Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Performance-aware task scheduling in multi-core computers

Tools
- Tools
+ Tools

Ren, Shenyuan (2018) Performance-aware task scheduling in multi-core computers. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Ren_2018.pdf - Submitted Version - Requires a PDF viewer.

Download (3231Kb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3402806~S15

Request Changes to record.

Abstract

Multi-core systems become more and more popular as they can satisfy the increasing computation capacity requirements of complex applications. Task scheduling strategy plays a key role in this vision and ensures that the task processing is both Quality-of-Service (QoS, in this thesis, refers to deadline) satisfied and energy-efficient. In this thesis, we develop task scheduling strategies for multi-core computing systems. We start by looking at two objectives of a multi-core computing system. The first objective aims at ensuring all tasks can satisfy their time constraints (i.e. deadline), while the second strives to minimize the overall energy consumption of the platform. We develop three power-aware scheduling strategies in virtualized systems managed by Xen. Comparing with the original scheduling strategy in Xen, these scheduling algorithms are able to reduce energy consumption without reducing the performance for the jobs. Then, we find that modelling the makespan of a task (before execution) accurately is very important for making scheduling decisions. Our studies show that the discrepancy between the assumption of (commonly used) sequential execution and the reality of time sharing execution may lead to inaccurate calculation of the task makespan. Thus, we investigate the impact of the time sharing execution on the task makespan, and propose the method to model and determine the makespan with the time-sharing execution. Thereafter, we extend our work to a more complex scenario: scheduling DAG applications for time sharing systems. Based on our time-sharing makespan model, we further develop the scheduling strategies for DAG jobs in time-sharing execution, which achieves more effective at task execution. Finally, as the resource interference also makes a big difference to the performance of co-running tasks in multi-core computers (which may further influence the scheduling decision making), we investigate the influential factors that impact on the performance when the tasks ii are co-running on a multicore computer and propose the machine learning-based prediction frameworks to predict the performance of the co-running tasks. The experimental results show that the techniques proposed in this thesis is effective.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
Library of Congress Subject Headings (LCSH): Quality of service (Computer networks), High performance computing, Energy consumption, Cloud computing
Official Date: July 2018
Dates:
DateEvent
July 2018UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: He, Ligang
Sponsors: China Scholarship Council
Format of File: pdf
Extent: xviii, 137 leaves : charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us