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DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS IN

LEBESGUE NULL SETS

DAVID PREISS AND GARETH SPEIGHT

Abstract. We show that if n > 1 then there exists a Lebesgue null set
in Rn containing a point of differentiability of each Lipschitz function
f : Rn

→ Rn−1; in combination with the work of others, this completes
the investigation of when the classical Rademacher theorem admits a
converse. Avoidance of σ-porous sets, arising as irregular points of Lip-
schitz functions, plays a key role in the proof.

1. Introduction

Rademacher’s theorem that Lipschitz functions on Rn are differentiable
almost everywhere is intrinsically important and has been the source of many
modern developments. From the developments that are not directly related
to the present work, we feel we just have to mention, at least briefly, the
work of Cheeger [4], Keith [13] and Bate [2], which starting from the notion
of metric measure spaces satisfying the Poincaré inequality eventually led
to understanding differentiability of Lipschitz functions on metric spaces in
a way similar to Rademacher’s theorem. On the other hand, the investi-
gation of validity of an infinite dimensional generalization of Rademacher’s
theorem, a survey of older results in Chapters 4–6 of the authoritative book
by Benyamini and Lindenstrauss [3], and very recent progress presented in
the recent research monograph by Lindenstrauss, Preiss, and Tǐser [16] has
been basic for much of what we do here.

To introduce our result, the most natural formulation of the classical
Rademacher theorem states that if a Lipschitz function f : Rn → Rm is
differentiable at no point of a set A ⊂ Rn, then Amust be Lebesgue null. The
natural converse of this statement asks: given a Lebesgue null set A ⊂ Rn,
does there exist a Lipschitz function f : Rn → Rm which is differentiable at
no point of A? The answer has been long known to be positive and relatively
easy in the case m = n = 1, when the statement of Rademacher’s theorem is
a special case of Lebesgue’s differentiation of monotone functions. Although
we are unable to find the first reference to this result, we may refer the
reader to the full description of sets of non-differentiability of real valued
Lipschitz functions on the real line due to Zahorski [21], or to a modern
variant of Zahorski’s argument in [10].

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement n.2011-ADG-20110209. The second author was supported by
EPSRC funding.
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2 DAVID PREISS AND GARETH SPEIGHT

The discovery that the converse to the higher dimensional version of
Rademacher’s theorem is not straightforward came originally as a byprod-
uct of an infinite dimensional differentiability result of Preiss [17]: for n > 1
there is a Lebesgue null set in Rn containing a point of differentiability for
every real valued Lipschitz function: for example, any Lebesgue null Gδ

set containing all lines passing through distinct points with rational coordi-
nates has this property. It seems probable that, similarly to what happened
with [17], a modification of the proof of [16] of a differentiability result for
Lipschitz maps of infinite dimensional Hilbert spaces to R2 would lead to
showing that the converse to Rademacher’s theorem fails for maps from Rn

to R2 for n > 2. However, these authors also show that the corresponding
differentiability result for R3 valued maps is false, thereby indicating that
for general m,n new methods are needed.

In combination with two recently announced developments, by Alberti,
Csörnyei, and Preiss [1] and by Csörnyei and Jones [5], our result completely
answers the question of validity of the converse to the Rademacher theorem:
it holds if and only if m ≥ n. Indeed, [1] shows this when n = 2 and, for
general n, provides necessary and sufficient geometric criteria for a set to be
contained in the non-differentiability set of a Lipschitz function f : Rn → Rn.
The sets satisfying these criteria form a σ-ideal, implying that for any given
n the problem of validity of the converse to the Rademacher theorem for
functions f : Rn → Rm has the same answer for m ≥ n. The question
whether this σ-ideal coincides with the σ-ideal of Lebesgue null sets was
open until Csörnyei and Jones [5] announced a very deep and difficult result
showing that this is indeed the case. Together, these results imply that the
converse to the Rademacher theorem is true provided that m ≥ n. Here we
fill in the last piece of the puzzle by showing that in all remaining cases the
converse actually fails.

Theorem 1.1. Suppose n > 1. Then there exists a Lebesgue null set
N ⊂ Rn containing a point of differentiability for every Lipschitz function
f : Rn → Rn−1.

Perhaps surprisingly, our approach to proving this is not related to known
results on ε-differentiability. The notion of ε-differentiability is defined sim-
ilarly to differentiability but with fixed error ε in the first order approxima-
tion of a function by its derivative (rather than arbitrarily small error on
sufficiently small scales). The ε-differentiability results appeared first in the
infinite dimensional context in [14] (see Chapter 4 of [16] for further devel-
opments). The restriction of their proof to the finite dimensional situation
would provide a Lebesgue null set N ⊂ Rn such that every Lipschitz map
f : Rn → Rn−2 has points of ε-differentiability inside N for every ε > 0.
This was improved by De Pauw and Huovinen [6]: for n > 1 there exists a
Lebesgue null set N ⊂ Rn such that every Lipschitz map f : Rn → Rn−1 has
points of ε-differentiability inside N for every ε > 0. The reason why the
present development does not build on ε-differentiability results is treated
in detail in the infinite dimensional context throughout [16]. Here we just
mention that, while ε-differentiability has been proved for Lipschitz maps of
a Hilbert space to any Rn, differentiability is known only for Lipschitz maps
to R or R2.
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The direction our approach to proving Theorem 1.1 took started with
the second named author’s answer in [18] to the question from [16] on size
of σ-porous sets. These sets (defined in Definition 4.4) form a subclass of
non-differentiability sets, and one of the contributions of [16] was in better
understanding of what was noticed in [15], that knowledge of smallness of
porous sets is an important step in proving a differentiability result. Re-
sults of Chapter 10 in [16] show that in many spaces, including the finite
dimensional ones, σ-porous sets are null on typical curves as well as on
typical 2-dimensional surfaces (where ‘typical’ is understood in the sense of
Baire category). The result of Speight [18] shows that even in R4 this is no
longer the case for 3-dimensional surfaces. This opened the door to ques-
tions whether the deep infinite dimensional counterexamples from Chapter
14 of [16] have an analogy in the finite dimensional situation. By discovering
that the answer is no, the second named author made an important, and as
it turned out decisive, step toward the proof of Theorem 1.1.

It is natural to ask how small can be sets N ⊂ Rn inside which one
may find a point of differentiability of every Lipschitz f : Rn → Rm. For
n > m = 1, this was studied by Doré and Maleva [7] who found such sets
can be made compact and of Hausdorff dimension one, and recently Dymond
and Maleva [9] proved that they can make them of Minkowski dimension one.
It seems possible that the finite dimensional analogy of the above mentioned
R2 valued differentiability result of [16] may lead to similar improvements for
n > m = 2. However, our method differs significantly from the methods used
to prove these improvements; so at the present time we can only notice that
a simple modification of our arguments (explained in Remark 9.2) provides,
for any n > m and τ > 0, a set N ⊂ Rn of Hausdorff dimension at most
m+ τ containing a point of differentiability of every Lipschitz f : Rn → Rm.

We now fix n > 1 for the remainder of the paper and briefly describe the
structure of the proof of Theorem 1.1. It follows that of a proof by Lin-
denstrauss, Preiss, and Tǐser [16, Theorem 13.1.1], which constructs points
of Fréchet differentiability for vector valued Lipschitz functions on infinite
dimensional Banach spaces satisfying particular smoothness assumptions.

The idea behind both of the proofs is to apply a variational principle
(Lemma 6.1) so that a perturbation of the function

(x, T ) 7→ ‖f ′(x;T )‖2H

attains a maximum at some (x∞, T∞). Here (x, T ) are pairs such that f is
regularly differentiable at x in the direction T (Definition 4.1), f ′(x;T ) is
the directional derivative of f at x in direction T , and ‖ · ‖H is the Hilbert-
Schmidt norm. Intuitively, f is regularly differentiable at x in direction T if
changes in values of f are approximated by f ′(x;T ) not only on planes with
direction T passing through x but also on nearby parallel planes.

One assumes f is not differentiable at x∞ and uses regular differentiablity
to find a pair (x, T ) such that f is regularly differentiable at x in direction T
and ‖f ′(x;T )‖2H is larger than ‖f ′(x∞, T∞)‖2H . Since only a perturbation
of the directional derivative was maximized, to get a contradiction, one
must also choose (x, T ) so that the corresponding change in the perturbing
functions is small relative to ‖f ′(x;T )‖2H − ‖f ′(x∞;T∞)‖2H .
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To prove Theorem 1.1 we consider points x in a Lebesgue null set and need
to find points of regular differentiability in the direction of n−1 dimensional
planes. To do this we use the fact that points where f is differentiable, but
not regularly differentiable, in some direction are irregular (Definition 4.2
and Lemma 4.3). Further, the irregular points of f form a σ-porous set
(Lemma 4.6).

Intuitively, a set is porous (Definition 4.4) if each point of the set sees
relatively large holes in the set on arbitrarily small scales. A set is σ-porous
if it is a countable union of porous sets. The collection of σ-porous sets in Rn

is strictly contained in the family of meager Lebesgue null sets. For a survey
of porous sets, including their interesting applications to differentiability, see
[22] and [23].

It follows from work of Tukia [19] that there exists a doubling measure
(Definition 2.1) µ on R which gives full measure to a Lebesgue null set

Ñ ⊂ R (Theorem 5.1). Since porous sets have measure zero with respect to
doubling measures (Proposition 4.5) and Ln−1 × µ is doubling, we can find

many points in the Lebesgue null set Rn−1×Ñ outside a given σ-porous set.
The Lebesgue null set in Theorem 1.1 is constructed using affine copies of

the set Rn−1×Ñ (Definition 5.3). Since irregular points of f form a σ-porous
set, it follows that such a set contains many points of regular differentiability
of f in the direction of n− 1 dimensional planes. The fact that the measure
µ is doubling also helps us to control the perturbation terms.

2. Doubling Measures

We first recall, and for completeness prove, some basic facts about dou-
bling measures.

Definition 2.1. A Borel measure µ on a metric spaceM is doubling if balls
have finite positive measure and there exists C ≥ 1 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r))

for all x ∈M and r > 0.

Doubling measures give relatively large measure to subballs of relatively
large radius.

Lemma 2.2. Suppose µ is a doubling measure on Rm. Then there exists a
constant C(µ) ≥ 1 such that

µ(B(y, s))

µ(B(x, r))
≤ C(µ)

(s
r

)C(µ)

whenever B(x, r) ⊂ B(y, s).

Proof. Let N be an integer such that log2(s/r) + 1 ≤ N ≤ log2(s/r) + 2.
Then 2Nr ≥ 2s and so B(y, s) ⊂ B(x, 2s) ⊂ B(x, 2Nr). Hence,

µ(B(y, s))

µ(B(x, r))
≤
µ(B(x, 2Nr))

µ(B(x, r))
≤ C(µ)N ≤ C(µ)log2(s/r)+2 ≤ C(µ)

(s
r

)C(µ)
.

