
The Library
An embarrassingly simple approach to neural multiple instance classification
Tools
Asif, Amina and Minhas, Fayyaz ul Amir Afsar (2019) An embarrassingly simple approach to neural multiple instance classification. Pattern Recognition Letters, 128 . pp. 474-479. doi:10.1016/j.patrec.2019.10.022 ISSN 0167-8655.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1016/j.patrec.2019.10.022
Abstract
Multiple Instance Learning (MIL) is a weak supervision learning paradigm that allows modeling of machine learning problems in which labels are not available for individual examples but only for groups of examples called bags. A positive bag may contain one or more positive examples but it is not known which examples in the bag are positive. All examples in a negative bag belong to the negative class. Such problems arise frequently in fields of computer vision, medical image processing and bioinformatics. Many neural network-based solutions have been proposed in the literature for MIL, however, almost all of them rely on introducing specialized blocks and connectivity in their architectures. In this paper, we present a simple and effective approach to Multiple Instance Learning in neural networks. We propose a simple bag-level ranking loss function that allows Multiple Instance Classification in any neural architecture. We have demonstrated the effectiveness of our proposed method for popular MIL benchmark datasets. Additionally, we have also tested the performance of our method in convolutional neural networks used to model an MIL problem derived from the well-known MNIST dataset. Results have shown that despite being simpler, our proposed scheme is comparable or better than existing methods in the literature in practical scenarios. Python code files for all the experiments can be found at https://github.com/amina01/ESMIL
Item Type: | Journal Article | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software | ||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Computer Science | ||||||||||
Journal or Publication Title: | Pattern Recognition Letters | ||||||||||
Publisher: | Elsevier BV | ||||||||||
ISSN: | 0167-8655 | ||||||||||
Official Date: | 1 December 2019 | ||||||||||
Dates: |
|
||||||||||
Volume: | 128 | ||||||||||
Page Range: | pp. 474-479 | ||||||||||
DOI: | 10.1016/j.patrec.2019.10.022 | ||||||||||
Status: | Peer Reviewed | ||||||||||
Publication Status: | Published | ||||||||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |