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ABSTRACT

Due to increase in antibiotic resistance in recent years, development of efficient and accurate
techniques for discovery and desigfrbiologically activepeptidessuch asantimicrobialpeptides

(AMPs) has become essential. The screening of naturadyaridetic AMPs in the wet lab is a
challenge due to time and cost involved in such experiments. Bioinformatics methods can be used
to speedup discovery and design of antimicrobial peptides by limiting thelaletsearch to
promising peptide sequences. Haxer, most such tools are typically limited to the prediction of
whether a peptidexhibitsantimicrobial activity or not and they do not identify the exact type of
thebiologicalactivitiesof thesepeptides. In this work, we have designedreachine learning based

model called AMAP for predicting biological activity of peptides with a specialized focus on
antimicrobial activity predictionAMAP used multilabel classification tgredict 14 different

types ofbiologicalfunctionsof a given peptide sequence with improved accuracy in comparison

to existing state of the art techniques. We have performed stringent performancesaofatiye
proposed method. In addition to cresdidation anl performance comparison with existing AMP
predictors, AMAP has also been benchmarked on recently published experimentally verified
peptides that were not a part of our training set. We have also analyzed features used in this work
and our analysishows hat the proposed predictor can generalize well in predittiolggical

activity of novel peptide sequences. A webserver of the proposed method is available at the URL:

http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP

Keywords: Biologically active peptides, Antimicrobial peptide prediction, mdéibel

classification, Antibiotic resistance, Abiotic peptide prediction

1. Introduction
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Antimicrobial peptides (AMPs) are short length peptide sequences which can perform
antimicrobial activity, help in fighting infectious diseasmsd protect hostfrom pathogenic
bacteria[1-4]. Due to the emergence of antibiotic resistance, AMPs have become a very active
area of research. Identification of naturatlgcurring AMPs and design of synthetic ones is
challenging due to the time and cost involved indbsign and execution of biochemical assays
for testing or screening candidate pepti@ed]. As a consequence, development of computational
techniques for prediction of antimicrobiahd other significant biologicalctivities of peptide
sequences is very importan ideal computational method in this domain should lble o
predict possible biological activites (antimicrobial, antibacterial, antiviral, antifungal, anti
cancerous, etc.pf a given peptide sequenard correctly identify the effect of mutationssimch

peptides

In the last few years, many databaskantimicrobial peptides have become availahleh aghe
Antimicrobial Peptide Database (APDR) which contains experientally verified natural and
synthetic peptides with over 20 different biological activities. Collection of -Riitrobial
Peptides (CAMP]3] has also been developed which contains a large number of expeliynenta
verified antimicrobial peptides. Database of Antimicrobial Activity and Structure of Peptides
(DBAASP) [8] contains detailed information about structure and antimicrobial/cytosmtivity

of different peptides. dbAMP9] is a database of experimentally verified AMREh potent
biological activity in a variety of different specieBhe development of these databases has
accelerated the pace of development of -datzen predidve models for predicting biological
activity of peptidesA number of different predictors of peptide biological activity are available in
the literature. However, most existing methods are limitgualedictingantimicrobial activity, i.e.,

they can onlypredict whether a given peptide sequence isramrobial or not. For example,



AMPA [10] takes a protein sequence as input and predicts its antimicrobial satigitiie peptide
region responsible for such activitgoth CAMPR3[3] and AmMPEP [11] alsotake a peptide
sequence and predict whether it is an antimicrobial peptide or ndikeuAMPA, they do not
provide information about other biological activitiesthe type of antimicrobial activity (anti
bacterial, antfungal, antiviral, etc.) a peptide may hav8imilarly, AntiMPmod[12] predicts
antimicrobial activity of a peptide from its tertiary structure. However, the useptifip structure
instead of sequence limits the practical use of this method as structure information is typically not
available for peptides. Vishnepolsky et al. have designed a model which predicts antimicrobial
potency for some specific strains of Graegative bacterifil3]. However, their method is not
generalized for other species or targets. One of the most interesting approaches in this domain is
Multi-label AntiMicrobial Peptides predictor (MLAMP)2] as it can predict five different
biological activities (antibacterial, antifungal, anticancer, antiviral andHii) of peptides.
However, its accuracy is low on certain clas§&sbere and Noblgl] have recentlyperformed a
comparison of existing predictors and found CAMP®3have state of the arpredictive
performancdor AMP predictioneven though the accuracy of CAMPIRE was reported to be
inferior to MLAMP in the original MLAMP[2] paper However, there is significant room for

improvement in the predictive performance of existing methods.