�

We also need to know that doubling measures give small measures to thin
annuli, independently of the centre and radius of the associated ball.
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Proposition 2.3. Suppose µ is a doubling measure on Rm and ε > 0. Then
there is δ > 0 such that

µ(B(x, (1 − t)r))

µ(B(x, r))
≥ 1− ε

whenever x ∈ Rm, r > 0 and 0 < t < δ.

Proof. Suppose x ∈ Rm and r > 0 with

µ(B(x, r) \B(x, (1− 2−N )r)) > αµ(B(x, r))

for some N ∈ N and α > 0. Define, for i = 1, . . . , N ,

Ai = B(x, (1− 2−i−1)r) \B(x, (1 − 2−i)r).

Fix 1 ≤ i ≤ N . Choose a (necessarily finite) collection B(xj, 2
−i−2r) ⊂ Ai

of disjoint open balls such that, for a constant C1 > 0 depending only on m,

B(x, r) \B(x, (1 − 2−N )r) ⊂
⋃

j
B(xj , C12

−i−2r).

Since the balls B(xj, 2
−i−2r) are disjoint it follows from Lemma 2.2 that,

for some constant C depending on C1 and the doubling constant of µ,

µ(B(x, r) \B(x, (1 − 2−N )r)) ≤ C
∑

j
µ(B(xj, 2

−i−1r)) ≤ Cµ(Ai).

Since the sets Ai are disjoint we deduce,

µ(B(x, r)) ≥

N∑

i=1

µ(Ai) ≥ Nαµ(B(x, r))/C.

Hence by choosing N sufficiently large (independently of x and r) we can
ensure α is small. This gives the desired conclusion. �

Definition 2.4. If µ is a doubling measure on Rm and f : Rm → R is locally
integrable we define the maximal operator Mµf by

Mµf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)
|f | dµ.

We recall that if µ is doubling then the maximal operator cannot increase
the norm on L2(µ) too much [11, Theorem 2.2].

Lemma 2.5. Suppose µ is a doubling measure on Rm and f ∈ L2(µ). Then
there is a constant C(µ) ≥ 1 such that

‖Mµf‖L2(µ) ≤ C(µ)‖f‖L2(µ).

3. Regularity Defect

Recall that a function f : M → N between metric spaces is Lipschitz if
there is a constant L ≥ 0 such that

d(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈M . We denote the smallest such L, called the Lipschitz constant
of f , by Lip(f).

We now discuss regularity and derive estimates needed for the proof of
Theorem 1.1. Note we identify Rn−1 with the subspace of Rn in which the
final coordinate is zero.
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Definition 3.1. Let f : Rn → Rn−1 be a Lipschitz function and u ∈ Rn.
We define the defect of regularity of f at the point u by

regn−1f(u) = sup
|v|+|w|>0
v−w∈Rn−1

|f(u+ v)− f(u+ w)|

|v|+ |w|
.

If Ω ⊂ Rn we define regn−1f(u,Ω), the defect of restricted regularity, by
the same formula but with the requirement that the open straight segment
(u+ v, u+ w) lies in the set Ω.

Intuitively, the regularity defect of f at u describes how much f varies on
line segments, with direction in Rn−1, which are not too short compared to
their distance from u.

If f : Rn → Rn−1 we denote the derivative of f with respect to the first
n− 1 variables by f ′n−1. Thus f

′
n−1(u) ∈ L(Rn−1,Rn−1) whenever it exists.

The proof of the following lemma is adapted from the proof of a similar
result by Lindenstrauss, Preiss, and Tǐser [16, Lemma 9.5.4, Lemma 13.2.3].
The main difference is that in one direction we have a general doubling
measure rather than the Lebesgue measure.

Lemma 3.2. Let µ be a doubling measure on R and f : Rn → Rn−1 be
Lipschitz. Suppose a ∈ Rn and R > 0. Then there is a constant C(µ) ≥ 1
(independent of f , a, and R) such that

(
regn−1f(a,B(a,R))

)C(µ)

≤ C(µ)(Lip(f))C(µ)−1MLn−1×µ(1B(a,R)‖f
′
n−1‖)(a).

Proof. Since the statement is translation invariant and homogeneous with
respect to f we can assume a = 0 and Lip(f) = 1. Fix u, v ∈ B(0, R) with
u− v ∈ Rn−1. Suppose r = |f(u)− f(v)| > 0 and let S = max(|u|, |v|) and
e = (u− v)/|u − v|.

There exists an absolute constant 0 < c < 1 such that for some x ∈ Rn

and L > 0, if z ∈ B(x, 2cr) then |f(z+Le)−f(z)| ≥ cr and z+ te ∈ B(0, S)
for all 0 ≤ t ≤ L. Hence, for each z ∈ B(x, cr),

cr ≤

∣∣∣∣
∫ L

0

d

dt
f(z + te) dt

∣∣∣∣ ≤
∫ L

0
‖f ′n−1(z + te)‖ dt.

Let V = {v ∈ Rn−1 : 〈v, e〉 = 0}. For each v ∈ V ∩ B(0, cr) we integrate
with respect to µ to get

crµ(xn − cr, xn + cr) ≤

∫ cr

−cr

∫ L

0
‖f ′n−1(x+ v + te+ sen)‖ dt dµ(s).

Since µ is doubling, by Lemma 2.2,

µ(−S, S)

µ(xn − cr, xn + cr)
≤ c(µ)(S/cr)c(µ).

The previous two inequalities imply

cr(cr/S)c(µ)µ(−S, S)c(µ) ≤

∫ cr

−cr

∫ L

0
‖f ′n−1(x+ v + te+ sen)‖ dt dµ(s).
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Denoting by α the volume of the n−2 dimensional unit ball and integrating
over v ∈ V ∩B(0, cr) with respect to the Lebesgue measure leads to

αcn+c(µ)−1rn−1(r/S)c(µ)µ(−S, S) ≤ c(µ)

∫

B(0,S)
‖f ′n−1‖ d(Ln−1 × µ),

which we rearrange to

(r/S)n+c(µ)−1 ≤
c(µ)

αcn+c(µ)−1Sn−1µ(−S, S)

∫

B(0,S)
‖f ′n−1‖ d(Ln−1 × µ),

and, observing (Ln−1 × µ)(B(0, S)) ≤ 2αSn−1µ(−S, S), infer that

(r/S)n+c(µ)−1 ≤
2c(µ)

cn+c(µ)−1(Ln−1 × µ)(B(0, S))

∫

B(0,S)
‖f ′n−1‖ d(Ln−1 × µ).

With C(µ) = n+ 2c(µ)/cn+c(µ)−1 we see from C(µ) ≥ n+ c(µ) − 1 that
(
|f(u)− f(v)|

|u|+ |v|

)C(µ)

≤

(
|f(u)− f(v)|

|u|+ |v|

)n+c(µ)−1

≤
( r
S

)n+c(µ)−1
.

Hence
(
|f(u)− f(v)|

|u|+ |v|

)C(µ)

≤ C(µ)MLn−1×µ(1B(0,S)‖f
′
n−1‖)(0).

By taking a supremum, we conclude
(
regn−1f(0, B(0, R))

)C(µ)
≤ C(µ)MLn−1×µ(1B(0,R)‖f

′
n−1‖)(0)

as required. �

The proof of the following proposition is essentially the same as that of a
similar result by Lindenstrauss, Preiss, and Tǐser [16, Corollary 13.2.4].

Proposition 3.3. Let Ω ⊂ Rn be a bounded Borel measurable set, µ be a
doubling measure on R, f : Rn → Rn−1 be Lipschitz and s, λ > 0. Then

Ln−1 × µ{u ∈ Rn : B(u, s) ⊂ Ω, regn−1f(u,B(u, s)) > λ}

≤
C(µ)(Lip(f))2C(µ)−2

λ2C(µ)

∫

Ω
‖f ′n−1‖

2 d(Ln−1 × µ).

Proof. For each u ∈ Rn such that B(u, s) ⊂ Ω it follows, using Lemma 3.2,
(
regn−1f(u,B(u, s))

)C(µ)
≤ C(µ)(Lip(f))C(µ)−1MLn−1×µ(1Ω‖f

′
n−1‖)(u).

Using the maximal operator and Chebyshev’s inequalities give,

Ln−1 × µ{u ∈ Rn : B(u, s) ⊂ Ω, regn−1f(u,B(u, s)) > λ}

≤
C(µ)(Lip(f))2C(µ)−2

λ2C(µ)

∫

Rn

MLn−1×µ(1Ω‖f
′
n−1‖)

2 d(Ln−1 × µ)

≤
C(µ)(Lip(f))2C(µ)−2

λ2C(µ)

∫

Ω
‖f ′n−1‖

2 d(Ln−1 × µ).

�

From now on, since increasing the constants weakens the statements, we
may assume the constants C(µ) appearing in statements of results in this
section are the same.
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4. Regular Differentiability

When proving Theorem 1.1 we will work with functions differentiable
only in the direction of certain subspaces. A useful stronger condition is the
notion of regular differentiability in a particular direction.

Definition 4.1. Suppose f : Rn → Rm, T ∈ L(Rp,Rn) and x ∈ Rn.

• We say the function f is differentiable at x in the direction of T if
there is f ′(x;T ) ∈ L(Rp,Rm) such that for every ε > 0 there is δ > 0
such that

|f(x+ Tv)− f(x)− f ′(x;T )(v)| ≤ ε|v|

whenever v ∈ Rp and |v| < δ.
• We say f is regularly differentiable at x in the direction of T if f is
differentiable at x in the direction of T and for every ε > 0 there is
δ > 0 such that

|f(x+ z + Tv)− f(x+ z)− f ′(x;T )(v)| ≤ ε(|v|+ |z|)

whenever v ∈ Rp, z ∈ Rn and |v|+ |z| < δ.

Definition 4.2. Suppose f : Rn → Rm. We say that x is a regular point of
f if for every v ∈ Rn for which the directional derivative f ′(x; v) exists,

lim
t→0

f(x+ tz + tv)− f(x+ tz)

t
= f ′(x; v)

uniformly for z ∈ Rn such that |z| ≤ 1. A point which is not regular is called
irregular.

Intuitively regular differentiability of f at x in direction T means the
change in f along lines in a direction Tv which pass close to x is well ap-
proximated by the directional derivative. Thus the following lemma can be
expected.

Lemma 4.3. Suppose the map f : Rn → Rm is Lipschitz, T ∈ L(Rp,Rm)
and x ∈ Rn. Suppose f is differentiable at x in the direction of T and x is
a regular point of f . Then f is regularly differentiable at x in the direction
of T .

Proof. Because f is differentiable at x in the direction of T we have that
f ′(x;Tv) exists for every v ∈ V and f ′(x;Tv) = f ′(x;T )(v).

Let ε > 0. Since x is a regular point of f and the sphere in Rp is compact,
there exists δ > 0 such that whenever |v| = ε, 0 < t < δ and |z| ≤ 1,

|f(x+ tz + T tv)− f(x+ tz)− f ′(x;T )(tv)| < ε2t.

