to show that F takes small values. By Lemma 3.1 we may assume in the sequel that

$$a_{r-1} \geq (s - \hat{w}_3^{(10-r)}(27 - 3r + \varepsilon))/(r - 1).$$

(3.2)

In this case we might quasi-diagonalise the largest two parts.

Lemma 3.2. Let $E_1 > 3$ and E_2 be real numbers satisfying

$$(E_1 - 3)(E_2 - 3(8 - r)) > 18(9 - r).$$

Suppose $a_{r-1} > \hat{w}_3^{(2)}(E_1)$ and $a_r > \hat{w}_3^{(9-r)}(E_2)$. Then F takes small values.
Proof. Since $E_1 > 3 + 18(9-r)/(E_2 - 3(8-r))$ we may choose $\alpha > 6/(E_2 - 3(8-r))$ such that $E_1 > 3 + 3\alpha(9-r)$. Let w_i be the $(A_i - 1)st$ standard basis vector for $i = 1, 2, \ldots, r - 2$. There exist $x_1, x_2, y_1, \ldots, y_{9-r} \in \mathbb{Z}^s \setminus \{0\}$ such that $|x_j| \leq N$ ($j = 1, 2$), $|y_k| \leq N^\alpha$ ($k = 1, 2, \ldots, 9 - r$) and for any $t \in \mathbb{R}^{r-2}$, $u \in \mathbb{R}^2$ and $v \in \mathbb{R}^{9-r}$ we have

$$F(z) = \sum_{i \leq r-2} F(w_i)t_i^3 + \sum_{j \leq 2} F(x_j)u_j^3 + \sum_{k \leq 9-r} F(y_k)v_k^3 + O(N^{-E_1}|u|^3 + N^{-\alpha E_2}|v|^3), \quad (3.3)$$

where $z = t_1w_1 + \ldots + t_{r-2}w_{r-2} + u_1x_1 + u_2x_2 + v_1y_1 + \ldots + v_{9-r}y_{9-r}$.

Let $\theta > 0$ be small in terms of E_1, E_2 and α. We may assume that $|F(w_i)|, |F(x_j)|, |F(y_k)| \geq 1$, since otherwise F takes small values. For $j = 1, 2$ and $k = 1, 2, \ldots, 9 - r$ we have $F(x_j) \ll N^3$ and $F(y_k) \ll N^{3\alpha}$. By Theorem 2.6 we may choose nonzero vectors $t \in \mathbb{Z}^{r-2}$, $u \in \mathbb{Z}^2$ and $v \in \mathbb{Z}^{9-r}$ satisfying

$$|u|^3 \ll N^3(N^{3\alpha})^{9-r}N^\theta, \quad |v|^3 \ll (N^3)^2(N^{3\alpha})^{8-r}N^\theta \quad (3.4)$$

and

$$\left| \sum_{i \leq r-2} 2F(w_i)t_i^3 + \sum_{j \leq 2} 2F(x_j)u_j^3 + \sum_{k \leq 9-r} 2F(y_k)v_k^3 \right| < 1. \quad (3.5)$$

Substituting (3.4) into (3.3) yields

$$F(z) = \sum_{i \leq r-2} F(w_i)t_i^3 + \sum_{j \leq 2} F(x_j)u_j^3 + \sum_{k \leq 9-r} F(y_k)v_k^3 + O(N^{E + \theta}), \quad (3.6)$$

where $E = \max(3 + 3\alpha(9-r) - E_1, 3(2 + \alpha(8-r)) - \alpha E_2) < 0$. Since θ is small we also have $E + \theta < 0$. Combining (3.5) and (3.6) now yields $|F(z)| < 1$. This implies that F takes small values, for if $w_1, \ldots, w_{r-2}, x_1, x_2, y_1, \ldots, y_{9-r}$ were linearly dependent then by (3.3) we could apply Lemma 2.1 \(\square\)

Choose E_1 so that

$$(s - \hat{w}_3^{(10-r)}(27 - 3r + \epsilon))/(r - 1) > \hat{w}_3^{(2)}(E_1). \quad (3.7)$$

It is advantageous to choose E_1 only slightly smaller than is necessary for (3.7).

