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OPTIMAL LOWER BOUNDS FOR MULTIPLE RECURRENCE

SEBASTIÁN DONOSO, ANH NGOC LE, JOEL MOREIRA, AND WENBO SUN

Abstract. Let (X,B, µ, T ) be an ergodic measure preserving system, A ∈ B and ε > 0. We study the

largeness of sets of the form

S =
{
n ∈ N : µ(A ∩ T−f1(n)A ∩ T−f2(n)A ∩ . . . ∩ T−fk(n)A) > µ(A)k+1 − ε

}
for various families (f1, . . . , fk) of functions fi : N→ Z.

For k ≤ 3 and fi(n) = if(n), we show that S has positive density if f(n) = q(pn) where q ∈ Z[x]
satisfies q(1) = 0 and (pn) is the sequence of primes; or when f is a Hardy field sequence. If T q is

ergodic for some q ∈ N, then for all r ∈ Z, S is syndetic if f(n) = qn+ r.

For fi(n) = ain, where ai are distinct integers, we show that S can be empty for k ≥ 4, and for

k = 3 we found an interesting relation between the largeness of S and the existence (and abundance)

of solutions to certain linear equations in sparse sets of integers. We also provide several partial results

when the fi are distinct polynomials.

1. Introduction

1.1. Historical background. The classical Poincaré recurrence theorem states that for every measure
preserving system (X,B, µ, T ) and every set A ∈ B with µ(A) > 0, there exists some n ∈ N such that
µ(A ∩ T−nA) > 0. This result was improved by Khintchine in [17], who showed that under the same
conditions, for every ε > 0, the set

S :=
{
n : µ(A ∩ T−nA) > µ(A)2 − ε

}
is syndetic, meaning that it has bounded gaps. Taking a mixing system, one sees that the bound µ(A)2

is optimal.
In [14], Furstenberg established a multiple recurrence theorem, showing that for every measure pre-

serving system (X,B, µ, T ), every k ∈ N and set A ∈ B with µ(A) > 0, there exists a syndetic set S ⊂ N
such that for all n ∈ S, we have

(1) µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

One could hope to improve Furstenberg’s multiple recurrence theorem in the same way that Khint-
chine’s theorem strengthens Poincaré’s. Since for a system mixing of all orders, the left hand side of (1)
approaches µ(A)k+1 as n→∞, one could hope that under the same conditions as Furstenberg’s multiple
recurrence theorem, for every ε > 0, the set

(2)
{
n : µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > µ(A)k+1 − ε

}
is syndetic. This was showed to be true by Furstenberg when the system is weakly mixing, and the general
case was finally settled by Bergelson Host and Kra in [3], who showed that if the system (X,B, µ, T ) is
ergodic, then the set in (2) is syndetic when k = 1, 2, 3 (with the case k = 1 following from Khintchine’s
theorem). However, the set in (2) may be empty if the system is not ergodic or if k ≥ 4:
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2 SEBASTIÁN DONOSO, ANH NGOC LE, JOEL MOREIRA, AND WENBO SUN

Theorem 1.1 (See [3, Theorems 2.1 and 1.3]). There exist a (non ergodic) measure preserving system
(X,B, µ, T ) and for each ` ∈ N a set A ∈ B with µ(A) > 0 such that for every n ∈ N \ {0}

µ(A ∩ T−nA ∩ T−2nA) ≤ 1

2
µ(A)`

There exist a totally ergodic measure preserving system (X,B, µ, T ) and for each ` ∈ N a set A ∈ B with
µ(A) > 0 such that for every n ∈ N \ {0}

µ(A ∩ T−nA ∩ · · · ∩ T−4nA) ≤ 1

2
µ(A)`

The first part of this theorem explains why one needs to focus on ergodic systems when studying
optimal recurrence.

Furstenberg’s multiple recurrence theorem has been extended in several different directions, each lead-
ing to the question of whether (or under which conditions) can optimal recurrence be achieved. In this
paper, we are mostly concerned with expressions of the form

µ(A ∩ T f1(n)A ∩ T f2(n)A ∩ · · · ∩ T fk(n)A)

for various families (f1, . . . , fk) of functions fi : N → Z. In most cases where recurrence has been
established, optimal recurrence can be obtained for weakly mixing systems (cf. [1] when the fi are
polynomials and [2, 8, 9] for more general fi), or when the functions are “independent” (see [12, 13] for
the case of linearly independent polynomials and [9] for more general fi with different growth). In the
general case, besides the aforementioned paper [3], the main progress was obtained by Frantzikinakis in
[6], where the case when k ≤ 3 and the fi are polynomials is studied in detail.

1.2. Optimal recurrence along (T f(n), T 2f(n), . . . , T kf(n)).
Our first result concerns the sequence (pn)n∈N of primes and answers a question of Kra. Multiple

recurrence along polynomials evaluated at primes was established by Frantzikinakis, Host and Kra in
[10, 11]. Our result states that one can also obtain optimal recurrence in this setting.

Theorem 1.2. Let (pn)n∈N be the (increasing) enumeration of the primes, let (X,B, µ, T ) be an invertible
ergodic measure preserving system and let f ∈ Z[x] be such that f(1) = 0. Then for every A ∈ B, ε > 0

and k ∈ {1, 2, 3}, the set

(3)
{
n ∈ N : µ(A ∩ T f(pn)A ∩ T 2f(pn)A ∩ · · · ∩ T kf(pn)A) > µ(A)k+1 − ε

}
has positive lower density1.

Theorem 1.2 follows from the stronger Theorem 3.2 below. We remark that the set in (3) is not
syndetic in general. In fact, it follows from [22] that when f(x) = x − 1, for every non-trivial finite
system, there exists A ∈ B such that the set in (3) has unbounded gaps.

A similar result can be obtained if the sequence f(pn) is replaced with the sequence bf(n)c, where bxc
is the largest integer not greater than x, and f is a function belonging to a Hardy field with polynomial
growth and sufficiently far away from Q[x]. More precisely, denote by G the set of all equivalence classes
of smooth functions R → R, where f ∼ g if there exists a constant c > 0 such that f(x) = g(x) for all
x > c. A Hardy field is a subfield of the ring (G,+,×) which is closed under differentiation. Let H be
the union of all Hardy fields. We say that a function a(x) has polynomial growth if there exists d ∈ N
such that a(x)/xd → 0.

1The lower density d(E) of a set E ⊂ N is the number d(E) = lim inf
N→∞

|E∩{1,...,N}|
N

.
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Theorem 1.3. Let a ∈ H have polynomial growth and satisfy
∣∣a(x) − cp(x)

∣∣/ log(x) → ∞ for every
c ∈ R, p ∈ Z[x]. Then for every invertible ergodic measure preserving system (X,B, µ, T ), every A ∈ B,
every ε > 0 and every k ∈ {1, 2, 3}, the set

(4)
{
n ∈ N : µ(A ∩ T ba(n)cA ∩ T 2ba(n)cA ∩ · · · ∩ T kba(n)cA) > µ(A)k+1 − ε

}
has positive lower density.

Theorem 1.3 is proved in Section 3.2. Examples of functions that satisfy the conditions in the previous
theorem are a(x) = xc where c > 0, c 6∈ Z, a(x) = x log x, a(x) = x2

√
2 + x

√
3, and a(x) = x3 + (log x)3.

We point out that in Theorem 1.3 we cannot replace “has positive density” by “is syndetic”. This is easy
to see for certain functions a(x) growing slowly (for instance a(x) = xc when c < 1). For such functions,
ba(n)c is constant in arbitrarily long intervals and takes every value which is large enough. Therefore
there are gaps of the set (4) which are arbitrarily long. On the other hand, we expect the set in (4) to
be thick, i.e. contain arbitrarily long intervals, whenever a ∈ H has polynomial growth. Some evidence
in this direction is given in [4], where the set

{
n ∈ N : µ(A ∩ T ba(n)cA ∩ · · · ∩ T kba(n)cA) > 0

}
is shown

to be thick, as well as the set in (4) when k = 1.
Our third result concerns sequences of the form f(n) = qn+ r for fixed q, r ∈ Z and was suggested by

Kra.

Theorem 1.4. Let q, r ∈ Z, with q > 0, and (X,B, µ, T ) be a measure preserving system with T q ergodic.
Let A ∈ B, ε > 0 and k ∈ {1, 2, 3}. Then the set

(5)
{
n ∈ N : µ(A ∩ T−(qn+r)A ∩ T−2(qn+r)A ∩ · · · ∩ T−k(qn+r)A) > µ(A)k+1 − ε

}
is syndetic.

Theorem 1.4 follows from Theorem 3.5 below, which deals with a more general situation involving
Beatty sequences. Observe that the conclusion of Theorem 1.4 is equivalent to the statement that the
intersection {

n ∈ N : µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > µ(A)k+1 − ε
}
∩
(
qZ + r

)
is syndetic.

If in (5) one replaces the optimal lower bound µ(A)k+1 − ε with 0, then the set is syndetic for any
k ∈ N. This was proved in [15] for k = 2 and k = 3, and for larger k this is essentially the content of [5,
Corollary 6.5]; see also [21].

1.3. Optimal recurrence along (T−a1n, T−a2n, . . . , T−adn). Next we study obtaining optimal recur-
rence for the expression

µ(T−a1nA ∩ T−a2nA ∩ · · · ∩ T−adnA)

where a1, . . . , ad are distinct integer numbers. In particular, if ai = i, then the results of Bergelson, Host
and Kra tell us that we have optimal recurrence if and only if d ≤ 4. More generally, in [6] it is proved
that if d ≤ 3, or d = 4 and a2 + a3 = a1 + a4, then optimal recurrence holds, but any other case is not
known.

Expanding an argument of Ruzsa, presented in the appendix of [3], we prove that for d ≥ 5, one does
not have optimal recurrence.
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Theorem 1.5. Let a1 < . . . < a5 be pairwise distinct integers. There exists an ergodic system (X,B, µ, T )

such that for every ` > 0, there exists a set A ∈ B with µ(A) > 0 such that

µ(T−a1nA ∩ T−a2nA ∩ . . . ∩ T−a5nA) ≤ 1

2
µ(A)`

for every non-zero integer n.