Set w = tv so |w| = tε. Then, provided |w| < εδ and |z| ≤ 1,

|f(x+ ε−1|w|z + Tw)− f(x+ ε−1|w|z) − f ′(x;T )(w)| < ε|w|.

That is, provided |w| < εδ and |p| < ε−1|w|,

|f(x+ p+ Tw)− f(x+ p)− f ′(x;T )(w)| < ε|w|.

If |p| > ε−1|w| then, since f is Lipschitz,

|f(x+p+Tw)−f(x+p)−f ′(x;T )(w)| ≤ 2Lip(f)‖T‖|w| < 2Lip(f)‖T‖ε|p|.
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We have shown if |w| < εδ then, for all p ∈ Rn,

|f(x+ p+ Tw)− f(x+ p)− f ′(x;T )(w)| < ε|w| + 2Lip(f)‖T‖ε|p|.

Hence f is regularly differentiable at x in the direction T . �

Intuitively a set P is porous if each point of P sees nearby, on arbitrarily
small scales, relatively large holes in P .

Definition 4.4. A set P in a metric space M is porous if for each x ∈ P
there is λ > 0 and xk → x such that B(xk, λd(xk, x)) ∩ P = ∅. A set is
σ-porous if it is a countable union of porous sets.

The following fact is well known [23]; it follows directly from the fact that
a Lebesgue density theorem holds for doubling measures.

Proposition 4.5. Doubling measures give measure zero to porous sets.

The following lemma [16, Proposition 6.2.6] will be essential when finding
regular points of f inside a Lebesgue null set.

Lemma 4.6. Suppose f : Rn → Rm is Lipschitz. Then the set of irregular
points of f is σ-porous.

5. Definition of the Lebesgue Null Set

As already mentioned, we need our Lebesgue null set to contain plenty
of regular points of Lipschitz functions. The following theorem follows from
results of Tukia [19] on quasisymmetric mappings.

Theorem 5.1. There exists a doubling measure on R which gives full mea-
sure to a Lebesgue null set.

Recall that a set in a metric space is of class Gδ if it is a countable
intersection of open sets. In the proof of Theorem 1.1 it will be convenient
to work with a Gδ set. The reason for this is the following theorem of
Mazurkiewicz [8, Theorem 8.3].

Lemma 5.2. Let Z be a complete metric space. Then A ⊂ Z is topologically
complete if and only if it is a Gδ set in Z.

It follows from the definitions that every Lebesgue null set is contained
in a Lebesgue null set of class Gδ.

Let A be a family of affine maps of the form T : Rn → Rn given by
Tx = Ax + v, where A ∈ L(Rn,Rn) has a matrix representation (with
respect to the standard basis of Rn) with rational entries and v ∈ Qn.

We now define the Lebesgue null set we will work with.

Definition 5.3. Fix a doubling measure µ on R which gives full measure to

a Lebesgue null set Ñ ⊂ R. Let N be any Lebesgue null set in Rn of class
Gδ containing ⋃

A∈A

A(Rn−1 × Ñ).

To prove Theorem 1.1 we show every Lipschitz function f : Rn → Rn−1

has a point of differentiability inside N .
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6. Setup of the Variational Principle

In this section we define a suitable space and perturbations then show the
following variational principle [16, Corollary 7.2.4] is applicable.

Lemma 6.1. Suppose that f : M → R is lower bounded and lower semicon-
tinuous on a complete metric space (M,d). Suppose further that functions
Fi : M×M → [0,∞], i ≥ 0, are lower semicontinuous in the second variable
with Fi(x, x) = 0 for all x ∈ M and that 0 < ri ≤ ∞ are such that ri → 0
and

inf
d(x,y)>ri

Fi(x, y) > 0.

If x0 ∈M and (εi)
∞
i=0 is any sequence of positive numbers such that

f(x0) < ε0 + inf
x∈M

f(x) and inf
d(x0,y)>r0

F0(x0, y) > ε0,

then one may find a sequence (xi)
∞
i=1 of points in M converging to some

x∞ ∈M such that the function

h(x) = f(x) +

∞∑

i=0

Fi(xi, x)

attains its minimum on M at x∞. Moreover, for each i ≥ 0,

d(xi, x∞) ≤ ri, Fi(xi, x∞) ≤ εi

h(x∞) ≤ εi + inf
x∈M


f(x) +

i−1∑

j=0

Fj(xj , x)


 .

From now on we intend to make the following assumptions:

Assumptions 6.2. Suppose f : Rn → Rn−1 is a bounded Lipschitz function
and that 0 < η0 < 1/2, x0 ∈ N and T0 ∈ L(Rn−1,Rn) are such that
‖T0‖ = 1/2, f is regularly differentiable at x0 in the direction T0 and

‖Id− f ′(x;T )‖ ≤
1

4

whenever ‖T − T0‖ ≤ η0 and f ′(x;T ) exists.

We now show it is sufficient to prove the following proposition.

Proposition 6.3. Suppose f satisfies the assumptions above. Then there is
a point x ∈ N such that |x− x0| ≤ η0 and f is differentiable at x.

Claim 6.4. Theorem 1.1 follows from Proposition 6.3

Proof. Suppose f : Rn → Rn−1 is Lipschitz. By Lemma 4.5 and Lemma 4.6
the set of regular points of f has full measure with respect to Ln−1 × µ.

Hence we may find t0 ∈ Ñ such that for Ln−1 almost every z ∈ Rn−1 the
function f is regular at (z, t0). Using the classical Rademacher theorem for
the Lipschitz function z 7→ f(z, t0) and Lemma 4.3, we may find z0 ∈ Rn−1

and T0 ∈ L(Rn−1,Rn) such that rankT0 = n − 1, ‖T0‖ = 1/2 and f is
regularly differentiable at x0 = (z0, t0) in the direction T0.

Let g be an extension of f restricted to B(x0, 1) to a bounded Lipschitz
function on Rn. Let R0 ∈ L(Rn,Rn−1) be such that R0T0 = Id on Rn−1.
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Fix η0 > 0 to be chosen small later. Consider the function h = R0 + η0g.
Assume that ‖T − T0‖ ≤ η0. We estimate,

‖Id− h′(x;T )‖ = ‖R0(T0 − T )− η0g
′(x;T )‖

≤ ‖R0‖‖T − T0‖+ η0Lip(g)‖T‖

≤ ‖R0‖‖T − T0‖+ η0Lip(g)(‖T0‖+ ‖T − T0‖)

≤ (‖R0‖+ 2Lip(g))η0

≤
1

4

provided η0 is sufficiently small. Hence there exists x ∈ N with |x−x0| ≤ η0
at which h is differentiable. Consequently g and hence f are differentiable
at x ∈ N , as required. �

From now on we make the assumptions given above and focus on proving
Proposition 6.3. We now establish basic consequences of our assumptions.
First we state a mean value estimate [16, Proposition 2.4.1].

Lemma 6.5. Let Λ be a real valued locally Lipschitz function on an open
subset G of a separable Banach space X, and let a, b ∈ G be such that the
straight segment from a to b is contained in G. Then for every ε > 0 there
is a point z ∈ G at which Λ is Gâteaux differentiable and

Λ′(z)(b− a) > Λ(b)− Λ(a)− ε.

Proposition 6.6. The following facts hold:

(1) The inequality |f(x+Tu)−f(x)| ≤ 5|u|/4 holds for every x ∈ Rn, linear
map T such that ‖T − T0‖ ≤ η0, and u ∈ Rn−1.

(2) If ‖T − T0‖ ≤ η0 and f ′(x;T ) exists then T is a linear isomorphism of
Rn−1 onto its image and f ′(x;T ) is a linear isomorphism of Rn−1 onto
itself.

(3) Necessarily Lip(f) ≥ 1.

Proof. Temporarily denote v = (f(x+Tu)−f(x))/|f(x+Tu)−f(x)| ∈ Rn−1.
The map z 7→ v ·f(x+Tz) is a real valued Lipschitz map on Rn−1. Hence, by
Lemma 6.5 with a = 0 and b = u, for every ε > 0 there is a point z ∈ Rn−1

at which this map is differentiable and

v · (f ′(x+ Tz;T )u) > v · (f(x+ Tu)− f(x))− ε.

Hence

|f(x+ Tu)− f(x)| ≤ sup{‖f ′(y;T )‖ : y ∈ Rn, f ′(y;T ) exists}|u| ≤
5

4
|u|

which proves (1).
Suppose ‖T − T0‖ ≤ η0 and f ′(x;T ) exists. Then by our assumptions

‖Id− f ′(x;T )‖ ≤
1

4
.

It follows immediately from this that f ′(x;T ) is a linear injection from Rn−1

to itself and consequently is a linear isomorphism. Using the definition of
f ′(x;T ) it follows that T must have n − 1 dimensional image, hence is a
linear isomorphism of Rn−1 onto its image. Hence (2) is true.
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If u is any unit vector in Rn−1 then 2‖T0u‖ ≤ 1. Hence

Lip(f) ≥ 2‖f ′(x0;T0u)‖ ≥ 2(|u| − |u− f ′(x0;T0u)|) ≥ 1.

This proves (3). �

Recall that if H is a Hilbert space then the Hilbert-Schmidt norm ‖ · ‖H
and corresponding inner product 〈·, ·〉H are defined on the space L(H,Rn−1)
of bounded linear operators from H to Rn−1 and given by,

‖T‖2H =

∞∑

i=1

|Tui|
2 and 〈T, S〉H =

∞∑

i=1

〈Tui, Sui〉

for any orthonormal basis (ui) of H; the value of the Hilbert-Schmidt norm
and inner product are independent of the orthonormal basis used [16].

We define the space

D = {(x, T ) ∈ N×L(Rn−1,Rn) :

f is regularly differentiable at x in direction T}.

We give Rn ×Rn−1 the norm ‖(z, w)‖ = |z|+ |w| for z ∈ Rn and w ∈ Rn−1.
Define a pseudonorm ‖·‖r on the space Lip(Rn×Rn−1,Rn−1) of Rn−1 valued
Lipschitz functions on Rn × Rn−1 by

‖h‖r = sup
z∈Rn,u∈Rn−1

|z|+|u|>0

|h(z, u) − h(z, 0)|

|z|+ |u|
.

It is easy to see this pseudonorm is lower semicontinuous in the topology of
pointwise convergence and ‖h‖r ≤ Lip(h).

For x ∈ Rn and T ∈ L(Rn−1,Rn) we define fx,T : R
n × Rn−1 → Rn−1 by

fx,T (z, u) = f(x+ z + Tu).

The transformation (x, T ) 7→ fx,T maps Rn × L(Rn−1,Rn) to the space
Lip(Rn × Rn−1,Rn−1). We have the inequalities

‖fx,T − fy,S‖r ≤ Lip(f)(‖T‖+ ‖S‖)

and

‖fx,T − fx,S‖r ≤ Lip(f)‖T − S‖.