By (3.2) we now have $a_{r-1} > \hat{w}_3^{(2)}(E_1)$. We need s to be large enough to ensure that we can choose $E_1 > 3$. Choose E_2 so that

$$(E_1 - 3)(E_2 - 3(8-r)) > 18(9-r). \quad (3.8)$$

It is advantageous to choose E_2 only slightly larger than is necessary for (3.8).

In view of Lemma 3.2 we may assume that $a_r \leq \hat{w}_3^{(9-r)}(E_2)$, which implies that

$$a_{r-1} \geq \left(s - \hat{w}_3^{(9-r)}(E_2)/(r - 1) \right).$$

If s is large enough then this bound will be better than our initial bound (3.2), in which case we can repeat this procedure until a contradiction is reached. This would imply that F takes small values.

For each r, the upper bound that we obtain for $s_0^{(r)}$ is not much greater than the theoretical limit of our approach, that being our upper bound for
\(\hat{w}_3^{(10-r)}(27-3r+\varepsilon) \). Little is lost, therefore, from the guesswork and computer optimisation involved here.

Case: \(r = 5, 6 \). Here we can achieve better bounds using eight quasi-diagonalising vectors. We use the following analogously-proven variants of Lemmas 3.1 and 3.2. These rely on Theorem 2.7 instead of Theorem 2.6 as a key ingredient.

Lemma 3.3. Suppose \((r-1)a_{r-1} < s - \hat{w}_3^{(9-r)}(\varepsilon - 3 + 45(9-r)/8) \). Then \(F \) takes small values.

Lemma 3.4. Let \(E_1 \) and \(E_2 \) be real numbers such \(H_1 > 0 \) and \(H_1H_2 > 8 - r \), where \(H_1 = (4E_1 - 33)/45 \) and \(H_2 = r - 8 + 8(E_2 + 3)/45 \). Suppose \(a_{r-1} > \hat{w}_3^{(2)}(E_1) \) and \(a_r > \hat{w}_3^{(8-r)}(E_2) \). Then \(F \) takes small values.

The strategy in this case is much the same. Again the upper bound that we obtain for \(s_0^{(r)} \) is not much greater than the theoretical limit of our approach, which is now our upper bound for \(\hat{w}_3^{(9-r)}(\varepsilon - 3 + 45(9-r)/8) \).

4. Implementation

Our bounds for \(\hat{w}_3^{(m)}(E) \) are gotten via the procedure outlined after Lemma 2.5. When \(n \geq 3 \), we specify our choices of \(\delta_{n-1}, \ldots, \delta_2 \) in 45, so that the reader may easily verify these bounds.

Case: \(r = 2 \). Assume for the sake of contradiction that \(s \geq 120 \, 897 \, 257 \) and \(F \) does not take small values. From Table 1 we see that \(\hat{w}_3^{(8)}(21 + \varepsilon) \leq 120 \, 893 \, 893 \), so by Lemma 3.1 we have

\[
a_1 \geq 120 \, 897 \, 257 - 120 \, 893 \, 893 > \hat{w}_3^{(2)}(14.6992).
\]

Lemma 3.2 now gives

\[
a_2 \leq \hat{w}_3^{(7)}(28.77) \leq 120 \, 847 \, 458
\]

(see Table 2). Now \(a_1 \geq 49 \, 799 > \hat{w}_3^{(2)}(42) \), so by Lemma 3.2 we have

\[
a_2 \leq \hat{w}_3^{(7)}(21.2308) < 54 \, 000 \, 000 < s/2
\]

(see Table 2), contradiction.