Theorem 1.5 is proved in Section 4.1. The cases not covered by the above results seem difficult to
address. For instance, it is not known whether for every ergodic measure preserving system, every set A
and every ε > 0 there exists (a syndetic set of) n for which

µ(A ∩ T−2nA ∩ T−3nA ∩ T−4nA) > µ(A)4 − ε.

In [6], Frantzikinakis showed that a positive answer to this question would imply the existence of solutions
to a certain linear equation in sparse sets. We obtain a converse result, showing a tight connection between
optimal lower bounds for multiple recurrence and solutions to linear equations in sparse sets. In order to
formulate our result, we need to introduce some notation.

Definition 1.6. Let m, d,N ∈ N. Denote [N ] := {0, 1, . . . , N−1}. Given a set E ⊆ [N ]m and a subspace
V ⊆ Qd×m, denote

Dm,N (V,E) =
|V ∩ Ed|

|V ∩ [N ]d×m|
dm,N (E) =

|E|
Nm

.

Observe that a point (x1, . . . , xdm) ∈ [N ]d×m belongs to V if and only if the coordinates x1, . . . , xdm

satisfy some system of linear equations. The reader should think of Dm,N (V,E) as the proportion of
solutions to that system of equations with all variables in E.

Definition 1.7. A subset S ⊆ N is a Bohr0 if there exist d ∈ N, ρ > 0 and α ∈ Td such that S = {n ∈
N : ‖nα‖Td < ρ}, where ‖ · ‖Td denotes the distance to the identity in Td.

Theorem 1.8. Let ` > 4 and a1, . . . , a4 ∈ Z be distinct. Let V be the subspace of Q4 spanned by
(ai1, . . . , a

i
4) for 0 ≤ i ≤ 2.2 Let C > 0 and suppose that for every m ∈ N, every sufficiently large N

and subset E ⊆ [N ]m, we have Dm,N (V m, E) ≥ Cdm,N (E)`. Then for every invertible ergodic system
(X,B, µ, T ) and every A ∈ B with µ(A) > 0, there exists a Bohr0 set S ⊆ N such that

lim sup
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

µ(T a1nA ∩ · · · ∩ T a4nA) ≥ C
(

1− 4

`

)`
µ(A)`.

Theorem 1.8 is proved in Section 4.3.

Remark 1.9. It is easy to see that the conclusion of Theorem 1.8 implies that the set

(6)

{
n ∈ N : µ(T a1nA ∩ · · · ∩ T a4nA) ≥ C

(
1− 4

`

)`
µ(A)` − ε

}
is syndetic for all ε > 0.

Unfortunately, the conditionDm,N (V m, E) ≥ Cdm,N (E)` seems difficult to verify in concrete instances,
even for m = 1. We obtain a partial converse to Theorem 1.8 which shows that it is essentially as difficult
as establishing optimal lower bounds for the corresponding multiple recurrence problem.

2We adopt the convention that if some ai equals to 0, then a0i = 00 = 1.



OPTIMAL LOWER BOUNDS FOR MULTIPLE RECURRENCE 5

Theorem 1.10. Let ` ≥ 4 and a1, . . . , a4 ∈ Z be distinct. Let V be the subspace of Q4 spanned by
(ai1, . . . , a

i
4) for 0 ≤ i ≤ 2. Let C > 0 and suppose that for every ergodic system (X,B, µ, T ) and every

A ∈ B with µ(A) > 0, there exists a Bohr0 set S ⊆ N such that

lim sup
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

µ(T a1nA ∩ · · · ∩ T a4nA) ≥ Cµ(A)`.

Then for every m ∈ N, every sufficiently large N and every E ⊆ [N ]m,

Dm,N (V m, E) ≥ Cβmdm,N (E)`,

where β > 0 is an explicit constant depending only on a1, . . . , a4 and `.

Theorem 1.10 is proved in Section 4.2.
We provide some examples to illustrate Theorems 1.8 and 1.10.

Example 1.11. (a1, a2, a3, a4) = (0, 2, 3, 4). In this case V is the Q-span of (1, 1, 1, 1), (0, 2, 3, 4) and
(0, 4, 9, 16). It is not hard to show that

V =
{

(x, y, z, w) ∈ Q4 : x− 6y + 8z − 3w = 0
}
.

For convenience set m = 1. Then D1,N (V,E) is essentially the density of solutions of the equation
x− 6y+ 8z− 3w = 0 in E, i.e. the proportion of tuples (x, y, z, w) ∈ [N ]4 satisfying x− 6y+ 8z− 3w = 0

that belong to E4. The condition in Theorem 1.8 can be rephrased informally as saying that this density
can be bounded from below by the `-th power of the density d1,N (E) of the set E.

Example 1.12. Suppose that a1 + a2 = a3 + a4. In this case, an elementary computation shows that

V =
{

(x, y, z, w) ∈ Q4 : s(x− y) + t(z − w) = 0
}
,

where s = a3 − a4 and t = a2 − a1. We can assume, without loss of generality, that both s and t are
positive.

Given N,m ∈ N and a set E ⊂ [N ]m, denote by P (n) the number of pairs (x, z) ∈ E2 satisfying
sx+ tz = n for each n ∈ Nm. Observe that if (x, y, z, w) ∈ E4∩V m then sx+ tz = sy+ tw ∈

[
(s+ t)N

]m.
We have ∑

n∈
[
(s+t)N

]m P (n) = |E|2 and
∑

n∈
[
(s+t)N

]m P (n)2 = |E4 ∩ V m|.

It follows from the Cauchy-Schwarz inequality that |E|4
Nm(s+t)m ≤ |E

4 ∩ V m|, which in turn implies that

(7) βmdm,N (E)4 ≤ Dm,N (V,E)

where 0 < β < lim
N→∞

N3

|V ∩[N ]4|(s+t) (it is easy to see that the limit exists and is positive).

The conclusion (7) also follows from combining Theorem 1.10 with [6, Theorem C].

1.4. Optimal recurrence along polynomials. In [6], Frantzikinakis studied in detail the optimal
recurrence for polynomial sequences with k ≤ 3 and dealt with most cases in that regime. However, some
stubborn questions remain unanswered. For instance, it is not known if there exists ` > 0 such that for
every ergodic system (X,B, µ, T ), every A ∈ B and every ε > 0, the set

(8)
{
n ∈ N : µ(A ∩ T−nA ∩ T−2nA ∩ T−n

2

A) > µ(A)` − ε
}
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is non-empty (let alone syndetic). Intriguingly enough, if we replace n2 by n3 (or by nd for any d > 2)
and set ` = 4 in (8), then by Theorem B and Section 4.2 in [6] we deduce that the set obtained is syndetic.
We give a partial positive result for a situation where (8) is syndetic.

Proposition 1.13. Let (X,B, µ, T ) be an ergodic system and let Z3 be the 3-step nilfactor of X (see
Section 2 for the definition). Assume that Z3 is an inverse limit of nilsystems that can be represented as
G/Γ, with G is a connected. Then for every A ∈ B and ε > 0, the set{

n ∈ N : µ(A ∩ T−nA ∩ T−2nA ∩ T−n
2

A) > µ(A)4 − ε
}

is syndetic.

Remark 1.14. In particular, the hypothesis of Proposition 1.13 is satisfied if (X = G/Γ,B, µ, T ) is an
ergodic nilsystem with G being a connected Lie group.

We are unable to remove the connectedness assumption. Hence the general question regarding optimal
recurrence for (0, n, 2n, n2) remains open. However in next result, we provide an example of lack of
optimal recurrence for this family in the case of two commuting transformations.

Proposition 1.15. There exists a system (X,B, µ, T1, T2), with T1 ergodic, T1T2 = T2T1 such that for
every integer ` > 0, there exists A ∈ B with µ(A) > 0 such that

µ(A ∩ T−n1 A ∩ T−2n
1 A ∩ T−n

2

2 A) ≤ 1

2
µ(A)`

for every positive integer n.

Proposition 1.13 and Proposition 1.15 are proved in Section 5.
Acknowledgements. We thank Bryna Kra for proposing to us the questions studied in this paper and
for many helpful discussions. We thank the Mathematics Research Communities program of the AMS
for giving us the optimal environment to start this project. The first author is grateful for the support
of Fondecyt Iniciación Grant 11160061, and the third author is supported by the NSF via grant DMS-
1700147.

2. Background

2.1. Nilmanifolds, nilsystems and nilsequences. Given a group G, we denote its lower central series
by G = G1 . G2 . · · · , where each term is defined by Gi+1 = [Gi, G], i.e., Gi+1 is the subgroup of G
generated by all the commutators [a, b] := aba−1b−1 with a ∈ Gi and b ∈ G. The group G is a k-step
nilpotent group if Gk+1 is the trivial group.

Let G be a k-step nilpotent Lie group and let Γ be a uniform (i.e closed and cocompact) subgroup
of G. The compact homogeneous space X := G/Γ is called a k-step nilmanifold. Let π : G → X be the
standard quotient map. We write 1X = π(1G) where 1G is the identity element of G. Denote by G0 the
connected component of G containing the identity 1G. If X is connected, then X = π(G0).

The space X is endowed with a unique probability measure that is invariant under translations by
G. This measure is called the Haar measure for X, and denoted by µX . For every τ ∈ G, the measure
preserving system (X,B, µX , T ) given by Tx = τ · x, x ∈ X is called a k-step nilsystem, where B is the
Borel σ-algebra of X.

Let C(X) denote the set of continuous functions on X. For f ∈ C(X) and x ∈ X, the sequence
ψ(n) := f(Tnx) is called a basic k-step nilsequence. A k-step nilsequence is a uniform limit of basic
k-step nilsequences.
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We say that a sequence (xn)n∈N is equidistributed on a nilmanifold X if for every F ∈ C(X), we have

lim
N→∞

1

N

N∑
n=1

F (xn) =

∫
X

F dµX .

Similarly, we say that (xn)n∈N is well distributed on X if

lim
N−M→∞

1

N −M

N−1∑
n=M

F (xn) =

∫
X

F dµX .

for all F ∈ C(X).