Recall N is a Gδ set in Rn. Hence, by Lemma 5.2, there is a metric
dN on N such that (N, dN ) is complete and dN is topologically equivalent
to the Euclidean metric on N . Further, by replacing dN by the metric
(x, y) 7→ dN (x, y) + |x − y| if necessary, we may assume |x − y| ≤ dN (x, y)
for all x, y ∈ N .

The space D has a standard topology as a subset of Rn × L(Rn−1,Rn).
We also define a metric, giving a different topology, on D by

d((x, T ), (y, S)) = dN (x, y)+‖T−S‖+‖f ′(x;T )−f ′(y;S)‖H+‖fx,T−fy,S‖r.

Note the metric d is similar to the one in [16] with the norm distance
replaced by dN and the regularity component ‖ · ‖r slightly simplified.

We now establish several properties of (D, d).

Lemma 6.7. The following facts hold:

(1) The function (x, T ) 7→ f ′(x;T ) is d-continuous on D.
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(2) The function ((x, T ), (y, S)) 7→ ‖fx,T − fy,S‖r is lower semicontinuous
in the standard topology of D ×D.

(3) The function ((x, T ), (y, S)) 7→ ‖fx,T − fy,T‖r is lower semicontinuous
in the standard topology of D × D, and so also in the topology of the
product (D, d)× (D, d).

(4) The space (D, d) is separable.

Proof. (1) follows from the definition of d.
Since f is continuous, for each fixed z ∈ Rn and u ∈ Rn−1 with |z|+|u| > 0

the function

((x, T ), (y, S)) 7→
|fx,T (z, u)− fy,S(z, u)− fx,T (z, 0) + fy,S(z, 0)|

|z|+ |u|

is continuous in the standard topology of D ×D. The function

((x, T ), (y, S)) 7→ ‖fx,T − fy,S‖r

is a supremum of a family of continuous functions, hence lower semicontin-
uous. This proves (2).

The function

((x, T ), (y, S)) 7→ ‖fx,T − fy,T‖r

is lower semicontinuous in the standard topology of D × D by a similar
argument to that used in (2). Since the topology of (D, d)× (D, d) has more
open sets than the standard topology of D ×D, (3) follows easily.

Let H0 be the space of continuous functions ϕ : Rn × Rn−1 → Rn−1. We
equip H0 with topology generated by a countable family of pseudonorms

‖ϕ‖k = sup
z∈Rn,u∈Rn−1

|z|+|u|<k

|ϕ(z, u)|.

The space H0 can be metrized by the metric

ρ0(ϕ,ψ) =

∞∑

k=1

2−k min{1, ‖ϕ− ψ‖k}

and a countable dense subset of H0 is given by polynomials with rational
coefficients.

Hence the space

H = Rn × L(Rn−1,Rn)× L(Rn−1,Rn−1)×H0

is also metrizable and separable. We show (D, d) is homeomorphic to a
topological subspace ofH, which implies, since subspaces of separable metric
spaces are separable, (D, d) is separable.

For (x, T ) ∈ D define ψx,T : R
n × Rn−1 → Rn−1 by

ψx,T (z, u) =
fx,T (z, u) − fx,T (z, 0) − f ′(x;Tu)

|z|+ |u|
, ψx,T (0, 0) = 0.

Since f is regularly differentiable at x in direction T it follows that ψx,T is
continuous at (0, 0). Hence ψx,T ∈ H0 so the map η : D → H given by

η(x, T ) = (x, T, f ′(x;T ), ψx,T )
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is an injection from D into H. We claim η is a homeomorphism onto its
image. From the definition of d it is clear the first three components of η are
d continuous. Continuity of the last component follows from the inequality

‖ψx,T − ψy,S‖k ≤ ‖fx,T − fy,S‖r + ‖f ′(x;T )− f ′(y;S)‖.

Continuity of η−1 follows from the estimate

‖fx,T − fy,S‖r ≤ sup
z∈Rn,u∈Rn−1

|z|+|u|≥k

|fx,T (z, u)− fx,T (z, 0) − fy,S(z, u) + fy,S(z, 0)|

|z|+ |u|

+ ‖ψx,T − ψy,S‖k + ‖f ′(x;T )− f(y;S)‖

≤
4‖f‖∞
k

+ ‖ψx,T − ψy,S‖k + ‖f ′(x;T )− f ′(y;S)‖

for every k ≥ 1. This completes the proof of (4). �

Lemma 6.8. The pair (D, d) is a complete metric space.

Proof. Suppose εi ↓ 0 and (xi, Ti) ∈ D are such that

d((xj , Tj), (xi, Ti)) < εi whenever j ≥ i.

Since (N, dN ) is complete it follows xi converges to some x ∈ N . Clearly,
from the definition of d, Ti converges to some T ∈ L(Rn−1,Rn) and the maps
Li = f ′(xi;Ti) converge to some L ∈ L(Rn−1,Rn−1). Using the definition
of d, ‖L − Li‖ ≤ εi. Also, using Lemma 6.7 (2) and the definition of d,
‖fx,T − fxi,Ti

‖r ≤ εi.
To complete the proof we must show (x, T ) ∈ D and (xi, Ti) converges

to (x, T ) with respect to the metric d. To show (x, T ) ∈ D we show f is
regularly differentiable at x in direction T with f ′(x;T ) = L. Suppose ε > 0
and find i such that εi < ε/3. Since f is regularly differentiable at xi in
direction Ti, we can find δ > 0 such that

|f(xi + z + Tiv)− f(xi + z)− Liv| ≤
ε

3
(|z|+ |v|)

whenever |z|+ |v| < δ. Hence, using the definition of ‖ · ‖r, for |z|+ |v| < δ,

|f(x+ z + Tv)− f(x+ z)− Lv|

≤ |f(xi + z + Tiv)− f(xi + z)− Liv|+ |Liv − Lv|

+ ‖fx,T − fxi,Ti
‖r(|z|+ |v|)

≤
ε

3
(|z|+ |v|) + εi|v|+ εi(|z|+ |v|)

≤ ε(|z|+ |v|).

Hence f is regularly differentiable at x in direction T .
Convergence of (xi, Ti) to (x, T ) in the metric d follows from the estimate

‖fx,T − fxi,Ti
‖r ≤ εi. �

Since (D, d) is a complete separable metric space and the identity map
from (D, d) to Rn × L(Rn−1,Rn) is continuous, it follows a subset of D is
Borel in (D, d) if and only if it is Borel in Rn × L(Rn−1,Rn) [12]. In what
follows it will be obvious functions we integrate are Borel in (D, d) so it
follows by this fact that they are also Borel in the standard topology on
Rn × L(Rn−1,Rn).
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Fix a Lipschitz function Θ: L(Rn−1,Rn) → [0, 1] which is differentiable
everywhere and

inf
‖S‖>s

Θ(S) > Θ(0) = 0 for every s > 0.

In the context of [16], existence of such a bump function, defined on a
Banach space (and required to satisfy certain smoothness assumptions) was
needed as a hypothesis on the Banach space. Existence of such a function
in our case is clear - for example, identify L(Rn−1,Rn) with Rn(n−1) and let

Θ(S) = ‖S‖2E/(1 + ‖S‖2E)

where ‖ · ‖E is the Euclidean norm.
We work in the subspace (D0, d) of (D, d) where

D0 = {(x, T ) ∈ D : dN (x, x0) ≤ η0, ‖T − T0‖ ≤ η0}

with η0, x0 and T0 defined in Assumptions 6.2.
Temporarily fix parameters 0 < λi, βi, γi, σi, si < ∞ to be chosen later.

We will apply the variational principle of Lemma 6.1 on the complete metric
space (D0, d) to the function h0 : D0 → R given by

h0(x, T ) = −‖f ′(x;T )‖2H ,

with the perturbation functions Fi : D0 ×D0 → [0,∞), i ≥ 0, defined by

Fi((x, T ), (y, S)) =λidN (x, y) + βiΘ(S − T )

+ γi‖f
′(y;S) − f ′(x;T )‖2H + σi∆i((x, T ), (y, S)),

where

∆i((x, T ), (y, S)) = max{0, min{1, ‖fy,T − fx,T‖r − si}}.

We now show the variational principle can be applied and prove estimates
that will be useful later.

Lemma 6.9. Suppose that for all i ≥ 0,

0 < λi, βi, γi, σi, εi <∞, 0 ≤ si <∞, si ↓ 0.

Then Fi are non-negative lower semicontinuous functions on (D0, d)×(D0, d)
satisfying Fi((x, T ), (x, T )) = 0 and there are ri ↓ 0 such that

inf{Fi((x, T ), (y, S)) : d((x, T ), (y, S)) ≥ ri} > 0.

If, moreover,

‖f ′(x0;T0)‖
2
H > sup

(x,T )∈D0

‖f ′(x;T )‖2H − ε0.

then the function h0 and the perturbation scheme (Fi) satisfy the assump-
tions of the variational principle of Lemma 6.1 on the metric space (D0, d).

Proof. Clearly Fi ≥ 0 and Fi((x, T ), (x, T )) = 0. Lower semicontinuity of ∆i

follows from Lemma 6.7 (3). The other terms of Fi are clearly continuous
with respect to d.

Let r0 = ∞. For i ≥ 1 let ti = 1/2i+1; we show that ri = si+(4+Lip(f))ti
satisfy

inf
d((x,T ),(y,S))≥ri

Fi((x, T ), (y, S)) ≥ min{λiti, γit
2
i , σiti, inf

‖L‖≥ti
βiΘ(L)}.
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This is obvious, from the definition of Fi, if dN (x, y) ≥ ti or ‖T −S‖ ≥ ti or
‖f ′(x;T ) − f ′(y;S)‖H ≥ ti. Suppose d((x, T ), (y, S)) ≥ ri and none of the
previous inequalities hold. Then

‖fx,T − fy,S‖r ≥ d((x, T ), (y, S)) − 3ti ≥ si + (1 + Lip(f))ti.

Hence

‖fx,T − fy,T‖r ≥ ‖fx,T − fy,S‖r − ‖fy,S − fy,T‖r

≥ si + (1 + Lip(f))ti − Lip(f)‖S − T‖

≥ si + ti.

Hence ‖fx,T − fy,T‖r ≥ si + ti and σi∆i((x, T ), (y, S)) ≥ σiti.
Since r0 = ∞, the final condition assumed is the only remaining require-

ment of the variational principle. �

7. Application of the Variational Principle

We now apply the variational principle, derive some resulting estimates
and finally make exact choices of parameters.

Assume the parameters λi, βi, γi, σi, si, εi, ε0 satisfy the assumptions of
Lemma 6.9. Then the variational principle shows that (x0, T0) is the starting
term of a sequence (xj , Tj) ∈ D0 which d-converges to some (x∞, T∞) ∈ D0

and has the property that, denoting ε∞ = 0 and

hi(x, T ) = −‖f ′(x;T )‖2H +

i−1∑

j=0

Fj((xj , Tj), (x, T )),

we have,

h∞(x∞, T∞) ≤ εi + inf
(x,T )∈D0

hi(x, T )

for 0 ≤ i ≤ ∞. Note that for i = ∞ this says (x∞, T∞) is a minimum of
h∞ in D0. Since (xi, Ti) ∈ D, the derivatives Li = f ′(xi;Ti) exist for all
0 ≤ i ≤ ∞.

We guarantee h∞ is finite by requiring

∞∑

i=0

(λi + βi + γi + σi) <∞.

Lemma 7.1. For every i ≥ 0,

dN (x∞, xi) ≤
εi
λi
, Θ(T∞ − Ti) ≤

εi
βi
, ‖L∞ − Li‖H ≤

√
εi
γi
.

Proof. It follows from the definition of hi that

hi(x∞, T∞) + λidN (x∞, xi) + βiΘ(T∞ − Ti) + γi‖L∞ − Li‖
2
H

≤ h∞(x∞, T∞) ≤ εi + hi(x∞, T∞).

Since all terms are non-negative this implies all three estimates. �
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Our strategy will be to suppose f is not differentiable at x∞ and show
this would imply x∞ is not a minimum of the function h∞. To do this we
analyze the difference,

h∞(x∞, T∞)− h∞(x, T ) =(‖f ′(x;T )‖2H − ‖f ′(x∞;T∞)‖2H)

− Φ(x)−Ψ(T )−Υ(f ′(x;T )) −∆(x)
(7.1)

where, for x ∈ N , T ∈ L(Rn−1,Rn) and L ∈ L(Rn−1,Rn−1),

Φ(x) =

∞∑

i=0

λi(dN (x, xi)− dN (x∞, xi))

Ψ(T ) =

∞∑

i=0

βi(Θ(T − Ti)−Θ(T∞ − Ti))

Υ(L) =
∞∑

i=0

γi(‖L− Li‖
2
H − ‖L∞ − Li‖

2
H)

∆(x) =

∞∑

i=0

σi(∆i((xi, Ti), (x, T )) −∆i((xi, Ti), (x∞, T∞))).

These functions are well defined and one sees from the definition of ∆i

that ∆ does not depend on T . Also note the positive and finite function

Θ∞(T ) =
∞∑

i=0

βiΘ(T − Ti)

is differentiable (by standard facts about uniformly converging series of func-
tions).

We now give definitions of the parameters. For i ≥ 1,

λi = 2−iλ0, βi = 2−iβ0, γi = 2−iγ0, si = 2−is0.

Choose ε0 > 0 such that

‖f ′(x0, T0)‖
2
H > sup

(x,T )∈D0

‖f ′(x;T )‖2H − ε0.

Let λ0 = 2ε0/η0, γ0 = 1/8 and s0 = 4. Then find β0 > 0 large enough
that

Θ(S) >
ε0
β0

whenever ‖S‖ > min

{
η0
2
,

s0
8Lip(f)

}
.

For i ≥ 1 we choose εi > 0 such that

εi
λi

≤
η0
2
,

εi
γi

≤
s2i
64

and

Θ(S) >
εi
βi

whenever ‖S‖ > min

{
η0
2
,

si
8Lip(f)

}
.

We now deduce estimates about the speed of convergence of xi, Ti and
Li.
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Lemma 7.2. For all 0 ≤ i <∞ we have the following estimates of the speed
of convergence:

dN (xi, x∞) ≤
η0
2
, ‖Ti − T∞‖ ≤ min

{
η0
2
,

si
8Lip(f)

}
,

and

‖Li − L∞‖ ≤
si
8
.

Also, for 0 ≤ i ≤ ∞,

‖Ti‖ ≤ 1, ‖Li‖ ≤
5

4
.

Proof. The first two inequalities, for 0 ≤ i <∞, and the third inequality, for
0 < i <∞, follow from the definitions and Lemma 7.1. Using the definition
of f ′(x;T ) and the second inequality for i = 0 we obtain

‖L0 − L∞‖ ≤ Lip(f)‖T0 − T∞‖ ≤
s0
8

which is the third inequality for i = 0. Again, using the second inequality
we have, for any 0 ≤ i ≤ ∞,

‖Ti‖ ≤ ‖T0‖+ ‖T0 − T∞‖+ ‖Ti − T∞‖ ≤
1

2
+ η0 ≤ 1.

Since (xi, Ti) ∈ D0 for all 0 ≤ i ≤ ∞, the final estimate follows from the
assumptions on f (assumptions 6.2). �

Finally for i ≥ 0 we choose σi > 0 such that

σi
C(µ)(5Lip(f))2C(µ)−2

(si/8)2C(µ)
≤ 2−i−3,

σi ≤ 2−i−4,

and

σi ≤
2−i−5

i+ 1

si
48Lip(f)

.

8. Non-Differentiability Contradicts Minimality

In this section we suppose f is not differentiable at x∞ and deduce conse-
quences. We then define a region in which we plan to find a point x, with cor-
responding direction T , such that (x, T ) ∈ D0 and h∞(x, T ) < h∞(x∞, T∞).
This contradiction would then show f must be differentiable at x∞. Most of
the arguments are similar to those in [16] except we must choose the region
mentioned so that it contains many points of N which are regular points of
the function f .
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Let LΘ be the derivative of Θ∞ at T∞. We recall

h∞(x, T ) = −‖f ′(x;T )‖2H +
∞∑

i=0

λidN (x, xi) +
∞∑

i=0

βiΘ(T − Ti)

+

∞∑

i=0

γi‖f
′(x;T )− Li‖

2
H

+

∞∑

i=0

σimax{0, min{1, ‖fx,Ti
− fxi,Ti

‖r} − si}.

Suppose for the moment f is differentiable at x∞. Since by Lemma 7.2
(x∞, T ) ∈ D0 for ‖T −T∞‖ < 1

2η0 and since h∞ attains its minimum on D0

at (x∞, T∞), this implies that the function T 7→ h∞(x∞, T ) is differentiable
with derivative zero at T∞. We differentiate to find equations for f ′(x∞;S).
Observe

‖A0 +A‖2H − ‖A0‖
2
H − 2〈A0, A〉H = ‖A‖2H

for linear maps A, A0 ∈ L(Rn−1,Rn−1). This implies the derivative of the
map

A 7→ ‖A‖2H
at A0 is the map

A 7→ 2〈A0, A〉H .

Hence, using the chain rule and the fact T 7→ f ′(x;T ) is linear, we deduce

(8.1) − 2〈L∞, f
′(x∞;S)〉H + LΘS + 2

∞∑

i=0

γi〈L∞ − Li, f
′(x∞;S)〉H = 0

for all S ∈ L(Rn−1,Rn). We now solve this system of equations for an
unknown operator L ∈ L(Rn,Rn−1) in place of f ′(x∞). Denote

R∞ = 2L∞ + 2

∞∑

i=0

γi(Li − L∞) ∈ L(Rn−1,Rn−1).

Then we can rewrite the system of equations as

(8.2) 〈R∞, LS〉H = LΘS for all S ∈ L(Rn−1,Rn).

Since every S ∈ L(Rn−1,Rn) is a sum of rank one operators, we may
consider this linear equation only for rank one operators S ∈ L(Rn−1,Rn).
We first deduce R∞ is invertible.

Lemma 8.1. The operator R∞ is invertible and ‖R∞‖−1 ≤ 1.

Proof. By Lemma 7.2 we know ‖Li − L∞‖ ≤ 1/2 for all i ≥ 0. Since∑∞
i=0 γi = 1/4, and ‖Id− L∞‖ ≤ 1/4 by assumptions 6.2, we obtain,

‖Id− (1/2)R∞‖ = ‖Id− L∞ −

∞∑

i=0

γi(Li − L∞)‖

≤ ‖Id− L∞‖+

∞∑

i=0

γi‖Li − L∞‖

≤ 1/2.
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This implies the expression
∞∑

i=0

(Id− (1/2)R∞)i

is a well defined linear map with norm at most 2. An easy computation then
shows it is the inverse of (1/2)R∞. Hence the map R∞ is invertible with
‖R−1

∞ ‖ ≤ 1. �

A rank one operator S ∈ L(Rn−1,Rn) can be written as S = x ⊗ e
where x ∈ Rn and e ∈ Rn−1. It acts by (x ⊗ e)(u) = 〈e, u〉x. We note
L(x ⊗ e) = Lx ⊗ e for a linear map L defined on Rn. Indeed, for any
u ∈ Rn−1,

L(x⊗ e)u = L(〈e, u〉x) = 〈e, u〉Lx = (Lx⊗ e)(u).

Also 〈R,w ⊗ e〉H = 〈Re,w〉 for any w ∈ Rn and R ∈ L(Rn−1,Rn). To see
this let ei be an orthonormal basis of Rn−1. Then,

〈R,w ⊗ e〉H =

n−1∑

i=1

〈R(ei), 〈ei, e〉w〉 = 〈R(

n−1∑

i=1

〈ei, e〉ei), w〉 = 〈Re,w〉.

Using these facts, the system of equations (8.2) for the unknown Lx can
be written

〈R∞e, Lx〉 = LΘ(x⊗ e), for all e ∈ Rn−1.

Since R∞ is invertible this can be written as

(8.3) 〈e, Lx〉 = LΘ(x⊗ (R−1
∞ e)) for all e ∈ Rn−1.

For a fixed x, the map e 7→ LΘ(x ⊗ (R−1
∞ e)) defines a linear functional on

Rn−1 and the left hand side of (8.3) says this linear functional is represented
by Lx ∈ Rn−1. Hence Lx is uniquely defined and linearity of (8.3) in x shows
that L is linear. Further, L is bounded as |Lx| ≤ ‖LΘ‖‖R

−1
∞ ‖|x|. Hence we

have shown the following lemma.

Lemma 8.2. The system of equations (8.2) uniquely defines an operator
L ∈ L(Rn,Rn−1) with ‖L‖ ≤ ‖LΘ‖‖R

−1
∞ ‖ ≤ ‖LΘ‖.

Even though we do not know that f ′(x∞) exists, some arguments leading
to (8.1) can still be used to prove

Lemma 8.3. f ′(x∞, T∞) = LT∞.

Proof. Since f is regularly differentiable at x∞ in the direction of T∞, it is
regularly differentiable at x∞ in the direction of T for every T ∈ L(Rn−1, V )
where V is the range of T∞. Hence, if T ∈ L(Rn−1, V ) and ‖T −T∞‖ < 1

2η0,
we have (x∞, T ) ∈ D0 and the arguments above show that (8.1) holds for

S ∈ L(Rn−1, V ). Defining L̃ ∈ L(V,Rn−1) by L̃(v) = f ′(x∞; v), this says

〈R∞, L̃S〉H = LΘS for all S ∈ L(Rn−1, V ).

Replacing Rn by V in the proof of Lemma 8.2 shows that this system has a
unique solution; since the restriction of L to V solves it, we get the required
conclusion f ′(x∞; v) = L̃(v) = L(v) for every v ∈ V . �

In order to prove Proposition 6.3 it suffices to prove the following propo-
sition.
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Proposition 8.4. f is differentiable at x∞ ∈ N and f ′(x∞) = L.

To prove Proposition 8.4 we argue by contradiction. Assume that L is
not the derivative of f at x∞.