Case: \(r = 3 \). Assume for the sake of contradiction that \(s \geq 35 \, 042 \, 291 \) and \(F \) does not take small values. From Table 3 we see that \(\hat{w}_3^{(7)}(18 + \varepsilon) \leq 35 \, 037 \, 484 \), so by Lemma 3.1 we have

\[
a_2 \geq (35 \, 042 \, 291 - 35 \, 037 \, 484)/2 > \hat{w}_3^{(2)}(12.705).
\]

Lemma 3.2 now gives

\[
a_3 \leq \hat{w}_3^{(6)}(26.1283) \leq 34 \, 956 \, 075
\]

(see Table 3). Now \(a_2 \geq 43 \, 108 > \hat{w}_3^{(2)}(40) \), so by Lemma 3.2 we have

\[
a_3 \leq \hat{w}_3^{(6)}(17.919) < 13 \, 000 \, 000
\]
(see Table 4). Now \(a_2 > 10\,000\,000 > \hat{w}_3^{(2)}(267)\), so by Lemma 3.2 we have
\[
a_3 \leq \hat{w}_3^{(6)}(15.41) < 9\,000\,000 < s/3
\]
(see Table 4), contradiction.

Case: \(r = 4\). Assume for the sake of contradiction that \(s \geq 8\,324\,100\) and \(F\) does not take small values. From Table 5 we see that \(\hat{w}_3^{(6)}(15 + \varepsilon) \leq 8\,319\,167\), so by Lemma 3.1 we have
\[
a_3 \geq (8\,324\,100 - 8\,319\,167)/3 > \hat{w}_3^{(2)}(10.6989).
\]
Lemma 3.2 now gives
\[
a_4 \leq \hat{w}_3^{(5)}(23.69) \leq 8\,300\,761
\]
(see Table 5). Now \(a_3 > 7\,779 \geq \hat{w}_3^{(2)}(20.935)\), so by Lemma 3.2 we have
\[
a_4 \leq \hat{w}_3^{(5)}(17.02) \leq 3\,532\,167
\]
(see Table 6). Now \(a_3 \geq 1\,597\,311 > \hat{w}_3^{(2)}(143)\), so by Lemma 3.2 we have
\[
a_4 \leq \hat{w}_3^{(5)}(12.7) < 2\,000\,000 < s/4
\]
(see Table 6), contradiction.

Case: \(r = 5\). Assume for the sake of contradiction that \(s \geq 1\,164\,774\) and \(F\) does not take small values. From Table 7 we see that \(\hat{w}_3^{(4)}(19.5 + \varepsilon) \leq 1\,149\,469\), so by Lemma 3.3 we have
\[
a_4 \geq (1\,164\,774 - 1\,149\,469)/4 > \hat{w}_3^{(2)}(15.215),
\]
so by Lemma 3.4 we have
\[
a_5 \leq \hat{w}_3^{(3)}(41.132) \leq 1\,148\,061
\]
(see Table 7). Now \(a_4 > 4\,178 > \hat{w}_3^{(2)}(16)\), so by Lemma 3.4 we have
\[
a_5 \leq \hat{w}_3^{(3)}(38.371) \leq 950\,897
\]
(see Table 8). Now \(a_4 > 53\,469 > \hat{w}_3^{(2)}(43)\), so by Lemma 3.4 we have
\[
a_5 \leq \hat{w}_3^{(3)}(19.34) < 160\,000 < s/5
\]
(see Table 8), contradiction.

Case: \(r = 6\). Assume for the sake of contradiction that \(s \geq 77\,027\) and \(F\) does not take small values. From Table 8 we see that \(\hat{w}_3^{(3)}(111/8 + \varepsilon) \leq 67\,151\). By Lemma 3.3 we have
\[
a_5 \geq (77\,027 - 67\,151)/5 > \hat{w}_3^{(2)}(11.52),
\]
so by Lemma 3.4 we have
\[
a_6 \leq \hat{w}_3^{(2)}(47) \leq 66\,301.
\]
Now \(a_5 > 2\,145 > \hat{w}_3^{(2)}(12)\), so by Lemma 3.4 we have
\[
a_6 \leq \hat{w}_3^{(2)}(42 + \varepsilon) \leq 50\,761.
\]
Now $a_5 > 5 \ 253 \geq \hat{w}_3^{(2)}(17.76)$, so by Lemma 3.4 we have

$$a_6 \leq \hat{w}_3^{(2)}(21.56) \leq 8 \ 621 < s/6,$$

contradiction.