2.2. Nilfactors. Let (X,B, µ, T ) be an ergodic measure preserving system. Suppose (sj(n))n∈N is an
integer valued sequence for 1 ≤ j ≤ k. A factor (Y,D, ν, S) of X is said to be characteristic for
(s1(n), . . . , sk(n)) if for any bounded functions f1, ..., fk on X, we have

lim
N→∞

 1

N

N∑
n=1

k∏
j=1

T sj(n)fj −
1

N

N∑
n=1

k∏
j=1

T sj(n)E (fj |Y )

 = 0,

where E (f |Y ) denotes the conditional expectation of f onto the factor Y and the limit is taken in
L2(X,µ). Host and Kra [16] showed that there exists a characteristic factor for (n, 2n, . . . , kn) which is
an inverse limit of (k− 1)-step nilsystems. We call this factor the (k− 1)-step nilfactor of X and denote
it by Zk−1(X) (or Zk−1 when there is no confusion).

2.3. Limit formula for multiple averages on nilsystems. The following description of the limiting
distribution of multiple ergodic averages in nilsystems is essentially due to Ziegler [23].

Theorem 2.1. Let a1, . . . , ad ∈ Z be distinct, let (X = G/Γ,B, µ, T ) be a k-step ergodic nilsystem and
let f1, f2, . . . , fd ∈ L∞(µ). For each i = 1, . . . , k, let Γi = Γ∩Gi and let µi be the Haar measure of Gi/Γi.
Then for µ-a.e. x = gΓ ∈ X, we have

(9) lim
N−M→∞

1

N −M

N−1∑
n=M

f1(T a1nx) . . . fd(T
adnx) =

∫
G1/Γ1

. . .

∫
Gk/Γk

d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ1(g1Γ1).

Remark 2.2. Theorem 2.1 in particular asserts that the right hand side of (9) does not depend on the
choice of representative gi for the co-set giΓi.

Remark 2.3. The statement in [23, Theorem 1.2] requires G to be connected and simply connected. These
restrictions were removed in [3, Theorem 5.4], although in that paper the limit is described in a different
(but equivalent) form; see also [20, Theorem 6.3].

Let (X = G/Γ,B, µ, T ) be an ergodic nilsystem. Then its Kronecker factor Z1 is (G/(G2Γ), T ). Let
π : X → Z1 be the natural projection. Suppose that Tx = τ · x for all x ∈ X and some τ ∈ G. Let α be
the projection of τ on Z1. Define

Sδ := {n ∈ N : αn ∈ B(δ)},(10)
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where B(δ) is the ball in Z1 centered at 0 with radius δ. Observe that Sδ is a Bohr0 set and by ergodicity,
the uniform density d(Sδ) of Sδ is

d(Sδ) := lim
N−M→∞

|Sδ ∩ [M,N)|
N −M

= µZ1(B(δ)),

where µZ1
is the Haar measure on Z1.

We need the following proposition, whose proof for case d = 3 is sketched in [6, Page 35]. The proof
for general d is similar and included here for completeness.

Proposition 2.4. Let a1, . . . , ad ∈ Z be distinct, let (X = G/Γ,B, µ, T ) be a k-step ergodic nilsystem
and let f1, f2, . . . , fd ∈ L∞(µ). For each i = 1, . . . , k, let Γi = Γ ∩Gi and let µi be the Haar measure of
Gi/Γi. Also, for each δ > 0 let Sδ be defined by (10). Then for µ almost every x = gΓ ∈ X, we have:

lim
δ→0

lim
N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

d∏
i=1

fi(T
ainx) =

∫
G2/Γ2

∫
G2/Γ2

∫
G3/Γ3

. . .

∫
Gk/Γk

d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ2(g2Γ1)dµ2(g1Γ1).

Proof. Let π : X → Z1 be the natural projection. For any character χ of the compact abelian group
Z1 = X/G2, the composition χ ◦ π is in L∞(µ), and χ ◦ π(Tnx) = χ

(
nα + π(x)

)
for all n ∈ N and

x ∈ X. On the other hand, χ ◦ π(ghΓ) = χ ◦ π(gΓ) whenever h ∈ G2. By Theorem 2.1, for µ-almost
every x = gΓ ∈ X, we have

(11) lim
N−M→∞

1

N −M

N−1∑
n=M

χ
(
nα+ π(x)

) d∏
i=1

fi(T
ainx) =

∫
G1/Γ1

. . .

∫
Gk/Γk

χ
(
π(gg1Γ)

) d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ1(g1Γ1).

As χ is a character of Z, we have χ
(
nα+π(x)

)
= χ(nα)χi

(
π(x)

)
, and χ

(
π(gg1Γ)

)
= χ

(
π(gΓ)

)
χ
(
π(g1Γ)

)
.

Note that x = gΓ. After canceling χ
(
π(x)

)
from both sides of (11), we get:

(12) lim
N−M→∞

1

N −M

N−1∑
n=M

χ(nα)
d∏
i=1

fi(T
ainx) =

∫
G1/Γ1

. . .

∫
Gk/Γk

χ
(
π(g1Γ)

) d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ1(g1Γ1).

We can approximate the Riemann integrable function 1B(δ) by finite linear combinations of characters,
and so we can replace χ in (12) with 1B(δ) to get:

(13) lim
N−M→∞

1

N −M

N−1∑
n=M

1B(δ)(nα)

d∏
i=1

fi(T
ainx) =

∫
G1/Γ1

. . .

∫
Gk/Γk

1B(δ)

(
π(g1Γ)

) d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ1(g1Γ1).

The left hand side of (13) is equal to:

mZ

(
B(δ)

)
lim

N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

d∏
i=1

fi(T
ainx).
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On the other hand, the right hand side of (13) is equal to:∫
π−1(B(δ))

∫
G2/Γ2

. . .

∫
Gk/Γk

d∏
i=1

fi

(
gg

(ai1 )
1 . . . g

(aik )
k Γ

)
dµk(gkΓk) . . . dµ1(g1Γ1).

Let µδ be the probability measure on X defined by∫
X

f dµδ =
1

µZ1(B(δ))

∫
π−1(B(δ))

f dµX ∀f ∈ C(X).

Since µX is invariant under the action of G (and hence of G2) and the set π−1(B(δ)) is invariant under
G2, we have that µδ is invariant under the action of G2. Moreover, any limit point of {µδ : δ > 0} is
supported on G2/Γ2. This shows that µδ → µG2/Γ2

as δ → 0, where µG2/Γ2
is the Haar measure on

G2/Γ2.
Therefore, dividing both sides of (13) by µZ1

(B(δ)) and taking the limit as δ → 0, we obtain the
desired conclusion. �

We also need the following proposition whose proof is sketched in [6, Page 34].

Proposition 2.5. Let (X,B, µ, T ) be an ergodic system and define Sδ as in (10). Let a1, a2, a3 ∈ Z be
distinct and f1, f2, f3 ∈ L∞(µ). Assume that E(fi|Z2) = 0 for some 1 ≤ i ≤ 3. Then

(14) lim
N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

f1(T a1nx)f2(T a2nx)f3(T a3nx) = 0,

where the limit is taken in L2(µ).

Proof. Without loss of generality, we assume E(f1|Z2) = 0. Let L be the limit on the left hand side of
(14) and d(Sδ) be the Banach density of Sδ. Then

(15) d(Sδ)L = lim
N−M→∞

1

N −M

N−1∑
n=M

1Sδ(n)f1(T a1nx)f2(T a2nx)f3(T a3nx) =

lim
N−M→∞

1

N −M

N−1∑
n=M

1B(δ)(nα)f1(T a1nx)f2(T a2nx)f3(T a3nx).

Approximating the Riemann integrable function 1B(δ) by linear combinations of characters, it suffices to
show

(16) lim
N−M→∞

1

N −M

N−1∑
n=M

χ(nα)f1(T a1nx)f2(T a2nx)f3(T a3nx) = 0

for all character χ of Z1. Note that the limit in the left hand side of (16) is equal to

(17) χ̄(x) lim
N−M→∞

1

N −M

N−1∑
n=M

χ(nα+ x)f1(T a1nx)f2(T a2nx)f3(T a3nx).

By [16, Theorem 1.1 and 12.1], the above limit exists in L2(µ) and does not change if we replace fi by
E(fi|Z3). Therefore, by approximation, we can assume that (X,B, µ, T ) is a 3-step nilsystem.

First suppose that (X,B, µ, T ) is totally ergodic. Then we can assume that its Kronecker factor Z1

has the form (G,G,m, α), where G is a connected compact abelian group, G is the Borel σ-algebra, m
is the Haar measure and α is the rotation defined above. Since G is connected, there exists g ∈ G such
that a2g = α. Let α/a2 denote that element. Consider the system Y = (X ×G,B×G, µ×m,T ×α/a2).
Since E(f1|Z2(X)) = 0, for almost every ergodic component Yt of Y we have E(f1 ⊗ 1|Z2(Yt)) = 0 (one
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way to verify is to show ‖f1 ⊗ 1‖3 = 0 where ‖·‖k is Host-Kra’s seminorm defined in [16]). Hence by [16,
Theorem 12.1],

(18) lim
N−M→∞

1

N −M

N−1∑
n=M

(T × α/a2)a1nf1 ⊗ 1 · (T × α/a2)a2nf2 ⊗ χ · (T × α/a2)a3nf3 ⊗ 1 = 0,

where the limit is taken in L2(µ×m). Rewriting the left hand side of (18), we get

(19) lim
N−M→∞

1

N −M

N−1∑
n=M

χ(nα+ y)f1(T a1nx)f2(T a2nx)f3(T a3nx) =

χ(y) lim
N−M→∞

1

N −M

N−1∑
n=M

χ(nα)f1(T a1nx)f2(T a2nx)f3(T a3nx) = 0

for all y ∈ G. Since χ(y) 6= 0 for all y ∈ G, (19) implies (16).
We now return to general situation without the total ergodicity assumption. Let k be the number of

connected components of X. Since (X,B, µ, T ) is ergodic, (X,B, µ, T k) is totally ergodic. For all 0 ≤ i ≤
k−1, applying the above argument with T k, T a1if1, T

a2if2, T
a3if3 replacing T, f1, f2, f3, respectively, we

get

lim
N−M→∞

1

N −M

N−1∑
n=M

χ((kn+ i)α)f1(T a1(kn+i)x)f2(T a2(kn+i)x)f3(T a3(kn+i)x) = 0

for all character χ of Z1. Taking the average over all 0 ≤ i ≤ k − 1, we derive (16). This finishes the
proof. �

3. Optimal recurrence along (T−f(n), T−2f(n), . . . , T−kf(n))

3.1. Optimal recurrence for the sequence of shifted primes. We begin this section by recalling
the following classification of certain tuples (Q1(n), Q2(n), Q3(n)) of polynomials, introduced in [6].