Lemma 8.5. There is ε > 0 such that for every δ > 0 one may find x ∈ Rn

with |x| < δ such that

• Lx = 0.
• |f(x∞ + x)− f(x∞)| > ε|x|.

Proof. Let c = 1 + ‖T∞L
−1
∞ L‖ + ‖L−1

∞ L‖. Since L is not the derivative of
f at x∞, there is ε > 0 such that for every δ > 0 there exists x̃ ∈ Rn with
|x̃| < δ and

(8.4) |f(x∞ + x̃)− f(x∞)− Lx̃| > 2εc|x̃|.

Suppose δ > 0 is fixed. Since f is regularly differentiable at x∞ in direc-
tion T∞ there exists η > 0 such that

(8.5) |f(x∞ + z + T∞u)− f(x∞ + z)− L∞u| ≤ ε(|z| + |u|)

whenever z ∈ Rn, u ∈ Rn−1 and |z|+ |u| < η.
Choose x̃ ∈ Rn such that c|x̃| < min{δ, η} and (8.4) holds. Define the

point x = x̃−T∞L
−1
∞ Lx̃. Since LT∞ = L∞ by Lemma 8.3, it follows Lx = 0.

Further,

|x|+ |L−1
∞ Lx̃| ≤ |x̃|+ |T∞L

−1
∞ Lx̃|+ |L−1

∞ Lx̃| ≤ c|x̃| < min{δ, η}.

Hence we may apply (8.5) with z = x and u = L−1
∞ Lx̃ to obtain

|f(x∞ + x̃)− f(x∞ + x)− Lx̃|

= |f(x∞ + x+ T∞L
−1
∞ Lx̃)− f(x∞ + x)− Lx̃|

≤ ε(|x| + |L−1
∞ Lx̃|) ≤ εc|x̃|.

By combining this with (8.4) and using the triangle inequality we obtain

|f(x∞ + x)− f(x∞)|

≥ |f(x∞ + x̃)− f(x∞)− Lx̃| − |f(x∞ + x̃)− f(x∞ + x)− Lx̃|

> εc|x̃| ≥ ε|x|

as required. �

We now define various parameters and a region in which to look for a
pair (x, T ) ∈ D0 with h∞(x, T ) < h∞(x∞, T∞). We fix 0 < ε < 1 with the
property from Lemma 8.5. By differentiability of Θ∞ we find K ≥ 1/ε such
that the parameter

κ =
sK

48Lip(f)

satisfies κ < η0/4 and

(8.6) Θ∞(T∞ + S)−Θ∞(T∞) ≤ LΘS +
ε

8
‖S‖

whenever ‖S‖ ≤ κ. Let τ = εκ/4,

t =
τ

22nLip(f)(1 + ‖R∞‖H)
,
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and, using Lemma 2.3, choose 0 < ξ ≤ t/6 such that for every θ > 0 we have

µ(B(0, θ(1− 24ξ/tsK)))

µ(B(0, θ))
(1− 24nξ/sK) ≥ 1− τ.

Since f is regularly differentiable at each xi in the direction of Ti, there
is δ1 > 0 such that for all i = 0, . . . ,K and i = ∞,

(8.7) |f(xi + z + Tiv)− f(xi + z)− Liv| ≤ ξ(|z|+ |v|)

whenever z ∈ Rn, v ∈ Rn−1 and |z|+ |v| < δ1.
Let δ2 > 0 be such that

δ2 ≤ min

{
κδ1
6
,
κη0
6
,

δ1κτ

24Lip(f)

}

and z ∈ N, |z − x∞| ≤ 3δ2/κ implies

dN (z, x∞) ≤ min

{
τ∑∞

i=0 λi
,
η0
2

}
.

Use Lemma 8.5 to find x ∈ Rn such that |x| < δ2, Lx = 0 and

|f(x∞ + x)− f(x∞)| > ε|x|.

Denote

r =
|x|

κ
, w =

1

r
(f(x∞ + x)− f(x∞)), e =

R−1
∞ w

|R−1
∞ w|

,

and
Ω = {u ∈ Rn−1 : −r < 〈e, u〉 < 0, |u− 〈e, u〉e| < r}.

We have, since ‖R−1
∞ ‖ ≤ 1,

〈R∞e, w〉 =
|w|2

|R−1
∞ w|

≥ |w| > εκ = 4τ.

Temporarily fix ẽ ∈ Rn−1, x̃ ∈ Rn and T̃∞ ∈ L(Rn−1,Rn) close to e, x
and T∞ respectively. Define an affine map γ : Rn−1 → Rn with Lip(γ) ≤ 2κ
by

(8.8) γ(u) = x̃+ 〈ẽ, u〉x̃/r

and let ϕ : Rn → Rn be an affine change of coordinates given by

(8.9) ϕ(u) = x∞ + γ(πn−1u) + T̃∞πn−1u+ (0, πn−1u)

where πn−1 and πn−1 are the orthogonal projections onto the first n coordi-
nates and the final coordinate respectively. That is, for a ∈ Rn−1 and b ∈ R,
we have πn−1(a, b) = a and πn−1(a, b) = b.

Given u ∈ Rn we define ϕ′
n−1(u) ∈ L(Rn−1,Rn) to be the derivative, at

πn−1(u) of the map Rn−1 → Rn given by v 7→ ϕ(v, πn−1(u)).
Note that,

ϕ(u) = x∞ + x̃+ κ〈ẽ, u〉
x̃

|x|
+ T̃∞πn−1u+ (0, πn−1u)

and

ϕ′
n−1(u) = κ

x̃⊗ ẽ

|x|
+ T̃∞

for u ∈ Rn. Let Q = Ω× (−tr, tr).
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Lemma 8.6. Let α > 0. Then there exists ẽ ∈ Rn−1, x̃ ∈ Rn, and a linear

map T̃∞ ∈ L(Rn−1,Rn) such that

|ẽ− e|+ |x̃− x|+ ‖T̃∞ − T∞‖ < α

and, for Ln−1 × µ almost every u ∈ Q,

• The function f is regularly differentiable at ϕ(u) in the direction
ϕ′
n−1(u),

• ϕ(u) ∈ N .

Proof. We can choose ẽ, x̃ and T̃∞ with

|ẽ− e|+ |x̃− x|+ ‖T̃∞ − T∞‖ < α

so that ϕ is bilipschitz and belongs to the countable dense family of affine

maps in Definition 5.3. This implies ϕ(u) ∈ N whenever πn−1(u) ∈ Ñ .

Hence, since µ(R \ Ñ) = 0, it follows ϕ(u) ∈ N for Ln−1 × µ almost every
u ∈ Q.

The preimage, under the bilipschitz map ϕ, of the σ-porous set of points at
which f is not regular is again σ-porous. Hence, since Ln−1×µ is doubling,
Lemma 4.5 and Lemma 4.6 imply that the function f is regular at ϕ(u) for
Ln−1 × µ almost every u.

By the classical Rademacher theorem we know that for each fixed b ∈ R,
f is differentiable at ϕ(a, b) in direction ϕ′

n−1(a, b) for Ln−1 almost every

a ∈ Rn−1. Hence f is differentiable at ϕ(u) in direction ϕ′
n−1(u) for L

n−1×µ
almost every u ∈ Q. By Lemma 4.3 this proves the result. �

We now fix α > 0 small relative to all previous parameters. Since α is the
last parameter we define, we don’t list precise estimates. When the fact α is
small is used, it should be clear α could have been chosen appropriately at

this stage. Fix ẽ ∈ Rn−1, x̃ ∈ Rn and T̃∞ ∈ L(Rn−1,Rn) as in Lemma 8.6
with the corresponding γ and ϕ as defined in (8.8) and (8.9). Also define
g : Rn → Rn−1 by

g(u) = f(ϕ(u))− L∞πn−1u.

Lemma 8.7. If α is sufficiently small then Lip(ϕ) ≤ 3, Lip(g) ≤ 5Lip(f),

• |ϕ(u)− x∞| ≤ 3r for all u ∈ Q, and
• for every u, v ∈ Q with 〈u− v, e〉 = 0,

|g(u) − g(v)| ≤
τr

n(1 + ‖R∞‖H)
.

Proof. We use Lemma 7.2. For the first inequality, since ‖T∞‖ ≤ 1 and α is
small,

Lip(ϕ) ≤ 2κ+ ‖T̃∞‖+ 1 ≤ 3.

For the second inequality, the facts ‖L∞‖ ≤ 5/4 and Lip(f) ≥ 1 immedi-
ately imply

Lip(g) ≤
5

4
+ 3Lip(f) ≤ 5Lip(f).

For the third inequality, for small α, we estimate,

|ϕ(u) − x∞| ≤ κr + 2κr + 2r + tr + κr = (4κ+ t+ 2)r ≤ 3r.
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For the final estimate we use regular differentiability of f at x∞ in di-
rection T∞ which is (8.7). For convenience, first assume ẽ = e, x̃ = x and

T̃∞ = T∞.
We next suppose u, v ∈ Ω ⊂ Rn−1 ⊂ Rn. Since 〈u − v, e〉 = 0 it follows

that γ(πn−1u) = γ(πn−1v) and hence ϕ(u) − ϕ(v) = T∞(u − v). We use
(8.7) with z = γ(v) + T∞v and u− v in place of u. We estimate,

|γ(v) + T∞v|+ |u− v| ≤ |ϕ(v) − x∞|+ |u− v| ≤ 6r < δ1.

Hence, using (8.7) and recalling γ(u) = γ(v),

|g(u) − g(v)|

= |f(x∞ + γ(u) + T∞u)− f(x∞ + γ(v) + T∞v)− L∞(u− v)|

= |f(x∞ + γ(v) + T∞v + T∞(u− v))− f(x∞ + γ(v) + T∞v)− L∞(u− v)|

≤ ξ(|γ(v) + T∞v|+ |u− v|)

≤ 6ξr.

For general u, v ∈ Q we just use that Q is relatively thin in the remaining
direction,

|g(u) − g(v)| ≤ |g(u)− g(πn−1u)|+ |g(v) − g(πn−1v)|

+ |g(πn−1u)− g(πn−1v)|

≤ 2Lip(g)tr + 6ξr ≤ 10Lip(f)tr + tr

≤ 11Lip(f)tr =
τr

2n(1 + ‖R∞‖H)
.

For general ẽ, x̃ and T̃∞ we note that, if we temporarily denote g = gẽ,x̃,T̃∞

then since f is Lipschitz, provided α is sufficiently small, we can ensure

|gẽ,x̃,T̃∞

(u)− ge,x,T∞
(u)| ≤

τr

4n(1 + ‖R∞‖H)

for all u ∈ Q. Thus, provided α is sufficiently small, the result follows. �

We now observe that (ϕ(u), ϕ′
n−1(u)) ∈ D0 for Ln−1 × µ almost every

u ∈ Q. Indeed, for all u ∈ Q we have |ϕ(u) − x∞| ≤ 3r. If ϕ(u) ∈ N this
implies dN (ϕ(u), x∞) ≤ η0/2. Hence, since dN (x∞, x0) < η0/2 by Lemma
7.2,

dN (ϕ(u), x0) ≤ dN (ϕ(u), x∞) + dN (x∞, x0) ≤ η0.

Further, using the expression for ϕ′
n−1 and Lemma 7.2, it follows that for

sufficiently small α,

‖ϕ′
n−1(u)− T0‖ ≤ ‖ϕ′

n−1(u)− T̃∞‖+ ‖T̃∞ − T∞‖+ ‖T∞ − T0‖ ≤ η0.

By our choice of ϕ after Lemma 8.6, ϕ(u) ∈ N and f is regularly differen-
tiable at ϕ(u) in direction ϕ′

n−1(u) at L
n−1 × µ almost every u ∈ Q. Hence

(ϕ(u), ϕ′
n−1(u)) ∈ D0 for Ln−1 × µ almost every u ∈ Q.

We aim to show that

(8.10) −

∫

Q
(h∞(x∞, T∞)− h∞(ϕ,ϕ′

n−1)) d(L
n−1 × µ) > 0.
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Once this is done a contradiction follows. Indeed, suppose (8.10) holds.
Then there is u ∈ Q such that (ϕ(u), ϕ′

n−1(u)) ∈ D0 and

h∞(x∞, T∞)− h∞(ϕ(u), ϕ′
n−1(u)) > 0

which contradicts the assumption (x∞, T∞) is a minimizer of h∞ in D0.

9. Integral Estimates

We now prove (8.10). Recall from (7.1),

h∞(x∞, T∞)− h∞(ϕ,ϕ′
n−1)

= (‖f ′(ϕ;ϕ′
n−1)‖

2
H − ‖L∞‖2H)

− Φ(ϕ)−Ψ(ϕ′
n−1)−Υ(f ′(ϕ;ϕ′

n−1))−∆(ϕ).

(9.1)

We now estimate the average integral of each of the terms on the right side.
Most of the estimates are very similar to those in [16]. The main difference
is in the estimate of the regularity term. Here we need to account for the
fact µ is not Lebesgue measure but can still make the necessary estimates
using Proposition 3.3.

9.1. Estimate of −
∫
QΦ(ϕ) d(Ln−1×µ). For Ln−1×µ almost every u ∈ Q we

know, by Lemma 8.6, ϕ(u) ∈ N . By Lemma 8.7 we know |ϕ(u)− x∞| ≤ 3r
for every u ∈ Q. By our choice of r this implies dN (ϕ(u), x∞) ≤ τ/(

∑∞
i=0 λi)

for Ln−1 × µ almost every u ∈ Q
Hence, for such u,

|dN (xi, ϕ(u)) − dN (xi, x∞)| ≤ dN (ϕ(u), x∞) ≤ τ/

∞∑

i=0

λi.

This implies,

|Φ(ϕ(u))| ≤
∞∑

i=0

λidN (ϕ(u), x∞) ≤ τ.

Hence

−

∫

Q
Φ(ϕ) d(Ln−1 × µ) ≤ τ.

9.2. Estimate of −
∫
QΨ(ϕ′

n−1) d(Ln−1 × µ). By our choice of x we know

Lx = 0. By the definition of L this implies LΘ(x ⊗ e) = 0. Using (8.6) we
obtain, provided α is sufficiently small,

Ψ(ϕ′
n−1) = Θ∞

(
T̃∞ + κ

x̃⊗ ẽ

|x|

)
−Θ∞ (T∞)

≤ Θ∞

(
T∞ + κ

x⊗ e

|x|

)
−Θ∞ (T∞)

+ Lip(Θ∞)

∥∥∥∥T̃∞ + κ
x̃⊗ ẽ

|x|
− T∞ − κ

x⊗ e

|x|

∥∥∥∥

≤
εκ

8
+
εκ

8
= τ.
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Hence

−

∫

Q
Ψ(ϕ′

n−1) d(L
n−1 × µ) ≤ τ.

9.3. Estimate of −
∫
QΥ(f ′(ϕ;ϕ′

n−1)) d(L
n−1 × µ). Using the definition of g

we have f ′(ϕ;ϕ′
n−1) = g′n−1 + L∞. Since

∑∞
i=0 γi = 1/4 we have,

Υ(f ′(ϕ(u);ϕ′
n−1(u))) =

∞∑

i=0

γi(‖(Li − L∞)− g′n−1(u)‖
2
H − ‖Li − L∞‖2H)

=

∞∑

i=0

γi(2〈(L∞ − Li), g
′
n−1(u)〉H + ‖g′n−1(u)‖

2
H)

=

〈
2

∞∑

i=0

γi(L∞ − Li), g
′
n−1(u)

〉

H

+
1

4
‖g′n−1(u)‖

2
H .

Hence

−

∫

Q
Υ(f ′(ϕ;ϕ′

n−1)) d(L
n−1 × µ)

= −

∫

Q

〈
2

∞∑

i=0

γi(L∞ − Li), g
′
n−1(u)

〉

H

d(Ln−1 × µ)

+
1

4
−

∫

Q
‖g′n−1‖

2
H d(Ln−1 × µ).

9.4. Estimate of −
∫
Q∆(ϕ) d(Ln−1 × µ). First fix 0 ≤ i ≤ K. Denote

s = 24ξr/sK and

P = {u ∈ Q : ∆i((xi, Ti), (ϕ(u), ϕ
′
n−1(u))) −∆i((xi, Ti), (x∞, T∞)) > τ}.

We show that for every u ∈ P ,

(9.2) regn−1g(u,B(u, s)) >
si
8
.

Fix u ∈ P . Choose z̃ ∈ Rn and w̃ ∈ Rn−1 ⊂ Rn such that

|fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0)− fϕ(u),Ti
(z̃, w̃) + fϕ(u),Ti

(z̃, 0)|

>
(
‖fxi,Ti

− fϕ(u),Ti
‖r −

τ

2

)
(|z̃|+ |w̃|).

We show that if ũ = z̃ + w̃ then

(9.3) |z̃|+ |w̃| < δ1 and u+ ũ, u+ z̃ ∈ B(u, s).

We have two cases

Case 1. Suppose that |z̃|+ |w̃| ≥ δ1/2. From Lemma 8.7 and the choice of
δ2,

2Lip(f)|ϕ(u)− x∞| ≤ 6Lip(f)r ≤ 6Lip(f)
δ2
κ

≤
τ

4
δ1 ≤

τ

2
(|z̃|+ |w̃|).
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It follows that

(|z̃|+ |w̃|)‖fxi,Ti
− fx∞,Ti

‖r

≥ |fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0) − fx∞,Ti
(z̃, w̃) + fx∞,Ti

(z̃, 0)|

≥ |fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0) − fϕ(u),Ti
(z̃, w̃) + fϕ(u),Ti

(z̃, 0)|

− 2Lip(f)|ϕ(u)− x∞|

≥
(
‖fxi,Ti

− fϕ(u),Ti
‖r −

τ

2

)
(|z̃|+ |w̃|)−

τ

2
(|z̃|+ |w̃|)

≥ (|z̃|+ |w̃|)(‖fxi,Ti
− fϕ(u),Ti

‖r − τ).

Using the definition of ∆i this implies

∆i((xi, Ti), (ϕ(u), ϕ
′
n−1(u))) −∆i((xi, Ti), (x∞, T∞)) ≤ τ

which contradicts the assumption that u ∈ P .

Case 2. Suppose that |z̃| + |w̃| < δ1/2. If s ≥ |ũ| + |z̃| then (9.3) is clear.
Hence we suppose s ≤ |ũ| + |z̃|. It follows that s ≤ 2(|z̃| + |w̃|). Define
ẑ ∈ Rn by the requirement that ϕ(u) + z̃ = x∞ + ẑ. Then by Lemma 8.7
and the choice of δ2,

|ẑ|+ |w̃| ≤ |ϕ(u) − x∞|+ |z̃|+ |w̃| ≤ 3r + |z̃|+ |w̃| < δ1.

We use the estimate (8.7) from regular differentiability, our choice of ξ and
s, and the fact ‖Ti − T∞‖ ≤ si/8Lip(f) and ‖Li −L∞‖ ≤ si/8 from Lemma
7.2 to conclude,

|fϕ(u),Ti
(z̃, w̃)− fϕ(u),Ti

(z̃, 0)− Liw̃|

= |fx∞,Ti
(ẑ, w̃)− fx∞,Ti

(ẑ, 0)− Liw̃|

≤ |fx∞,T∞
(ẑ, w̃)− fx∞,T∞

(ẑ, 0) − L∞w̃|

+ |fx∞,T∞
(ẑ, w̃)− fx∞,Ti

(ẑ, w̃)|+ |Liw̃ − L∞w̃|

≤ ξ(|ẑ|+ |w̃|) + Lip(f)|T∞w̃ − Tiw̃|+
si
8
|w̃|

≤ ξ(3r + |z̃|+ |w̃|) +
si
4
|w̃|

≤
ssi
8

+
si
2
(|z̃|+ |w̃|)

≤
3si
4

(|z̃|+ |w̃|).

Since |z̃|+|w̃| < δ1, another application of regular differentiability in (8.7)
implies

|fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0) − Liw̃| ≤ ξ(|z̃|+ |w̃|) ≤
si
4
(|z̃|+ |w̃|).

Hence we obtain, by triangle inequality and the original choice of z̃ and w̃,
(
‖fxi,Ti

− fϕ(u),Ti
‖r −

τ

2

)
(|z̃|+ |w̃|) ≤ si(|z̃|+ |w̃|)

which implies ∆i((xi, Ti), (ϕ(u), ϕ
′
n−1(u))) ≤ τ/2 so u /∈ P .
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We have established (9.3) and now show (9.2). We first estimate, using
the fact α is small and w̃ ∈ Rn−1,

|ϕ(u+ w̃)− ϕ(u) − Tiw̃|

≤ (‖Ti − T∞‖+ ‖T∞ − T̃∞‖+ Lip(γ))|w̃|

≤

(
si

8Lip(f)
+ κ+ 2κ

)
|w̃|

≤
si

4Lip(f)
|w̃|.

Combining this with (9.3),

(|ũ|+ |z̃|)regn−1g(u,B(u, s)) ≥ |g(u + ũ)− g(u+ z̃)|

= |f(ϕ((u+ z̃ + w̃)))− f(ϕ((u+ z̃)))− L∞(w̃)|

≥ |f(ϕ(u+ w̃) + z̃)− f(ϕ(u) + z̃)− L∞(w̃)|

− |f(ϕ(u+ w̃) + z̃)− f(ϕ(u) + z̃)

− f(ϕ((u+ z̃ + w̃))) + f(ϕ((u+ z̃)))|

≥ |fϕ(u),Ti
(z̃, w̃)− fϕ(u),Ti

(z̃, 0)− L∞(w̃)|

− Lip(f)|ϕ(u + w̃)− ϕ(u)− Tiw̃|

− 2Lip(f)Lip(ϕ)|w̃|

≥ |fϕ(u),Ti
(z̃, w̃)− fϕ(u),Ti

(z̃, 0) + fxi,Ti
(z̃, 0) − fxi,Ti

(z̃, w̃)|

− |fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0) − Li(w̃)| − ‖Li − L∞‖|w̃|

−
si
4
|w̃| − 6Lip(f)κ|w̃|

≥
(
‖fxi,Ti

− fϕ(u),Ti
‖r −

τ

2

)
(|z̃|+ |w̃|)

− |fxi,Ti
(z̃, w̃)− fxi,Ti

(z̃, 0) − Li(w̃)| −
si
8
|w̃|

−
si
4
|w̃| −

si
8
|w̃|.