5. Appendix

Table 1. δ_t values that produce our $\hat{w}_3^{(n)}(E)$ bounds.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(9)}(24 + \varepsilon) \leq 358 \ 817 \ 444$</th>
<th>$\hat{w}_3^{(8)}(21 + \varepsilon) \leq 120 \ 893 \ 893$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.1219508888575</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.13900000051495</td>
<td>0.1384533753495</td>
</tr>
<tr>
<td>6</td>
<td>0.1616363780159</td>
<td>0.1609356877609</td>
</tr>
<tr>
<td>5</td>
<td>0.1916509521206</td>
<td>0.1922156002865</td>
</tr>
<tr>
<td>4</td>
<td>0.2380722861783</td>
<td>0.2388890203917</td>
</tr>
<tr>
<td>3</td>
<td>0.3174342105461</td>
<td>0.316454189125</td>
</tr>
<tr>
<td>2</td>
<td>0.47495682232</td>
<td>0.4768207640774</td>
</tr>
</tbody>
</table>

Table 2. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(7)}(28.77) \leq 120 \ 847 \ 458$</th>
<th>$\hat{w}_3^{(7)}(21.2308) < 54 \ 000 \ 000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.1609827599744</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>0.1926282407656</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.2394541535068</td>
<td>0.24</td>
</tr>
<tr>
<td>3</td>
<td>0.3173479381534</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.4778402527145</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 3. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(7)}(18 + \varepsilon) \leq 35 \ 037 \ 484$</th>
<th>$\hat{w}_3^{(6)}(26.1283) \leq 34 \ 956 \ 075$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.1622320717848</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1913883878295</td>
<td>0.190875904156</td>
</tr>
<tr>
<td>4</td>
<td>0.237715626746</td>
<td>0.2394408722191</td>
</tr>
<tr>
<td>3</td>
<td>0.3184353150435</td>
<td>0.317306904156</td>
</tr>
<tr>
<td>2</td>
<td>0.4766081301145</td>
<td>0.474740051924</td>
</tr>
</tbody>
</table>

Table 4. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(6)}(17.919) < 13 \ 000 \ 000$</th>
<th>$\hat{w}_3^{(6)}(15.41) < 9 \ 000 \ 000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.1922987759852</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.2382521051977</td>
<td>0.24</td>
</tr>
<tr>
<td>3</td>
<td>0.3199994105886</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.4736846151953</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table 5. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(6)}(15 + \varepsilon) \leq 8,319,167$</th>
<th>$\hat{w}_3^{(5)}(23.69) \leq 8,300,761$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.192823726901</td>
<td>0.2374187457642</td>
</tr>
<tr>
<td>4</td>
<td>0.2397740002555</td>
<td>0.31819054621</td>
</tr>
<tr>
<td>3</td>
<td>0.3178294478615</td>
<td>0.4761905057407</td>
</tr>
<tr>
<td>2</td>
<td>0.4756096604837</td>
<td>0.4761905057407</td>
</tr>
</tbody>
</table>

Table 6. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(5)}(17.02) \leq 3,532,167$</th>
<th>$\hat{w}_3^{(5)}(12.7) < 2,000,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2397461759082</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3189607203519</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.4774815418743</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 7. More δ_t values.

<table>
<thead>
<tr>
<th>t</th>
<th>$\hat{w}_3^{(4)}(19.5 + \varepsilon) \leq 1,149,469$</th>
<th>$\hat{w}_3^{(3)}(41.132) \leq 1,148,061$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.318181063807</td>
<td>0.4746189532255</td>
</tr>
<tr>
<td>2</td>
<td>0.4761907830763</td>
<td>0.4761907830763</td>
</tr>
</tbody>
</table>

Table 8. δ_2 values that produce our $\hat{w}_3^{(3)}(E)$ bounds.

$\hat{w}_3^{(3)}(38.371) \leq 950,897$	0.4763156722225
$\hat{w}_3^{(3)}(19.34) < 160,000$	0.5
$\hat{w}_3^{(3)}(111/8 + \varepsilon) \leq 67,151$	0.4726543938831

References

School of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, United Kingdom

E-mail address: Sam.Chow@bristol.ac.uk