Definition 3.1. A family of polynomials Q1(n), Q2(n), Q3(n) ∈ Z[n] is said to be of type (e1), (e2) or
(e3) if some permutation of them has the form

(e1) {lq,mq, rq} with 0 ≤ l < m < r and l +m 6= r.
(e2) {lq,mq, kq2 + rq}
(e3) {kq2 + lq, kq2 +mq, kq2 + rq}

for some q ∈ Q[n] and constants k, l,m, r ∈ Z with k 6= 0.

We prove a stronger version of Theorem 1.2.

Theorem 3.2. Let (pn)n∈N be the increasing enumeration of the primes. Let (X,B, µ, T ) be an ergodic
measure preserving system, A ∈ B and ε > 0. Suppose Q1, Q2, Q3 are integer polynomials with Qi(0) = 0

for i = 1, 2, 3. Then the sets

{n ∈ N : µ(A ∩ T−Q1(pn−1)A) > µ(A)2 − ε}

and

{n ∈ N : µ(A ∩ T−Q1(pn−1)A ∩ T−Q2(pn−1)A) > µ(A)3 − ε}

have positive lower density. Moreover, the set

(20) {n ∈ N : µ(A ∩ T−Q1(pn−1)A ∩ T−Q2(pn−1)A ∩ T−Q3(pn−1)A) > µ(A)4 − ε}

also has positive lower density unless the polynomials are pairwise distinct and of type (e1), (e2) or (e3).
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Proof. We only prove that the set in (20) has positive density under the given hypothesis, as the proofs
for the other two sets are similar. Fix ε > 0 and assume that the family Q1, Q2, Q3 is not of type (e1), (e2)

nor (e3). Denote
c(n) = µ(A ∩ T−Q1(n)A ∩ T−Q2(n)A ∩ T−Q3(n)A)

for n ∈ N.
By [19, Theorem 4.1], the sequence c(n) can be decomposed as c(n) = ψ(n) + δ(n), where ψ(n) is a

nilsequence and

(21) lim
N−M→∞

1

N −M

N−1∑
n=M

|δ(n)| = 0.

By [18, Theorem 1.1], we also have

(22) lim
N→∞

1

N

N∑
n=1

|δ(pn − 1)| = 0.

Since a nilsequence is a uniform limit of basic nilsequences, there exists a basic nilsequence F (bn1Y )

such that |ψ(n) − F (bn1Y )| < ε/4 for all n ∈ N. Here F is a continuous function on a nilmanifold
Y = G/Γ, b ∈ G acts ergodically on Y and 1Y = π(1G) ∈ Y . Assume that Y has d connected
components and Y0 is the component containing 1Y . Observe that bdn1Y ∈ Y0 for all n ∈ N. Since
the polynomial family Q1(n), Q2(n), Q3(n) is not of the types (e1), (e2) nor (e3), the polynomial family
P1(n) = Q1(dn), P2(n) = Q2(dn), P3(n) = Q3(dn) is also not of these types. Hence by [6, Theorem C],
the set S = {n ∈ N : c(dn) > µ(A)4 − ε/4} is syndetic. Together with (21), we get

lim
N→∞

1

|[N ] ∩ S|
∑

n∈[N ]∩S

|δ(dn)| = 0,

which implies

lim sup
N→∞

1

|[N ] ∩ S|
∑

n∈[N ]∩S

|c(dn)− F (bdn1Y )| < ε/4.

We deduce that there exists an n such that F (bdn1Y ) > µ(A)4 − ε/2.
Since bdn1Y ∈ Y0 and F is continuous, there is an open subset U of Y0 such that F > µ(A)4 − 3ε/4

on U . By [18, Corollary 1.4], the sequence bpn−11Y is equidistributed on Y0 when restricted to pn ≡ 1

mod d. Hence the set R := {n ∈ N : bpn−11Y ∈ U} has positive density, and for every n ∈ R we have
F (bpn−11Y ) > µ(A)4 − 3ε/4. On the other hand, from (22) it follows that the set R′ := {n ∈ R :

c(pn − 1) < µ(A)4 − ε} has 0 density. Therefore the set R \ R′ has positive density and is contained in
the set (20). This finishes the proof. �

3.2. Optimal recurrence for Hardy sequences. We prove a slight generalization of Theorem 1.3.

Theorem 3.3. Let a ∈ H have polynomial growth and satisfy
∣∣a(x) − cp(x)

∣∣/ log(x) → ∞ for every
c ∈ R, p ∈ Z[x]. Let (X,B, µ, T ) be an ergodic measure preserving system, A ∈ B and ε > 0. Let
0 ≤ l ≤ m ≤ r ∈ Z. Then the sets

{n ∈ N : µ(A ∩ T−lba(n)cA) > µ(A)2 − ε}

and
{n ∈ N : µ(A ∩ T−lba(n)cA ∩ T−mba(n)cA) > µ(A)3 − ε}

have positive lower density. If r = l +m then the set

(23) {n ∈ N : µ(A ∩ T−lba(n)cA ∩ T−mba(n)cA ∩ T−rba(n)cA) > µ(A)4 − ε}
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also has positive lower density.

Proof. The proof is similar to that of Theorem 3.2. Let

c(n) = µ(A ∩ T−lnA ∩ T−mnA ∩ T−rnA)

and write c(n) = ψ(n) + δ(n), where ψ(n) is a nilsequence and δ(n) satisfies

lim
N−M→∞

1

N −M

N−1∑
n=M

|δ(n)| = 0.

Let F (bn1Y ) be an approximation of ψ(n) as in proof of Theorem 3.2. By [18, Theorem 1.1],

lim
N→∞

1

N

N∑
n=1

|δ(ba(n)c)| = 0.

This implies

(24) lim sup
N→∞

1

N

N∑
n=1

|c(ba(n)c)− F (bba(n)c1Y )| < ε/4.

As in the proof of Theorem 3.2, there is an open subset U of Y such that F > µ(A)4 − 3ε/4 on
U . By [7, Theorem 1.2], the sequence (bba(n)c1X) is equidistributed on Y . Hence the set {n ∈ N :

F (bba(n)c1Y ) > µ(A)4 − 3ε/4} has positive lower density. This fact combined with (24) implies the set
{n ∈ N : c(ba(n)c) > µ(A)4 − ε} has positive lower density. �

Remark 3.4. In above proof, we do not utilize the fact that the open set U is inside the identity component
Y0. This is because the orbit along ba(n)c is equidistributed on the entire Y . On the other hand, the
orbit along primes minus 1 is only equidistributed on some connected components of Y (Y0 is one of
them).

3.3. Optimal recurrence for Beatty sequences. Let (X,B, µ, T ) be a measure preserving system.
The discrete spectrum σ(T ) is the set of eigenvalues θ ∈ T := R/Z for which there exists a non-zero
eigenfunction f ∈ L2(µ) satisfying f(Tx) = e2πiθf(x) for µ-almost every x ∈ X.

Given a measure preserving system (X,B, µ, T ), the transformation T q is ergodic if and only if σ(T )∩
〈1/q〉 = {0}, where 〈a〉 denotes the abelian group generated by a, as we view 1/q as an element of the
group T. Theorem 1.4 follows from the next result.

Theorem 3.5. Let θ, γ ∈ R with θ > 0 and (X,B, µ, T ) be an ergodic system whose discrete spectrum
σ(T ) satisfies σ(T ) ∩ 〈θ−1〉 = {0}. Let 0 ≤ l ≤ m ≤ r ∈ Z. Then for any A ∈ B and ε > 0, the sets

{n ∈ N : µ(A ∩ T−lbθn+γcA) > µ(A)2 − ε}

and

{n ∈ N : µ(A ∩ T−lbθn+γcA ∩ T−mbθn+γcA) > µ(A)3 − ε}

are syndetic. If r = l +m then the set

{n ∈ N : µ(A ∩ T−lbθn+γcA ∩ T−mbθn+γcA ∩ T−rbθn+γcA) > µ(A)4 − ε}

is also syndetic.
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Proof. If 0 < θ ≤ 1, then the set S = {bθn+ γc : n ∈ N} is co-finite in N and the conclusion follows from
[3, Theorem 1.2].

Assume θ > 1. Define c(n), ψ(n), δ(n), Y = G/Γ, F (bn1Y ) as in the proof of Theorem 3.3. Then by
[21, Theorem 2.1], the discrete spectrum of (Y, µY , b) is contained in the discrete spectrum of (X,µ, T ).
Hence σ(b) ∩ 〈θ−1〉 = {0}.

Claim 3.6. The sequence (bbθn+γc1Y )n∈N is well distributed on Y .

Proof. Let F ∈ C(Y ). It suffices to show

(25) lim
N−M→∞

1

N −M

N−1∑
n=M

F (bbθn+γc1Y ) =

∫
Y

F dµY .

Let S = {bθn+ γc : n ∈ N}. Then an integer m belongs to S if m = bθn+ γc for some n ∈ N. This is
equivalent to

θn+ γ − 1 < m ≤ θn+ γ

or

n− 1− γ
θ

< mθ−1 ≤ n+
γ

θ

for some n ∈ N. This is equivalent to {mθ−1} ∈ J , where J = [0, γ/θ] ∪ ((1− γ)/θ, 1).
Let W = {nθ−1 mod 1 : n ∈ N}. Then W is a closed subgroup of T. Since σ(b) ∩ 〈θ−1〉 = {0}, for

any F ∈ C(Y ) and G ∈ C(W ), we have that

lim
N−M→∞

1

N −M

N−1∑
m=M

F (bm1Y )G(mθ−1) =

∫
Y

F dµY

∫
W

GdµW .