In this paper, wehave attemptedo overcome thegroblemsassociated with existing AMP
predictorsoy developing &ierarchical multiabel predictor called AMARhat can simultaneously
predictwhether a peptide sequence is an AMP or not, the tyjpelblogicalactivity of apeptide

and the effect of mutations as biologicalactivity. We have performed a stringent performance
evaluation and comparison with existing methods by considering sequence similarity in training

and test folds in crosgalidation. We have also benchmarked our machine learning model on a



number of recently publisklebiologically active peptidsequences that were not a part of our
trainingor crossvalidationdata set. We hawasoperformedanin-depthanalysisof the predictive
power of features usddr predicting biological activity of peptides webserver of our proposed
method has also been developed whichesdrgescale evaluation dfiological activity easier

and accessible for biologists working in this domain.

2. Materials and Methods

2.1 Datasets

2.1.1 Crossvalidation dataset

In line with therecentperformance comparison studidifferent antimicrobial peptide predictors
by Gabere and Noblg], we have also used tipeptides imMAPD3 databaseSpecifically, ve have
useda dataset of 2,70geptideswith 14 different types obiological activities collected from
APD3[1] (seeTablel). In the design of our machine learning modkése peptidearetaken as
positive examplesGabere and Noblextracted 8,563eptides with ndknown antimicrobial
activity from UniProt We used thseas negativeexamplego trainand evaluat@ur model.In
order to prevent sequence and composition biases from affecting our machine learningvenodel,
removed all peptides witmore than 40% sequence idgntidb each other or to the positive set
using CDHIT [14], leaving a total of 5, 156 negative examplesorder to perform an unbiased
performance assessmetie tsequences are clustered into geousing a 40% sequence similarity
threshold with CDHIT fogroupwisecrossvalidation Our dataset shares significant overlap with
the datasets used atherstudiesas well Approximately 52% positive examples in our dataset
share >40% sequence identity with the dataset used by GRB(RF)[3]. Similarly, all positive

examples used by MLAMP are included in our positivdZet



2.1.2 ExternalValidation dataset

We have alsoused an external validation dataset which contains experimentally verified
biologically active peptidegollected from different recently published research articlég
similarity of thesesequences with odrainingdataset is calculatagsing CDHIT[14]. We have
found no significant sequence similaribetween peptides in the external validatitztasetvith

our training datasetThe maximum percentage identdy a test peptide with the peptides in the

dataset used for cressglidationis given insupplementaryrable S1.

2.2 Feature extraction

We use simple sequenbased featur@epresentatiorto ensure largscale applicability as
characterization of peptide structures is difficult and costly. For feature extraction from the

collected examples, two representations are used as explained below.

2.2.1 Amino Acid Composition (AAC)
AAC is thefrequency count of 20 amino acids forming a vector of length 20. This representation
is useful for capturing information about the frequency of different amino acids in a sequence.

2.2.2 3-mer Composition

Amino acid composition does not model the local seqegmoperties of a peptide. As a
consequenceaye have use8-mer counts as additional featurégst all amino acids are divided
into 7 groupdased on their physiochemical propertiese grouping of amino acids is based on
dipole momentside chainvolumeand their ability to form dsulphide bond$15] as showrin
Table 3. In the second step, all possiblen@r counts ofyroup labelsof amino acids in a given

peptide sequends used to createx ~ 0 T dimensionafeature vectofl6]. This representatio



captures information about physiochemical properties of amino acidswwitr patterns in the

sequences
2.3 Prediction Models
We have used the following prediction techniques for development of the proposed predictor.

2.3.1 Support Vector Machines (SVM)

SVM is a supervised learning algorithm for binary classification that maximizes the margin or
separation between two classes in thaing datd17]. Given a set o0 training exampleoigfgﬁ"f:

p8 0 with associated labelc> ¥ pF p, an SVM finds an optimal linear decision function
"Qe (o heOby maximizing thedistance of the linear decision boundary from examples of the
positive and negative classes (margin) and minimizing the numb@sciassifications or margin

violationsthrough the following objective function

Subject to

HereK:is the extent of margin violation with penadyon the violations. In our model, we used
classspecific margin violation penalties to counter the effect of class imbalance. SVMs can use
kernel functions to model ndimear classification boundaries as well. In this work, we used both
linear and radial &sis function kernels for SVMs.