For the first term we use the fact u ∈ P implies ‖fxi,Ti
− fϕ(u),Ti

‖r > τ + si.
For the second term we use regular differentiability (8.7). Hence the above
expression is greater or equal than

si(|z̃|+ |w̃|)− ξ(|z̃|+ |w̃|)−
si
2
|w̃| ≥

si
4
(|z̃|+ |w̃|)

≥
si
8
(|ũ|+ |z̃|)

which proves (9.2).
Let Q0 = {u ∈ Q : B(u, s) ⊂ Q}. Then, from Proposition 3.3,

(Ln−1 × µ)(P ∩Q0) ≤
C(µ)(5Lip(f))2C(µ)−2

(si/8)2C(µ)

∫

Q
‖g′n−1‖

2 d(Ln−1 × µ).

Recall Ω is a cylinder of height r whose cross sections are balls in Rn−2

of radius r; hence Ln−1(Ω) = ωn−2r
n−1. We estimate, using the Bernoulli

inequality and the choice of s and ξ,
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(Ln−1 × µ)(Q0)

(Ln−1 × µ)(Q)
≥

(
1−

2s

r

)(
1−

s

r

)n−2 µ(B(0, tr − s))

µ(B(0, tr))

≥
(
1−

ns

r

) µ(B(0, tr − s))

µ(B(0, tr))

≥ (1− τ).

Using the fact ∆i((xi, Ti), (ϕ,ϕ
′
n−1)) ≤ 1 and our choice of σi we conclude,

σi

∫

Q
(∆i((xi, Ti), (ϕ,ϕ

′
n−1))−∆i((xi, Ti), (x∞, T∞))) d(Ln−1 × µ)

≤ σi

∫

P
∆i((xi, Ti), (ϕ,ϕ

′
n−1)) d(L

n−1 × µ) + σiτ(L
n−1 × µ)(Q \ P )

≤ σi(L
n−1 × µ)(P ∩Q0) + σi(L

n−1 × µ)(Q \Q0) + σiτ(L
n−1 × µ)(Q)

≤ σi
C(µ)(5Lip(f))2C(µ)−2

(si/8)2C(µ)

∫

Q
‖g′n−1‖

2 d(Ln−1 × µ)

+ 2σiτ(L
n−1 × µ)(Q)

≤ 2−i−3

(∫

Q
‖g′n−1‖

2 d(Ln−1 × µ) + τ(Ln−1 × µ)(Q)

)
.

For i > K, we note that i > K implies ε > 1/i and the choice of σi, κ and
τ give,

σi ≤
2−i−5

i+ 1

si
48Lip(f)

≤ 2−i−3 εκ

4
= 2−i−3τ.

Hence we obtain, for i > K,

σi

∫

Q
(∆i((xi, Ti), (ϕ,ϕ

′
n−1))−∆i((xi, Ti), (x∞, T∞))) d(Ln−1 × µ)

≤ 2−i−3τ(Ln−1 × µ)(Q).

Adding the inequalities together, for different i, we obtain,

−

∫

Q
∆(ϕ) d(Ln−1 × µ) ≤

1

4
−

∫

Q
‖g′n−1‖

2 d(Ln−1 × µ) +
τ

4
.

9.5. Combining the Estimates. It remains to analyze the value of the
first term in (9.1). We use the fact f ′(ϕ;ϕ′

n−1) = g′n−1 + L∞ to obtain,

−

∫

Q
(‖f ′(ϕ;ϕ′

n−1)‖
2
H − ‖L∞‖2H) d(Ln−1 × µ)

= −

∫

Q
‖g′n−1‖

2
H d(Ln−1 × µ) +−

∫

Q
〈2L∞, g

′
n−1〉H d(Ln−1 × µ).
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By putting together the previous estimates of this section and using the
definition of R∞ we find (all integrals are with respect to Ln−1 × µ),

−

∫

Q
(h∞(x∞, T∞)− h∞(ϕ,ϕ′

n−1))

≥ −

∫

Q
‖g′n−1‖

2
H +−

∫

Q
< 2L∞, g

′
n−1 >H −

1

4
−

∫

Q
‖g′n−1‖

2
H

+−

∫

Q

〈
2

∞∑

i=0

γi(Li − L∞), g′n−1

〉

H

−
1

4
−

∫

Q
‖g′n−1‖

2
H −

9τ

4

≥ −

∫

Q
〈R∞, g

′
n−1〉 −

9τ

4

= 〈R∞e, w〉 +−

∫

Q
〈R∞, g

′
n−1 − w ⊗ e〉H −

9τ

4

≥
7τ

4
− ‖R∞‖H

∥∥∥∥−
∫

Q
(g′n−1 − w ⊗ e)

∥∥∥∥
H

.

Hence to conclude our proof it suffices to show that

‖R∞‖H

∥∥∥∥−
∫

Q
(g′n−1 − w ⊗ e) d(Ln−1 × µ)

∥∥∥∥
H

<
7τ

4
.

9.6. Estimate of

∥∥∥−
∫
Q(g

′
n−1 − w ⊗ e) d(Ln−1 × µ)

∥∥∥
H
. We define the maps

ζ, ζ̃ : Rn → Rn−1 by

ζ(u) = g(〈u, e〉e) and ζ̃(u) = ζ(u)− g(0) − 〈u, e〉w.

By Lemma 8.7 we have, for every u ∈ Q,

|g(u) − ζ(u)| ≤
τr

n(1 + ‖R∞‖H)
.

We now use the following inequality [16, Corollary 9.4.2] which arises from
an application of the divergence theorem.

Lemma 9.1. Let Π ⊂ Rn−1 be a bounded open set with Lipschitz boundary.
Then for every Lipschitz function Λ: Π → Rm,

∥∥∥∥
∫

Π
Λ′(u) dLn−1(u)

∥∥∥∥
H

≤ Hn−2(∂Π) max
u∈∂Π

|Λ(u)|.

For each b ∈ (−tr, tr) we apply the lemma to the map z 7→ g(z, b)−ζ(z, b)
for z ∈ Ω. Recall Ω ⊂ Rn−1 is a cylinder of height r whose cross sections are
balls in Rn−2 of radius r; hence Hn−2(∂Ω) = 2ωn−2r

n−2+(n− 2)wn−2r
n−2.
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We estimate,

∥∥∥∥
∫

Q
(g′n−1 − ζ ′n−1) d(L

n−1 × µ)

∥∥∥∥
H

≤

∫

(−tr,tr)

∥∥∥∥
∫

Ω
(g′n−1 − ζ ′n−1) dL

n−1

∥∥∥∥
H

dµ

≤

∫

(−tr,tr)

τr

n(1 + ‖R∞‖H)
Hn−2(∂Ω) dµ

=
µ(−tr, tr)τr(2ωn−2r

n−2 + (n− 2)ωn−2r
n−2)

n(1 + ‖R∞‖H)

=
τ(Ln−1 × µ)(Q)

(1 + ‖R∞‖H)
.

Note that the function ζ̃ depends only on the projection onto Re. Define

Λ: R → Rn−1 by Λ(θ) = ζ̃(θe) so that ζ̃(u) = Λ(〈u, e〉). It follows from
Rademacher’s theorem that Λ′(θ) exists for almost every θ. Hence, using

Fubini’s theorem and the chain rule, we see ζ̃ ′n−1(u) = Λ′(〈u, e〉) ⊗ e for

Ln−1 × µ almost every u. Let S0 = {u ∈ Ω : 〈u, e〉 = 0}. Then, by Fubini’s
theorem,

∥∥∥∥
∫

Q
ζ̃ ′n−1 d(L

n−1 × µ)

∥∥∥∥
H

≤

∫

B(0,tr)

∥∥∥∥
∫

Ω
Λ′(〈u, e〉) ⊗ e dLn−1

∥∥∥∥
H

dµ

≤ µ(B(0, tr))

∥∥∥∥
∫

S0

(Λ(0) − Λ(−r))⊗ e dHn−2

∥∥∥∥
H

= |ζ̃(−re)|Hn−2(S0)µ(B(0, tr))

= |g(0) − g(−re)− rw|Hn−2(S0)µ(B(0, tr)).

By using the expressions for g and w one can check,

g(0) − g(−re)− rw

= −[f(x∞ + T∞(−re))− f(x∞)− L∞(−re)]

+ [f(x∞ − T∞re)− f(x∞ − T̃∞re+ x̃− κr〈e, ẽ〉x̃/|x|)]

+ [f(x∞ + x̃)− f(x∞ + x)].

For the first term, as |r| < δ1, we may use (8.7) to bound it by ξr. Since
κr = |x|, the other terms can be made small, relative to ξr, by choosing α
small. Hence we obtain, by choice of ξ,

∥∥∥∥
∫

Q
ζ̃ ′n−1 d(L

n−1 × µ)

∥∥∥∥
H

≤ 2ξrHn−2(S0)µ(B(0, tr))

≤ 2ξLn−1(Ω)µ(B(0, tr))

≤
τ(Ln−1 × µ)(Q)

2(1 + ‖R∞‖H)
.



32 DAVID PREISS AND GARETH SPEIGHT

Note that ζ̃ ′n−1 = ζ ′n−1 − w ⊗ e. Hence we can estimate,

‖R∞‖H

∥∥∥∥−
∫

Q
(g′n−1 − w ⊗ e) d(Ln−1 × µ)

∥∥∥∥
H

≤ ‖R∞‖H

∥∥∥∥−
∫

Q
(g′n−1 − ζ ′n−1) d(L

n−1 × µ)

∥∥∥∥
H

+ ‖R∞‖H

∥∥∥∥−
∫

Q
(ζ ′n−1 − w ⊗ e) d(Ln−1 × µ)

∥∥∥∥
H

≤ τ +
τ

2
<

7τ

4
.

This completes the proof of (8.10) which proves Proposition 8.4 and hence
Theorem 1.1.

Remark 9.2. When considering mappings from Rn to Rm, m < n, we may
replace in the above arguments the measure Ln−1 × µ with Lm × ν where
ν is a doubling measure on Rn−m. By Wu [20], such µ can be chosen of
arbitrarily small Hausdorff dimension. Together with the easy fact that any
set is contained in a Gδ set of the same Hausdorff dimension, this leads to
a set of Hausdorff dimension arbitrarily close to m that contains points of
differentiability of every Lipschitz function f : Rn → Rm.
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