Approximating the Riemann integrable function 1J∩W by continuous functions, we then get

lim
N−M→∞

1

N −M

N−1∑
m=M

F (bm1Y )1J∩W (mθ−1) = µW (J ∩W )

∫
Y

F dµY ,

or equivalently

(26)
1

µW (J ∩W )
lim

N−M→∞

1

N −M

N−1∑
m=M

F (bm1Y )1J∩W (mθ−1) =

∫
Y

F dµY .

Note that {mθ−1} ∈ J ∩W if and only if m ∈ S, and the uniform density of S is exactly µW (J ∩W ).
Therefore the left hand side of (26) is the same as the left hand side of (25) This proves our claim. �

As pointed out in the proof of Theorem 3.2, there is an open set U of Y such that F > µ(A)4−3ε/4 on
U . Since (bbθn+γc1X)n∈N is well distributed on Y , the set S = {n ∈ N : F (bbθn+γc1X) > µ(A)4− 3ε/4} is
syndetic. Since the sequence (δ(n))n∈N tends to zero in the uniform density, and the set {bθn+γc : n ∈ S}
has positive uniform density, we have

lim
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

|δ(bθn+ γc)| = 0.

Hence

lim sup
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

|c(bθn+ γc)− F (bbθn+γc1Y )| < ε/4.

Since F (bbθn+γc1Y ) > µ(A)4 − 3ε/4 when n ∈ S, we get that the set of n ∈ S such that c(bθn + γc) >
µ(A)4 − ε is syndetic. This finishes the proof. �
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4. Optimal recurrence along (T−a1n, T−a2n, . . . , T−akn)

4.1. Poor lower bound for k = 5. In this subsection, we prove Theorem 1.5. We adapt the proof of
Theorem 1.3 in [3].

We use the measure preserving system (X,B, µ, T ) where X = T2 is the 2-dimensional torus, µ is the
Haar measure, and T (x, y) = (x + α, y + 2x + α) for some irrational α ∈ R. It is well known that this
system is totally ergodic. For every n ∈ Z and every point (x, y) ∈ T2 a quick computation shows that
Tn(x, y) = (x+ nα, y + 2nx+ n2α).

Let ` > 1. We take a suitably large L,C ∈ N and a set Λ ⊂ {0, . . . , L− 1} to be chosen later. Let

B :=
⋃
b∈Λ

Ib where Ib :=

[
b

CL
,
b

CL
+

1

C2L

)
and let A = T× B. For each n ∈ Z, in order for a point (x, y) to belong to A ∩ T−a1nA ∩ · · · ∩ T−a4nA
we need yi := y + 2ainx+ a2

in
2α ∈ B for each i = 1, . . . , 5. Let bi ∈ Λ be such that yi ∈ Ibi .

We now need the following elementary lemma.

Lemma 4.1. Let a1, . . . , a4 ∈ Z be distinct and let M be the 4 × 3 matrix whose (i, j) entry is aji for
i = 1, . . . , 4 and j = 0, 1, 2. For each i = 1, . . . , 4, let vi be (−1)i times the determinant of the matrix
obtained from M by deleting the ith row. Then for every quadratic polynomial f ∈ R[x],

v1f(a1) + v2f(a2) + v3f(a3) + v4f(a4) = 0.

Proof. The claim amounts to the statement that the matrix
f(a1) 1 a1 a2

1

f(a2) 1 a2 a2
2

f(a3) 1 a3 a2
3

f(a4) 1 a4 a2
4


has determinant 0. But this follows from the fact that any quadratic polynomial is a linear combination
of the polynomials 1, x, x2. �

In view of Lemma 4.1, there exist integers v1, . . . , v4 and ṽ2, . . . ṽ5 (depending only on a1, . . . , a5)
such that v1y1 + · · · + v4y4 = 0 and ṽ2y2 + · · · + ṽ5y5 = 0. Therefore, if C is large enough, then also
v1b1 + · · ·+ v4b4 = ṽ2b2 + · · ·+ ṽ5b5 = 0, as it will be an integer which can be made smaller than 1 when
C is large enough.

Suppose now that Λ does not contain any solution to v1b1 + · · ·+ v4b4 = ṽ2b2 + · · ·+ ṽ5b5 = 0 except
when b1 = · · · = b5. Then, if (x, y) ∈ A ∩ T−a1nA ∩ · · · ∩ T−a4nA, all the yi must belong to the same Ib,
which implies that x ∈ Xn, where Xn is the set of points x ∈ T satisfying

∥∥2n(a2 − a1)x
∥∥
T < 1/C2L.

Since y1 ∈ B, the point y must belong to the set B − 2a1nx − a2
1n

2α, which being a shift of B has the
same measure as B. We conclude that

µ(A ∩ T−a1nA ∩ · · · ∩ T−a4nA) ≤ µT(Xn)µT(B) =
2

C4L2
|Λ|.

Since µ(A) = |Λ| 1
C2L , a quick computation now shows that the proof will be complete once we construct

a set Λ ⊂ {0, . . . , L − 1} with |Λ| > L1−1/` and without non-constant solutions to v1b1 + · · · + v4b4 =

ṽ2b2 + · · ·+ ṽ5b5 = 0. The existence of such a set Λ is provided by the following lemma.

Lemma 4.2. Let a1, . . . , a5 ∈ Z be pairwise distinct and let vi and ṽi be described in the paragraph after
Lemma 4.1. For every ε > 0 and every large enough L ∈ N, there exists a set Λ ⊂ {0, . . . , L − 1} with
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|Λ| > L1−ε such that the only b1, . . . , b5 ∈ Λ satisfying v1b1 + · · ·+v4b4 = ṽ2b2 + · · ·+ ṽ5b5 = 0 also satisfy
b1 = · · · = b5.

Lemma 4.2 is a generalization of [3, Theorem 2.4], due to I. Ruzsa, corresponding to ai = i. The key
to proving Lemma 4.2 is the following intermediate result.

Lemma 4.3. Let a1 < · · · < a5 be integers and let vi and ṽi be as described above. Let d ∈ N and let
b1, . . . , b5 ∈ Rd all have the same Euclidean norm. If v1b1 + · · · + v4b4 = ṽ2b2 + · · · + ṽ5b5 = 0 then
b1 = · · · = b5.

Unfortunately Lemma 4.3 does not hold for arbitrary vi and ṽi, as seen by the example v1 = v3 =

ṽ3 = ṽ5 = 1 and v2 = v4 = ṽ2 = ṽ4 = −1 which would provide a counterexample with d = 1 and
b1 = b2 = b5 = 1 and b3 = b4 = −1. Indeed we will need to use the description of the vi and ṽi given by
Lemma 4.1 and this makes the proof somewhat cumbersome.

Proof. The condition a1 < · · · < a5 implies that v1, v3 > 0 and v2, v4 < 0. Let

S :=
v1b1 + v3b3
v1 + v3

, A := b1 − S, B = b2 − S.

Applying Lemma 4.1 to a constant polynomial, we get that v1 + v2 + v3 + v4 = 0 and hence, together
with v1b1 + · · ·+ v4b4 = 0, that S = (v2b2 + v4b4)/(v2 + v4). Then we have

b1 = S +A, b2 = S +B, b3 = S − v1

v3
A, b4 = S − v2

v4
B.

Our goal is to show that b1 = b2 = b3 = b4 = S, and so it suffices to show that A = B = 0 (the fact that
also b5 = S would then immediately follow from the equation ṽ2b2 + · · ·+ ṽ5b5 = 0). Since the quantity
‖bi‖2 − ‖S‖2 does not depend on i, we find that the following 4 numbers are equal

(27) ‖A‖2 + 2〈S,A〉, ‖B‖2 + 2〈S,B〉, v2
1

v2
3

‖A‖2 − 2v1

v3
〈S,A〉, v2

2

v2
4

‖B‖2 − 2v2

v4
〈S,B〉.

Equality between the first and third gives 2〈S,A〉 = ‖A‖2
(
v1
v3
− 1
)
; equality between the second and

fourth gives 2〈S,B〉 = ‖B‖2
(
v2
v4
− 1
)
and then equality between the first two numbers implies

(28) ‖A‖2v1v4 = ‖B‖2v2v3.

In order to show that A = B = 0, we first show that B is a positive scalar multiple of A. Once we do
that, we have from (28) that B =

√
v1v4
v2v3

A and hence, equality between the first and last quantities from

(27) (together with 2〈S,A〉 = ‖A‖2
(
v1
v3
− 1
)
) gives

‖A‖2 v1

v3
=
v1v2

v3v4
‖A‖2 − 2

√
v1v2

v3v4
〈S,A〉 ⇐⇒ ‖A‖2

√
v1

v3

(√
v1

v3
−
√
v2

v4

)(
1 +

√
v1v2

v3v4

)
= 0.

This implies that A = 0 unless v1
v3

= v2
v4
. Using the description of each vi from Lemma 4.1 as a

Vandermonde determinant, this is equivalent to (a1 − a4)2 = (a2 − a3)2. Since we are assuming that
a1 < a2 < a3 < a4 this can not happen and hence A = 0.

We have reduced the proof to showing that B is a positive scalar multiple of A. It is now the time to
use the fact that also ṽ2b2 + · · · + ṽ5b5 = 0. From Lemma 4.1, we deduce that ṽ5 = v1, and so we can
write b5 in terms of S,A,B as

b5 =
1

v1
(−ṽ2b2 − ṽ3b3 − ṽ4b4) = S +

ṽ3

v3
A+

(
v2ṽ4 − ṽ2v4

v4v1

)
B = S + αA+ βB,
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where α := ṽ3
v3

and β := v2ṽ4−ṽ2v4
v4v1

. Using the relations established above to write ‖B‖2, 〈S,A〉 and 〈S,B〉
in terms of ‖A‖2 we compute

‖b5‖2 − ‖S‖2 = 2αβ〈A,B〉+ ‖A‖2
[
α2 + α

(
v1

v3
− 1

)
+

(
β2 + β

(
v2

v4
− 1

))
v1v4

v3v2

]
.

Since ‖b5‖ = ‖b1‖, we deduce that ‖b5‖2 − ‖S‖2 = ‖A‖2 v1v3 . After a somewhat tedious computation, we

eventually arrive at 〈A,B〉 = ‖A‖2
√

v1v2
v3v4

= ‖A‖ · ‖B‖. But this implies that B must be a positive scalar
multiple of A as desired, finishing the proof. �

Proof of Lemma 4.2. Let C = |v1| + · · · + |v4| + |ṽ2| + · · · + |ṽ5|, let d > 2/ε be a natural number and
then let m ∈ N be large enough multiple of C depending only on C, d and ε (in fact, we need that
mdε−2 > Cd−2d). Set L = md. We can express each number in {0, . . . , L − 1} using d digits in base m
expansion. Let

F :=
{
x0 + x1m+ . . .+ xd−1m

d−1 : xi ∈
[
0, . . . ,

m

C

)}
.

We have |F | = (m/C)d. Let r : F → N be the sum of the squares of the digits in base m, in other words,
r(x0 + x1m + . . . + xd−1m

d−1) = x2
0 + · · · + x2

d−1. Then r(F ) ⊂ [0, dC2/m2). Therefore there exists
r0 ∈ [0, dC2/m2) such that

Λ := {x ∈ F : r(x) = r0}

has cardinality |Λ| ≥ (m/C)d−2/d. The choice of parameters above yields |Λ| > L1−ε.
Finally, suppose that b1, . . . , b5 ∈ Λ satisfy v1b1 + · · · + v4b4 = ṽ2b2 + · · · + ṽ5b5 = 0. We identify

each bi with the vector in Rd obtained from its digits in base m. Then ‖b1‖ = · · · = ‖b5‖. Since each
digit in bi is at most m/C, there is no carryover when multiplying by vi or ṽi and thus, the equations
v1b1 + · · ·+ v4b4 = ṽ2b2 + · · ·+ ṽ5b5 = 0 apply even when multiplication and addition is being performed
in Rd. Applying Lemma 4.3, we conclude that indeed b1 = · · · = b5 as desired. �

4.2. Lack of solutions implies poor lower bounds for k = 4. In this subsection we prove Theo-
rem 1.10. We need the following well known equidistribution result whose short proof we include for
completeness.

Lemma 4.4. For every Bohr0 set S, every α ∈ Rm whose coordinates are rationally independent, and
every cube I ⊆ Tm, we have that

lim
N−M→∞

∣∣{n ∈ S ∩ [M,N) : n2α mod Zm ∈ I
}∣∣

|S ∩ [M,N)|
= µTm(I).

Proof. By assumption, we can write S = {n ∈ N : nx ∈ U}, where K is a compact abelian group,
U ⊆ K is a neighborhood of 1K such that 1U is Riemann integrable, and x ∈ U is a point such that
{nx : n ∈ Z} = K and S = {n ∈ N : nx ∈ U}. Then it suffices to show that as N −M →∞,

|{n ∈ S ∩ [M,N) : n2α ∈ I}|
N −M

=
|{n ∈ [M,N) : (nx, n2α) ∈ U × I}|

N −M
converges to µK(U) × µTm(I) = µK×Tm(U × I), where µK , µTm and µK×Tm are the Haar measures on
K, Tm and K × Tm, respectively. This follows once we show that the sequence (nx, n2α)n∈N is well
distributed on K × Tm. Since 1U is Riemann integrable, it suffices to show that for every character
χ : K → S1 ⊂ C of K and every b ∈ Zm, if either χ is non-trivial or b 6= 0, then

(29) lim
N−M→∞

1

N −M

N−1∑
n=M

e2πib·αn2

χ(x)n = 0.
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Let θ ∈ T be such that χ(x) = e2πiθ. Since the group generated by x is dense in K, θ /∈ Z unless χ
is trivial. Then we can write e2πib·αn2

χ(x)n = e2πi(n2b·α+nθ). If b 6= 0 then (29) follows from Weyl’s
equidistribution theorem, and if b = 0 then θ /∈ Z and (29) follows quickly from evaluating the resulting
geometric series. �

Proof of Theorem 1.10. Let `, a1, . . . , a4, C and V be as in the statement of the theorem. Since V has
a basis of rational vectors, there exists a positive constant ε such that any point x ∈ Z4 at a distance
(say in the `∞ norm) less than ε from the closure V ⊂ R4 must in fact belong to V . Fix m,N0 ∈ N and
E ⊂ [N0]m.

Let X = T2m be the 2m dimensional torus endowed with the Lebesgue measure µ. Define the map
T : X → X via the formula T (x,y) = (x+α,y + 2x+α),x,y ∈ Tm for some α ∈ Tm whose coordinates
are rationally independent. Then (X,B, µ, T ) is ergodic, and for each n ∈ N,

Tn(x,y) = (x + nα,y + 2nx + n2α).

For i = (c1, . . . , cm) ∈ [N0]m, denote

Bi =

[
c1
N0

,
c1 + ε

N0

)
× · · · ×

[
cm
N0

,
cm + ε

N0

)
, A =

⋃
i∈E

Tm ×Bi.

We can directly compute that µ(A) = ε
Nm0
|E| = εmdm,N0(E). Let (x,y) ∈ T2m and n ∈ N. Note that for

all 1 ≤ j ≤ 4, T ajn(x,y) ∈ A if and only if

uj = uj(x,y, n) := y + 2ajnx + a2
jn

2α ∈ Bij(30)

for some ij ∈ E. Fix such a point (x,y, n) ∈ T2m × N. Then the vector

(u1, . . . , u4) = y(1, . . . , 1) + 2nx(a1, . . . , a4) + n2α(a2
1, . . . , a

2
4) ∈ Bi1 × · · · ×Bi4

belongs to the closure in Rm×4 of V m. Since N0uj is at most ε away from the integer vector ij (in the
`∞([m]) distance), from the definition of ε we deduce that (i1, . . . , i4) belongs to V m as well. LetW denote
the collection of all tuples (i1, . . . , i4) ∈ V m with ij ∈ E. By definition, Dm,N0

(V m, E) = |W |
|V ∩[N0]4|m .

By the discussion above,

(31) µ(T a1nA ∩ · · · ∩ T a4nA) =
∑

(i1,...,i4)∈W

∫
X

4∏
j=1

1Bij

(
uj(x,y, n)

)
dµ(x,y).

Fix (i1, . . . , i4) ∈W . If n ∈ N is such that (30) holds for all 1 ≤ i ≤ 4, then considering (30) as a linear
equation system with 4m equations and the coordinates of y, nx, n2α as unknowns (i.e. 3m unknowns
in total), we deduce that there exists 3 cubes I1, I2 and I3 in Tm with side length at most 1

N0
such that

y ∈ I1, nx ∈ I2, n2α ∈ I3.
Lemma 4.4 implies that for any Bohr0 set S,

lim
N−M→∞

|{n ∈ S ∩ [M,N) : n2α ∈ I3}|
|S ∩ [M,N)|

= µ(I3) ≤ 1

Nm
0

.
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Since µ(I1) ≤ 1
Nm0

and µ({x ∈ Tm : nx ∈ I2}) = µ(I2) ≤ 1
Nm0

for any n 6= 0, by (31) we conclude that

Dm,N0(V m, E) =
∑

(i1,...,i4)∈W

1

|V ∩ [N0]4|m

≥ N3m
0

|V ∩ [N0]4|m
∑

(i1,...,i4)∈W

lim sup
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

∫
X

4∏
j=1

1Bij
(uj(x,y, n)) dµ(x,y)

≥ N3m
0

|V ∩ [N0]4|m
lim sup
N−M→∞

1

|S ∩ [M,N)|
∑

n∈S∩[M,N)

µ(T a1nA ∩ · · · ∩ T adnA)

≥ C N3m
0

|V ∩ [N0]4|m
µ(A)` = C

εm`N3m
0

|V ∩ [N0]4|m
dm,N0

(E)`,

which finishes the proof by taking β < lim
N→∞

ε`N3
0

|V ∩[N0]4| . �

4.3. Solutions to linear equations imply optimal lower bounds for k = 4. In this section we
prove Theorem 1.8. We first need to reformulate the assumptions in terms of functions on a torus; this
is the content of Lemma 4.6 below. We start with an estimate from harmonic analysis. Let A be a finite
set, f : A → R a function and p > 0. We denote by ‖f‖Lp its usual Lp quasinorm when A is endowed
with the normalized counting probability measure, i.e.

‖f‖Lp :=

(
1

|A|
∑
a∈A

∣∣f(a)
∣∣p)1/p

.

We will also make use of the weak Lp quasinorm:

‖f‖Lpw := sup
s>0

s ·
(
|{a ∈ A : |f(a)| > s}|

|A|

)1/p

.

We remark that when p < 1 these quasinorms do not satisfy the triangle inequality. We will only use
these quasinorms with p < 1 to invoke the following well known interpolation lemma. We include its
short proof for completeness.

Lemma 4.5. Let 0 < p < r <∞ and let A be a finite set. For every function f : A→ R we have

‖f‖rLr ≤
r

r − p
‖f‖p

Lpw
‖f‖r−pL∞ .

Proof. Combining the identity

xr =

∫ x

0

rsr−1 ds = r

∫ ∞
0

sr−1
1[0,x](s) ds = r

∫ ∞
0

sr−1
1{x>s} ds

with the definition of Lr norm, we deduce the formula

‖f‖rLr = r

∫ ∞
0

sr−1 1

|A|
∑
a∈A

1{|f(a)|>s} ds = r

∫ ∞
0

sr−1

∣∣{a ∈ A : |f(a)| > s}
∣∣

|A|
ds.

Finally, using the definition of the weak Lp norm we conclude

‖f‖rLr ≤ r
∫ ∞

0

sr−1−p‖f‖p
Lpw

ds =
r

r − p
‖f‖p

Lpw
‖f‖r−pL∞ .

�

The following lemma makes use of the quantities dm,N (E) andDm,N (V,E) introduced in Definition 1.6.

Lemma 4.6 (Equivalent inequalities). Let m, d, ` ∈ N with ` > d, let C > 0, V ⊆ Qd be a subspace
containing the vector (1, . . . , 1) and V ∈ Rd be its closure in Rd. Then (1)⇔ (2)⇒ (3)⇒ (4):
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(1) For every large enough N and every subset E ⊆ [N ]m, we have Dm,N (V m, E) ≥ Cdm,N (E)`.
(2) For every large enough N and every function c : [N ]m → [0, 1], we have

1

|V ∩ [N ]d|m
∑

ai∈[N ]m,(a1,...,ad)∈Vm
c(a1)c(a2) . . . c(ad) ≥ C‖c‖dLd/`w

.

(3) For every large enough N and every function c : [N ]m → [0, 1], we have

1

|V ∩ [N ]d|m
∑

ai∈[N ]m,(a1,...,ad)∈Vm
c(a1)c(a2) . . . c(ad) ≥ C

(
1− d

`

)`
‖c‖`L1 .

(4) Let Y =
(
V /Zd

)m be a subtorus of Td×m. For every measurable function f : Tm → [0, 1],∫
Y

f(y1)f(y2) . . . f(yd) dµY (y1, . . . , yd) ≥ C
(

1− d

`

)`(∫
Tm

f dµTm

)`
.

Remark 4.7.
• Whenever we have a point x in [N ]dm (or analogously for Qdm, Tdm, etc.) we consider x =

(xi,j)i=1,...,m, j=1,...,d with each xi,j ∈ [N ]. We then write x = (x1, . . . , xd) where each xi ∈ [N ]m

is the vector xi = (xi,j)
m
j=1. Depending on the context, we may also write x = (x1, . . . , xm),

where now each xj ∈ [N ]d is the vector xj = (xi,j)
d
i=1 (it should be clear at any point which

vectors we are referring to).
For instance if v = (vi,j)i=1,...,m, j=1,...,d ∈ Qdm then v is in V m if for every i the vector (vi,j)

d
j=1

of Qd belongs to V ; and v is in Ed if for every j the vector (vi,j)
m
i=1 is in E. Similarly in (2) and

(3), the statement that (a1, . . . , ad) ∈ V m should be interpreted by writing each aj as (ai,j)
m
i=1

and requiring that each vector (ai,j)
d
j=1 is in V .

• It might be true that (3) and (4) are also equivalent to (1) and (2), but we don’t have a proof
and it is not needed in this paper.

Proof. (2)⇒ (1). Take c(a) = 1E(a).
(1)⇒ (2). Let p := d/`, observe that ‖c‖Lpw = 1

Nm`/d
sups≥0 s|{a ∈ [N ]m : c(a) > s}|`/d and assume

that the maximum is obtained at s = t. Let E = {a ∈ [N ]m : c(a) > t}. Since c ≥ t1E , we have

1

|V ∩ [N ]d|m
∑

ai∈[N ]m,(a1,...,ad)∈V

c(a1)c(a2) . . . c(ad) ≥ tdDm,N (V m, E).

Invoking (1), we get tdDm,N (V m, E) ≥ C td|E|`
N`m

= C‖c‖d
Lpw
.

(2)⇒ (3). We only need to show (3) for c 6= 0. By Lemma 4.5,

‖c‖dLpw ≥
(

1− d

`

)` ‖c‖`L1

‖c‖`−dL∞

≥
(

1− d

`

)`
‖c‖`L1 .

(3)⇒(4). Let

YN =
⋃

a∈(V ∩[N ]d)m

d∏
i=1

m∏
j=1

[
ai,j − 1

N
,
ai,j
N

)
⊂ Tdm

and let µN be the normalized probability measure supported on YN . We claim that µN ! → µY as
N → ∞. Indeed, any limit point of the sequence (µN )N∈N must be supported on Y . Moreover, for any
v ∈ (V/Zd)m, if N is larger than the denominators of all coordinates of v, then µN ! is invariant under
v. We conclude that any limit point of the sequence (µN !)N∈N is supported on Y and invariant under Y ,
hence it must be µY .
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Now given f : Tm → [0, 1], let c : [N ]m → [0, 1] be the function

c(a) = Nm

∫
[−1/N,0)m

f(a/N + x)dx.

When N is large enough, we have that∫
YN

d∏
i=1

f(yi) dµN (y1, . . . , yd) =
Ndm

|V ∩ [N ]d|m
∑

a∈(V ∩[N ]d)m

∫
[−1
N ,0

)dm
d∏
i=1

f
(ai
N

+ xi

)
d(x1, . . . , xd)

≥ 1

|V ∩ [N ]d|m
∑

ai∈[N ]m,(a1,...,ad)∈Vm
c(a1)c(a2) . . . c(ad)

≥ C
(
1− d

`

)` ‖c‖`L1 = C
(
1− d

`

)` (∫
Tm f dµTm

)`
.

�

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. Fix an ergodic system (X,B, µ, T ) and a set A ∈ B with µ(A) > 0. Let Z2 be
the 2-step nilfactor of X, defined in Section 2.2. Using a standard approximation argument, we can
assume that Z2 is a 2-step nilsystem, so that Z2 = (G/Γ, µZ2

, τ), where G is a 2-step nilpotent Lie
group, Γ ⊂ G is a uniform subgroup and τ ∈ G. By a slight abuse of notation, we use Z2 to denote the
measure preserving system, as well as the underlying topological dynamical system and the underlying
nilmanifold.

In view of ergodicity, the topological system Z2 is minimal (see, for instance, [3, Theorem 4.1.1]). We
can assume that G is generated by the connected component of the identity and τ . Indeed, the projection
of the connected component of G onto Z2 = G/Γ is an open subset of Z2 (as its pre-image under the
natural map G→ Z2 is the union of all connected components of G having non-empty intersection with
Γ and hence it is open) and by minimality of Z2 its orbit under τ is all of Z2. Therefore, if we let
G̃ be the subgroup of G generated by the connected component of the identity and τ , it follows that
Z2 = G̃/(Γ ∩ G̃).

Since G is a 2-step nilpotent group, the commutator G2 = [G,G] is inside the center of G, and hence
the subgroup Γ2 = G2 ∩ Γ is normal in G. Therefore Z2 = (G/Γ2)/(Γ/Γ2) and thus after modding out
by Γ2 we can assume that G2 ∩Γ = {e}, which implies that G2 is a compact abelian Lie group. From [3,
Theorem 4.1.4], it follows that G2 is connected, and so G2 must be a finite dimensional torus.

Let K be the quotient K := Z2/G2 = G/(ΓG2) and note that it is also a compact abelian Lie group
(but it may be disconnected). Let π : G→ K be the natural projection, let a = π(τ) and define

Sδ = {n ∈ N : an ∈ B(δ)},

where B(δ) is the ball in K centered at the identity of K with radius δ. It suffices to show that

lim
δ→0

lim
N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

∫
X

4∏
i=1

f(T ainx) dµ(x) ≥ C
(

1− 4

`

)`(∫
X

f dµ

)`
(32)

for all 0 ≤ f ≤ 1. By Proposition 2.5, the left hand side of (32) is 0 if we replace at least one of the
four f ’s with f − E(f |Z2). Since 0 ≤ E(f |Z2) ≤ 1, it suffices to prove (32) under the assumption that
X = Z2 = G/Γ.
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Since G is 2 step nilpotent, by Proposition 2.4, the left hand side of (32) equals to

(33)
∫
Z2

∫
G2

∫
G2

4∏
i=1

f

(
gg

(ai1 )
1 g

(ai2 )
2 Γ

)
dµG2(g2) dµG2(g1) dµZ2(gΓ),

where µX and µG2 are the Haar measures on X and G2. Recall that G2 is a torus, say G2 = Tm. Consider
the subgroup

Y :=

{
(y1, . . . , y4) ∈ (Tm)4 : (∃g1, g2 ∈ Tm) yi =

(
ai
1

)
g1 +

(
ai
2

)
g2

}
⊂ T4m,

where we now changed to the additive notation. Then we may rewrite

(33) =

∫
Z2

∫
Y

4∏
i=1

f(gyiΓ) dµY (y1y2, y3, y4) dµZ2
(gΓ),

where µY is the Haar measure on Y . We can also describe Y in terms of V as Y =
(
V /Z4

)m, where V
is the closure V in R4 (or, equivalently, its R-span).

For each g ∈ G let fg : G2 → R be the function defined by the formula fg(g2Γ) = f(gg2Γ) for all
g2 ∈ G2. Then by Lemma 4.6, (1)⇒ (4), and then Jensen’s inequality, we conclude that∫

Z2

∫
Y

4∏
i=1

f(gyiΓ) dµY (y1y2, y3, y4) dµZ2(gΓ) ≥ C
(

1− 4

`

)` ∫
Z

(∫
G2

fg dµG2

)`
dµZ(gΓ)

≥ C
(

1− 4

`

)`(∫
Z2

∫
G2

fg dµG2
dµZ2

(gΓ)

)`
= C

(
1− 4

`

)`(∫
Z2

f dµZ2

)`
.

�

5. Optimal recurrence along polynomials

To state our results, we need to introduce a notion defined and studied in detail by Leibman in [20].
The C-complexity of a family of integer-valued polynomials {p1, . . . , pd} is the minimum integer k for
which the factor Zk is characteristic for this family in every ergodic nilsystem (G/Γ,B, µ, T ) with G

being connected. Note that the minimum value of k for general ergodic systems is an upper bound of the
C-complexity and in some cases it is strictly larger.

Proposition 5.1. Let (G/Γ,B, µ, T ) be an ergodic nilsystem where G is connected. Let Z1 be its Kro-
necker factor and let α ∈ Z1 be the rotation induced by T . Let q1(n), q2(n) be two linearly independent
(over Q) integer polynomials with 0 constant term and set p1 = aq1, p2 = bq2 and p3 = cq1 + dq2,
a, b, c, d ∈ Z. Assume that the C-complexity of the family {p1, p2, p3} is equal to one.