2.3.2 XGBoost

We have also usesktreme Gradient Boosting (XGBoo§iB] in our study. It isased on boosted

trees for learning by minimizing the objective function given below



Where,

m™n o §=$<>§§ 8

Hereda| FL' is the loss function of predicted outyl :tof the model and actual outptﬁ%;j;;for all
examplesandnm "N is a regularization functiothatis based orthe number of tree"Yand the
norm of the vector of scor®sat theQleaves of the tree¥he regularization parametg-sand_
control the relative contribution of the two regularization factors in cortrasinimization of the
loss function.

2.3.3 Hierarchical Multtlabel Prediction

Since a single peptide can be associaiatlltaneouslywith a number ofdifferent biological
activities, we have modeled this prediction problem as #abel classificationMulti-label
predictions can be obtained from a binary classifier by usinggenest classifier fusiofiL9]. We
designed our proposed model in two stepseptide is first checked whether it is an AMP or not
and therthe type obiological activity it mayhaveis predicted using muHabel prediction.

2.3.4 Baseline Evaluation using BLASand Comparisowith other methods

In order to establish a baseline, we uSdAST [20] for prediction ofbiological activity of
peptidesusing our dataset. In this approach, the minimuralae score of BLAST alignment of a
peptide sequence against the set of knownredondanpeptides with known activisis used
as a discriminant function score for predictiglogical activity Thisapproach corresponds @o

simple sequenebased homology search foiological activityprediction.



We have also compared the predictive performance of the proposed schersiateitif the art
sequencéased predictive methodSAMPR3-RF[3] and MLAMP[2]. For this purpose, we have

used the publichavailable webservers of these methods.

2.4 Cross-validation Strategy

Previously designed models used different techniques for evaluating the performance of their
models such as Leasneout (LOO) or kfold crossvalidation, etc. The problethe use of such
crossvalidation schemes for performance assessnwrihat test exmplesmay have high
sequence similarity with the training set whaanresult in overestimation girediction accuracy

and poor generalization in case of sequences with low sequence similaatgitey datd21]. To

avoid this issue, wased two different strategiésr crossvalidation. The first technique is Leave
oneclusterout (LOCO) [22] crossvalidation n which examples are first clustered based on
sequence similarity through CBIT [14] with a sequence identity threshold of 40% ($able

2). The examples of one cluster are used for testing whilentduel is trained on examples in
remaining clusters. This process is repeated for all other clusters to obtain performance metric
statistic§22]. The secontechnique is clustered 5 fold cregalidation which is computationally

more efficient. In this appach, the set of sequence clusters is divided into 5 folds sollthat a
examples in aingle cluster occur in a single fold to limit sequence similarity between training and
testing folds We have also performed cresalidation of our dataset using standard LOO and k

fold and found their scores to be consistently higher than LOCO-cabidation due to the
presence of homologous proteins in the trainingresults not shown hereAs a consequence,

we have used the more stringent performance evaluation protocol outlined @bhevieyper
parameters of different classification schemedhsag the margin violation penalty and kernel

parameters were selected through nested validation.



2.5 Performance Metrics

We have used th#ollowing performance metrico evaluate the predictive accuracy of the

proposed scheme.

2.5.1 Area under the ROCurve (AUGROC)

AUC-ROC captures the area under the Receiver Operating Characteristic (ROC) Curve which
plots the sensitivity or true positive rate of a preatiefs. its false positive ratg various decision

threshold level§23].

2.5.2 Area under the PrecisieRecall curve (AUGPR)

Recall isthe ratio of the number of correctly predicted positive examples to the total number of
positive examples. Precision is the ratio of the number of correctly predicted positive examples to
the number of total predicted positive exampB. In highly imbalanced datasets, the area under
the preision recall curve gives a more informative picture of the predictive performance and is

used here.

2.5.3 Mathews Correlation CoefficieMCC)

MCC is ameasuraised in machine learning to assess classification perfornodnc#galanced
datasetsThe range of coefficient is between +1 ahgwhee +1 shows perfect predictitietween
observed and predicted class lahedgg following formula[24]. Here, TP, TN, FP and FN are

the number of true positives, true negatives, false positives and false negatives generated by a

classifier.

YO YO YO "O0
"YU "OC "YU "OU YO "O( YO "OU
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2.6 Analysis of Predictive Features

Machine learning models are typically black boxesl linking their predictions to reakorld
explanations requires additional steps. In bioinformatics, it is important to analyze the role of
different features used in a machinetéag model and link them to known patterns or rules from

a biological or biochemical perspective. Such analysis can help in understanding the inner working
of the machine learning model and add significant confidence to its prediction. Based on this
motivation, we have used three different methods for analyzing the predictive performance of the

proposed model as discussed below:
2.6.1 t-SNE visualization of feature vectors

t-distributed Stochastic Neighbor Embeddi(tgSNE) [25] is an unsupervised technique for
manifold learning based dimensionality reduction for visualization of high dimensional data. It
works by minimizing the Kullbackeibler divergence between the high and low dimensional
probabilistic representations of a @aet. We have useeSNE to visualize the 28imensional

amino acid composition features by reducing the ddighensions of our data set to a two
dimensional scatter plot and studying the separability of different classes in our data. It is important

to note that tSNE does not use the labels of examples.
2.6.2 Analysis of weights of linear SVM

The absolute weight vector of a trained linear support vector machine trained over normalized data
can be used to analyze the relative feature importance of differeéntefeas high positive or
negative values of the weight vector have more impact in determining the output decision score

for a given exampl'Qe ¢ heOQ'Here, we have used a bar plot of thedi@ensional weight

11



vector corresponding to amino acid composition features to analyze the relative importance of

different features.

2.6.3 SHAP Analysis

SHAP (SHapley Additive exPlanation|g6] is a recently developed technique that allows us to
explain the output of any machine learnimgpdel. It produces a plot of the SHAP scores at
different values of all features used in a trained machine learning model. High absolute SHAP
scores corresponds to more important features. Specifically, a high positive SHAP value at a
certain value of a Bgure indicates that the feature value will have a positive impact on the output

of the machine learning model and vice versa. We have used SHAP analysis to analyze the impact

of different amino acids in a peptide on its AMP activity.

2.7 Web server for Anti-Microbial Activity Prediction (AMAP)

We have also developed a webserver for tharoposed method (URL:

http://faculty.pieas.edu.pk/fayyaz/software.html#AMRAPhe user interfacef our webservers

shown in Fig 6. It takemput peptide sequences in FASTA format and displagslictedscores

for different activities.

2.8 Evaluation on external datasets

As discussed in the datasets sectioahevealso evaluated our model amexternalvalidation
dataset Peptides in this datasate not part of our training datasatd crossvalidation We
computedrediction scores for theeptides in this dataset using our webseanercompared them
to the predictions from MLAMP and their experimentally observed biological activifies

details of the sequences used in this analysis is given in the results section.
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3 Results

In this sectio, we present the results of different experiments for the proposed rAatkthiled

discussion of these results is presented in the next section.

3.1 Performance comparison for Antimicrobial Peptide Prediction

Fig-1 and Tablet present the results of AMP peptide prediction with different classification
schemes discussed above using clusteréoldscrossvalidation in comparison to existing
methods (MLAMP[2] and CAMPR3RF[3]). Our BLAST-based baselingredictor gives AUE
ROC, AUGPR and MCC scores equal to 77%, 72% and,0&5pectivelyWe have compared
the performance of three different machine learning models while devglapMAP ( linear
SVM, nortlinear SVMwith RBFkerneland XGBoost Our machine learning based models give
the best overall predictive accuracy WtiC-ROC score of 97%A more detailed description of

the results is given in the discussion section.

3.2 Analysis of amino acid composition features for AMP prediction

3.2.1 t-SNE Analysis

We have used$NE for generating twdimensional scatter plots from a2@-dimensional amino

acid composition features for all 7,860 examples in our dataeseF{g. 2). It is important to note

that tSNE is an unsupervised technique, i.e., it does not require labels of the examples used in the
analysis. The labels of AMP#id norAMPs for all examples are added in the figure to help us
analyze the separability of the two classes af@NE transformatioras discussed in the next

section

3.2.2 Analysis of linear SVM weight vector
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The plot of the weight vector of theined linear SVM is shown in Fig. 3. As discussed earlier,
the relative importance of different amino acids in predicting AMPs can be inferred from this

plot.

3.2.3 SHAP Analysis

The SHAP plot for our trained ndimearXGBoost model is shown in Fi§y As discussed earlier,
SHAP values indicate the relative impact of values of different features on the output of a classifier.

A more detailed analysis of this plot is presented in the next section.
3.3 Multi-label classification of biological activity

As discussed earlier, our dataset contgieptidesthat are involved in 14 differeriiological
activities(seeTable 1) and a singlgeptidecan have more than ongoe ofactivity. After being
trained, our proposed mulabel machine learning model generates decision scores corresponding
to eachbiologicalactivity. The AUGROC of the leav®neclusterout (LOCO) crossvalidation
of our multtlabel SVM model are shown in Taklefor all 14differenttypes ofbiologically active

peptidesn comparison to the previous state of the art method MLAMP.
3.4 Evaluation on Independent Dataset

To evaluate the performance of our proposed model, we selected some rdsmutiered
Antimicrobial peptides from latest publicatiotigt were not included in our original data3dte
maximum sequence similarity of these sequences with peptidestiraioimg dataset is given in
table Sland it is below 5% for almost allsequenceslhe scores for thegeeptidesareobtained
usingthe AMAP webserver and compared to experimerfiedings and prediction scores from

MLAMP webserver.

14



3.4.1 Synthetic Antimicrobihand Antibiofilm Peptides (SAAP) derived from LR7 peptide

Breij et al. screened L-B7-inspired peptides with bactericidal activif§]. The met effective
peptides withlethal concentratiofLC99.9) required for killing 99.9 % bacteria aegported in
Table6. Peptide P276 is more effective than others as its L@hedowest It can be clearly seen
that AMAP is able to correctly identify it as an effective antimicrobial peptide by generating a
high scordor it in comparison to other®n the other handLAMP predicts P276 as neAMP
althoughits probabilityscoreshould be higher thathat for peptide$148, P145 and P15%his

demonstrates the effectiveness of the proposed scheme.

3.4.2 Synthetic peptides derived from TempeAh peptide

Yoshida et alhave disovered effective AMPs from a natunaéptideTemporinrAli [7]. These
peptides are evaluated for their antimicrobial activilresitro by measuring the half maximal
inhibitory concentration (IC50) again&. coli (MG1655 strain). The identified AMPs with
improved antimicrobiahctivity are given in Thle-7. The scores generated by our proposed model
for given peptides show good correspondencevith experimentally observednhibitory
concentration It is interesting to note that predictive scores generated by both AMAP and
MLAMP correlate well with experimental observations except in the case antimaicrobial

peptide 2C for which both methods generate low prediction scores.

3.4.3 Membranetargeting atibacterial peptides from Viral Capsid proteins

Dias et al. havaedentified peptide sequences with strong antibacterial propej#és They
identified two viral proteirderived peptide sequences vCPP 0769 and vCPP 2319 with high
antibacterial activity. The scores of our model for these two sequanealso highwhereas

MLAMP predicts vCPP2319 as neAMP as showrnn Table 8.
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We performed another analysis the Major Capsid Protein ofFowl adenovirus A serotype 1

from which sequence vCPPO0769 is derived: we used a sliding sequence window of length 20 over
the protein to find the most AMP like sequence inghateinthrough AMAP as shown in Fig. 5

It is interesting to note that the highest AMAP score occurs awithdow corresponding to the
location of the experimentally identified antibactesaguencévCPP0769 within the protein.

This shows that AMAP cabe used to find AMPegions within proteins as well.

3.4.4 Synthetic peptides active agaisticherichia coli

Pini et al.selected a peptide sequence and performed mutations on it to increase its antimicrobial
activity and foundhatpeptide Ménhashigher antimicrobial activity than other modified sequences
(M4, M5 and the wildtype sequence]28]. Experimentally determined minimum inhibitory
concentrationgeported for these sequences againsiouarbacteria are given in TaleThe

wild-type sequence did not have any significant antimicrobial activity.

AMAP prediction scores for these sequence are given in -l&blk is interesting to note that the
wild-type sequence has the lowest score anen thoug6 differs from WT byonly one amino
acid, the AMAP score for M6 is significantly higher and correlates well with experimental
findings. MLAMP also produces the lowest score for the viyide sequence in comparison to the
mutated peptideand the wildtype sequenceHowever, MLAMP score for the best performing

peptide (M6) is lower thamM5 which is not apotentas M6 in experimental observations
3.4.5 ACWWP1 peptide

The Antibacterial peptide ACWWP1(GLSRLFTALK]lls bacterial cells via membrane damage.

Pu and Tanghowed that ACWWP1 can be used in the treatment of food poisoning caused by
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certain bacterig29]. AMAP generates a high prediction score of 1.10 for this pepdd&MP

alsogeneratesa highprobability of 0.95or thispeptideto have antimicrobial activity

3.4.6 Synthetic antifungal peptides agaiffsbxysporum

Badosal et alscreened a set of peptide sequences in vitro aghm$tingus~.oxysporuni30].
Their reported MIC and AMAP prediction scores for antifuragaivity aregiven in Tablell. All
these peptides have shown significant antifungal activity in experiments. AMAP is able to
correctly predict their antifungal activity with high scores. HoweWLAMP predicts all

sequence® haveantibacteriahctivity instead ofantifungalactivity.

3.4.7 Cpl and Melittin peptides

Hou et al. studiedhe antimicrobial activity ofproteinderived peptide Cpl synthesized form
Bovine asi-Caseinand Melittin which was purified from bee venof31]. Their antimicrobial
activity is summarized ifable 12 and showghat Melittin is more potent in comparison to Cpl
The scores for Cpl and Mellitin by our model shgaod correspondence with experimental
findings with a high prediction score for Melittin in comparison to Qe predictiorresults of

AMAP and MLAMP ae comparable as shown in Tafila.

3.4.8 Peptides derived from thcinetobacter baumannghage endolysin LysAB2

Peng et al. synthesized four AMPs from the phage endolysin for antimicrobial af3®jty
Peptide PO has o antimicrobial activity and th&MAP prediction score is also small for that
peptideas shown in Tablel4. The MICs of LysAB2 P1 and P3 are in range-ef 4M which are

lower than the MIC of P1. TH®MAP scores of P1 and P3 are higher than PO which shows higher
antimicrobial activity in P1 and P3. There is a good correspondmteeenAMAP swres and
experimentally observadICs of peptidesOn the other handLAMP predicts all theepeptides
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as norAMP except POwhich actually has thdéowest experimentally observedntibacterial

activity.

4 Discussion

4.1 Performance comparison

Table4 shows that simple sequence alignment to known AMPs using BLAST givesRQ(C

and AUGPR of 77% and 72%, respectively whereas the best performing machine learning method
proposed in this work (Radial Basis Function SVMs) affggnificant improvement in prediction
performance (AUGROC and AUGPR of 97% and 96%, respectively). This clearly shows that

the proposed machine learning technique is superior to simple homology search. Furthermore, our
comparison to previous state oéthrt techniques (CAMRS3 (RF)[3] and MLAMP [2] ) on our

dataset through their respective webservers also verifies this conclusion. However, the
performance of these methods is much lower than the proposed machine learning model. As shown
in Figure 1, at 2% &se Positive Rate¢he sensitivity of CAMPR3RF is 47% in comparison to

80% by the proposed SVM model. It is also important to note that the performancelwfeaon

SVMs is also matched by XGBoost classifiers and the performance of linear SVMs isfalso n
much lower than the best performing model. However, in the development of the final AMAP
predictor, we have used the nonlinear SVM. It is also interesting to note that global amino acid
composition is a better predictor of AMPs in comparison to sequdapegtide composition for

all classification schemesdust like PR and ROC measures, the result of MCC is also higher of
proposed model. CAMPR3 is good in performance as compared to MLAMP but still its
performance is lower thahat of the proposed modg@ee Tablet).

4.2 Feature Analysis
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The t-SNE plot (Figure 2) clearly shows that amino acid composition featuresdistinguish
AMPs and norAMPs into separate clusters with minimal overlap. This lends support to the high
accuracy obtained by our machine learning modelsaasiy linear support vector machines. It is
important to notice a few clusters of AMPs in regions otherdiseinated by noiAMPs in Fig.

2(a). This shows why nelmear or RBF SVM and XGBoost classifiers perform better than linear
SVM. It is interesting to note that antibactenmptideshave more overlap with neAMPs in
comparison to other types.

Theplot of weight vector of linear SVM Fig 3) showsthat Cysteine (C), Lysine (K), Valine (V),
and Phenalalanin@) are important for AMP prediction whereas the occurrence of D, E, L, Y, P,
R and N is predictive of neAMP activity. Theseobservations are ilne with the findings in the
literature which indicate that Lysine (K) is the most commonly occurring aagitbin known
AMPs [6]. Cysteine (C) is also an important amino acid in natural antimicrobial peptides of
vertebrates, invertebies and plant§33]. This shows that the output of the proposed machine
learning model correlates with known facts about AMPs

The analysis of important features using SHRR 4)is inline with our findings from the weight
vector plot for the SVM asvell. This analysis clearly shows that the proposed model is in line
with known biological information about AMP&ur analysis reveals that our model generates
negative labels for peptides enriched in amino abidg and L whereas thaccurrence of C, K,

F and Q positively affects the output of the classifier.

4.3 Multi-label Prediction of biology activity

The results for the prediction of biological activities of peptides are givEalle5. The decision
scores from MLAMP webserver for a given peptide sequence are available for onlyes clas

performance of the proposed scheme is significantly kbaaerMLAMP for allbiological activity
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categoriesThis shows the efficacy of the proposed scheme in predicting a different broad types
of biologically active peptides

4.4 External Evaluation on Independent Validation Set

The evaluation of proposadodel on experimentally verified biologically active peptideshe
independent validation s&iken from eight different recent publicatiosisows good prediction
resultseven thoughhese peptides wemggnificantly differentin sequencdérom theonesin the
training dataset. Therediction scores generated by the proposed scheme are in line with
experimental observations for a wide variety of peptided types of biological activities
Furthermore, the proposed method shows imprgegtbrmance in comparison to MLAMP over

this dataset as well.