For δ > 0, let Bδ be the ball in Z1 centered at 0 of radius δ and define Sδ = {n ∈ N : (q1(n)α, q2(n)α) ∈
B(δ)×B(δ)}. Let f1, f2, f3 ∈ L∞(µ) and assume E(fi|Z1) = 0 for some 1 ≤ i ≤ 3. Then

(34) lim
N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x) = 0

where the limit is taken in L2(µ).

Proof. The proof is similar to that of Proposition 2.5, subject to some minor changes that we write
explicitly. In this proof, all the limits are taken in L2(µ). Without loss of generality, we assume E(f1|Z1) =
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0. Let L be the limit on the left hand side of (34) and d(Sδ) be the uniform density of Sδ. Since
{(q1(n)α, q2(n)α)} is well distributed on Z1 ×Z1 (because q1 and q2 are independent), we have

(35) d(Sδ)L = lim
N−M→∞

1

N −M

N−1∑
n=M

1Sδ(n)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x) =

lim
N−M→∞

1

N −M

N−1∑
n=M

1B(δ)×B(δ)(q1(n)α, q2(n)α)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x).

Approximating the Riemann integrable function 1B(δ)×B(δ) by finite linear combination of characters, it
suffices to show

(36) lim
N−M→∞

1

N −M

N−1∑
n=M

χ1(q1(n)α)χ2(q2(n)α)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x) = 0

for all characters (χ1, χ2) of Z1 ×Z1. Note that the limit in the left hand side of (36) is equal to

(37) χ̄1(y)χ̄2(z) lim
N−M→∞

1

N −M

N−1∑
n=M

χ1(q1(n)α+ y)χ2(q2(n)α+ z)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x)

for every y, z ∈ Z1. Since G is connected, there exist g, h ∈ G such that ag = α and bh = α. Let α/a and
α/b denote the elements g and h respectively. Consider the system Y = (X×Z1×Z1,B×G, µ×m×m, T̃ ),
where T̃ = T × (α/a)× (α/b). We can write then

(38) χ̄1(y)χ̄2(z) lim
N−M→∞

1

N −M

N−1∑
n=M

χ1(q1(n)α+ y)χ2(q2(n)α+ z)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x)

= lim
N−M→∞

1

N −M

N−1∑
n=M

T̃ p1(n)f1 ⊗ 1⊗ 1 · T̃ p2(n)f2 ⊗ χ1 ⊗ 1 · T̃ p3(n)f3 ⊗ 1⊗ χ2.

Since E(f1|Z1(X)) = 0, for almost every ergodic component Yt of Y , we have E(f1⊗χ1⊗1|Z1(Yt)) = 0

(one way to verify is to show ‖f1 ⊗ χ1 ⊗ 1‖2 = 0 where ‖·‖k is Host-Kra’s seminorm defined in [16]).
Since almost every ergodic component Yt can be written as Gt/Γt with Gt being connected, using the

assumption that the C-complexity of the family of polynomials {p1, p2, p3} is one, we get

(39) lim
N−M→∞

1

N −M

N−1∑
n=M

T̃ p1(n)f1 ⊗ 1⊗ 1 · T̃ p2(n)f2 ⊗ χ1 ⊗ 1 · T̃ p3(n)f3 ⊗ 1⊗ χ2 = 0

for almost every t. It follows that (37) equals to 0 in L2(µ ×m ×m), which implies that the left hand
side of (34) is equal to 0 in L2(µ). This finishes the proof. �

Proposition 5.2. Let (G/Γ, µ, T ) be a nilsystem with G being connected. Let p1, p2, p3 be three polyno-
mials as in Proposition 5.1. Then for all A ∈ B and every ε > 0, the set{

n ∈ N : µ(A ∩ T−p1(n)A ∩ T−p2(n)A ∩ T−p3(n)A) > µ(A)4 − ε
}

is syndetic.

Proof. Let ε > 0 and A ∈ B and set f = E(1A|Z1). Let ε > 0 and let δ′ > 0 such that the translation
ft(·) = f(· + t) satisfies that ‖f − ft‖L1(m) <

ε
3 if t ∈ B(δ′). Let δ′ > δ > 0 such that if q1(n)α

and q2(n)α are in B(δ) then p1(n)α, p2(n)α and p3(n)α are in B(δ′). Then, for n ∈ Sδ, we have that
‖f − T pi(n)f‖L1(m) <

ε
3 for i = 1, 2, 3 and thus
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(40)
∫
f · T p1(n)f · T p2(n)f · T p3(n)f dm >

∫
f4dm− 3

ε

3
≥ µ(A)4 − ε.

By (40) and Proposition 5.1, we get that

(41) lim
N−M→∞

1

|Sδ ∩ [M,N)|
∑

n∈Sδ∩[M,N)

µ(A ∩ T−p1(n)(A) ∩ T−p2(n)A ∩ T−p3(n)A) ≥ µ(A)4 − ε,

which finishes the proof. �

Proposition 5.3. Let (X,B, µ, T ) be an ergodic system and let Z3 be the 3-step nilfactor of X. Assume
that Z3 is the inverse limit of nilsystems that can be represented as G/Γ, where G is a connected 3-
step nilpotent Lie group and Γ is a discrete cocompact subgroup. If the C-complexity of the family of
polynomials {p1, p2, p3} is equal to one, then the set{

n ∈ N : µ(A ∩ T−p1(n)A ∩ T−p2(n)A ∩ T−p3(n)A) > µ(A)4 − ε
}

is syndetic.

Proof. For A ∈ B, let a(n) =
∫
1A · 1A ◦ T p1(n) · 1A ◦ T p2(n) · 1A ◦ T p3(n)dµ and ã(n) =

∫
E(1A|Z3) ·

E(1A|Z3) ◦ T p1(n) · E(1A|Z3) ◦ T p2(n) · E(1A|Z3) ◦ T p3(n)dµ. We claim that the sequence a(n) − ã(n) is
uniformly-null, meaning that

lim sup
N−M→∞

1

N −M

N−1∑
n=M

|a(n)− ã(n)|2 = 0.

The proof is essentially given in [3, Corollary 4.5]. Using a telescoping difference between a(n) and ã(n),
it suffices to show that if some fi, 0 ≤ i ≤ 3 has 0 conditional with respect to Z3(X), then

lim
N−M→∞

1

N −M

N∑
n=M

(∫
f0(x)f1(T p1(n)x)f2(T p2(n)x)f3(T p3(n)x)dµ

)2

= 0.

We assume without loss of generality that E(f0|Z3(X)) = 0. Let µ× µ =
∫
Z
dµsdm(s) be the ergodic

decomposition of µ×µ under T×T . By [3, Proposition 4.3], for almost every s, E(f0⊗f0|Z2(X×X)) = 0,
where X × X is endowed with the measure µs and the transformation T × T . By [6, Theorem B], the
2-step nilfactor is characteristic for the average lim sup

N−M→∞

1
N−M

∑N−1
i=M f1 ◦ T p1(n) · f2 ◦ T p2(n) · f3 ◦ T p3(n),

for any bounded measurable functions f1, f2, f3 of any measure preserving system. Therefore, the limit
as N −M goes to infinity of
(42)

1

N −M

N∑
n=M

∫
f0(x)f0(x

′)f1(T
p1(n)x)f1(T

p1(n)x′)f2(T
p2(n)x)f2(T

p2(n)x′)f3(T
p3(n)x)f2(T

p3(n)x′)dµs(x, x
′)

is equal to 0 for almost every s. Integrating (42) with respect to s we deduce the claim.
By the claim, it suffices to prove the result under the assumption that X = Z3. By an approximation

argument we can assume that (X = G/Γ,B, µ, T ) where G is connected. Proposition 5.2 give us the
desired conclusion. �

Proof of Proposition 1.13. It follows immediately from Proposition 5.3, since the C-complexity of the
family {n, 2n, n2} is equal to one. This is computed for instance in [20, Section 9.8]. �
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Proof of Proposition 1.15. Let X = T2, µ be the Lebesgue measure on T2, T1 : (x, y) 7→ (x+α, y+2x+α),
and T2 : (x, y) 7→ (x, y − 2α). Then T1 and T2 commute, preserve the measure µ, and moreover, T1 is
ergodic for µ.

We have that Tn1 (x, y) = (x+nα, y+2nx+n2α), T 2n
1 (x, y) = (x+2nα, y+4nx+4n2α) and Tn

2

2 (x, y) =

(x, y−2n2α). Write u = y+2nx+n2α, v = y+4nx+4n2α and w = y+2n2α. Then v−2u+w = 0. Let
Λ ⊆ [N ] be a subset with no arithmetic progression of length 3 and set A = T×

⋃
a∈Λ

( aN −
1

4N ,
a
N + 1

4N ).

If 1A(x, y)1A(Tn1 (x, y))1A(T 2n
1 (x, y)1A(Tn

2

2 (x, y)) > 0, then there exist a0, a1, a2 ∈ Λ such that u ∈
(a0 − 1

4n , a0 + 1
4N ), v ∈ (a1 − 1

4N , a1 + 1
4N ), w ∈ (a2 − 1

4N , a2 + 1
4N ). Thus

a1 − 2a0 + a2 + t = 0

for some |t| ≤ 1
N . So a1 − 2a0 + a2 = 0 and then a0 = a1 = a2. It follows that nx ∈ (1/4N, 1/4N) and

∫
1A(x, y)1A(Tn1 (x, y))1A(T 2n

1 (x, y)1A(Tn
2

2 (x, y))dµ(x, y) ≤ 1

N2
|Λ|.

A quick computation shows that

1

N2
|Λ| ≤ 1

2

(
|Λ|
N

)`
=

1

2
µ(A)`

as long as l ≤ log(|Λ)|−2 log(N)+log(2)
(log(|Λ|)−log(N)) . Taking Λ of cardinality N1−ε, the right hand side can be arbitrarily

large, finishing the proof.
�
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