5 Conclusions

We have developed a predictor called AMAP that can be used to identify antimicrobial peptides
as well predict their biological activity. The proposed scheme offers significantty petdiction
accuracy in comparison to previously published methGds extensive performance evaluation
reveals that the proposed method can be very useful in predicting antimicrobial peptides, effect of
mutations on the biological activity of such pdps,and thedetermination of active regions within
proteins withantimicrobial activity.The use of sequence information alone in our predictive
modeling and a publicly available webserver for the proposed method are expected to accelerate

the pace of research aimed at countering the threats posed by the rise of antimicrobial resistance.
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List of tables and Figures

Tablel: Biological activitiesand number of peptides in each category in our positive dataset

Activity No of peptides
antibacterial 2,446
antifungal 1,048
anticancer 210
antiviral 180
antiHIV 109
chemotactic 57
antiparasital 43
antibiofilm 31
insecticidal 28
antimalarial 25
inhibitory 25
antioxidant 22
spermicidal 13
antrprotist 4

Table2: Statistics of the number of AMPs, rANPs and corresponding numberabfisters

AMPs non-AMPs Total

Dataset 2,704 5,156 7,860
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No of Clusters (>=40% identity) 464 3,264 3,728

Table3: Division of amino acids in groups based on their physiochemical properties

Group# 1 2 3 4 5 6 7
Aminoacids | AV,G | LF.L,P| M,ST)Y | HN,QW | KR D.E C
>3.0(with
Dipole moment
<10 | <1.0 | (1.0,2.0)| (2.0, 3.0)| >3.0 opposite <1.0
(Debye)
orientation)
Volume B <50 >50 >50 >50 >50 >50 <50

Disulfide Bond
No No No No No No Yes
Formation

Table4: ROC and PR results of LOCO cross validation technique using different machine

learning models and feature representations

Model Features | AUC-ROC (%) | AUC-PR (%) MCC
1-mer 96 94 0.80

AMAP Linear SVM
3-mer 94 91 0.75
AMAP Non-linear 1-mer 97 96 0.84
SVM 3-mer 95 94 0.79
1-mer 97 96 0.84

AMAP XGBoost

3-mer 96 94 0.79
MLAMP [2] 1-mer 88 81 0.60
CAMP-R3(RF)3] 1-mer 94 90 0.73
BLAST (Baseline) 77 72 0.27
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Table5: AUC-ROC results for differerttiological activitiesn our dataset by AMAP and

MLAMP
Biological activity | No of peptides AMAP MLAMP
Antibacterial 2,446 93.4 81.8
Antifungal 1,048 86.6 65.5
Anticancer 210 84.0 56.2
Antiviral 180 81.9 64.3
Anti-HIV 109 81.6 60.0
Chemotactic 57 80.2 -
Antiparasital 43 89.9 -
Antibiofilm 31 85.2 -
Insecticidal 28 87.1 -
Antimalarial 25 75.6 -
Inhibitory 25 80.8 -
Antioxidant 22 81.5 -
Spermicidal 13 73.2 -
Anti-protist 4 85.0 -

Table6: AMAP and MLAMP scores for predicting biological activities experimentally

verified peptides derived from LB7 peptide

Peptide Sequence LC99.9 (uM) | AMAP Scores | MLAMP scores

P276 LKRVWKAVFKLLKR 6.4 1.70 Non-AMP

(SAAP-276) | YWRQLKKPVR
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P148 LKRVWKRVFKLLKR 12.8 1.74 0.88
(SAAP-148) | YWRQLKKPVR

P145 LKRLYKRLAKLIKRL 12.8 1.38 0.97
(SAAP-145) | YRYLKKPVR

P159 LKRLYKRVFRLLKR 12.8 1.32 0.88
(SAAP-159) | YYRQLRRPVR

Table7: AMAP and MLAMP scores for predicting biological activities experimentally

verified peptides derived from Tempouii peptide

Peptide Sequence IC50 (uM) | AMAP score | MLAMP scores
2 FLPIVKKLLRGLF 0.50 243 0.94
1 FFPIVKKLLSGLF 0.75 2.31 0.94
1C FLPIVKKLLRKLF 1.30 2.55 0.92
2C FFPIFGKLLRGLF 1.37 2.04 0.87
3C FFPIVGKLLRKLF 1.39 241 0.94
3 VLPIVKKLLKGLF 2.01 2.96 0.95
A FFPIVGKLLSGLF 21.1 1.83 0.90
WT FFPIVGKLLSGLL 81.0 2.07 0.90

Table8: AMAP and MLAMP scores for predicting biological activities experimentally

verified peptides derived from Viral Capsid proteins

MIC(pM)

Protein-derived

AMAP

Peptide S.

Sequence

aureus

MRSA

E. coli

P.

aeruginosa

score

MLAMP

score
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VCPP | KKRYKKKYKA Non-
2550 50 12.5 100 2.07
0275 | YKPYKKKKKF AMP
VCPP | RRLTLRQLLGL
3.13 3.13 25 3.13 1.36 0.88
0769 GSRRRRRSR
vCPP | WRRRYRRWRR Non-
1.56 1.56 3.13 3.13 1.20
2319 | RRRWRRRPRR AMP
VCPP | SPRRRTPSPRR
>100 >100 25 100 0.56 0.81
0417 RRSQSPRRR
VCPP | GRRGPRRANQ
>100 >100 25 25 0.54 0.88
1779 NGTRRRRRRT
VvCPP | RPRRRATTRRR
50 100 12.5 25 0.24 0.9
0667 ITTGTRRRR

Table9: Reported MICs of M4, M5 and M6 against various bacteria

MIC (png/ml)
Species and strain
M4 M5 M6

Escherichia colATCC 25922 128 16 8

Escherichia colW99FI0077 16 128 8

Pseudomonas aeruginodd CC 27853 32 16 4

Pseudomonas aerugino885149 64 32 8

Pseudomonas aerugino8al 64 16 8

Klebsiella pneumonia®/99FI0057 64 | >128 4
Staphylococcus auredsTCC 25923 64 128 |>128

27




Staphylococcus auredIU-68A >128| 128 | 128

Table10: AMAP and MLAMP scores for predicting biological activities experimentally

verified peptides active agairstcoli

Peptide | Sequence AMAP score | MLAMP score
M6 QKKIRVRLSA | 0.66 0.94
M5 KIRVRLSA 0.56 0.97
M4 QAKIRVRLSA |-0.20 0.92
WT QEKIRVRLSA |-0.70 0.91

Table11: AMAP and MLAMP scores for predicting biological activities on experimentally

verified antifungal peptides

Peptide Sequence MIC (pM) AMAP scores
BP33 | LKLFKKILKVL 0.30.6 1.26
BP16 | KKLFKKILKKL 0.61.2 1.72
BP76 | KKLFKKILKFL 0.61.2 1.53
BP15 | KKLFKKILKVL 0.61.2 1.49
BP20 | WKLFKKILKYL 0.61.2 1.20
BP17 | WKLFKKILKKL 1.225 1.47
BP13 | FKLFKKILKVL 1.225 1.26
BP19 | WKLFKKILKFL 1.225 1.24
BP14 | YKLFKKILKVL 1.225 1.22
BP18 | WKLFKKILKWL 1.225 1.16
Pep3 | WKLFKKILKVL 2.55.0 1.18
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Tablel2 Reported MICs of Cpl and Melittin peptides against various bacteria

MIC (pM)
Peptides Cpl | Melittin
E. coliATCC 25922 64 1
E. coliUB1005 128 2
Salmonella pullorun€7913 256 8
Salmonella enterica subsp enteriCMCC 50071 | 256 2
Staphylococcus aureusTCC 29213 640 2
L. monocytogeneSMCC 54004 64 1

Table13: AMAP and MLAMP scores for predicting biological activities experimentally

verified Cpl and Melittin peptides

Peptide Sequence AMAP scores | MLAMP scores
Cpl LRLKKYKVPQL 0.96 Non-AMP
Melittin | GIGAVLKVLTTGLPALISWIKRKRQQ 1.36 0.98

Table14: Reported MICs of peptides and scores generated by AMAP and MLAMP for

predicting biological activities on experimentally verifigeptides derived from the

Acinetobacter baumannghage endolysin LysAB2

Peptide

MIC (uM)

A. baumannii
Sequence
ATCC17978

colistin-
A. baumannii| susceptible
ATCC19606| MDRAB

(M3237)

AMAP | MLAMP

score score
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NPEKALEPLIAI
LysAB2
QIAIKGMLNGW 64 64 64 0.09 0.97
PO
FTGVGFRRKR

EKALEKLIAIQK
LysAB2 Non-
AIKGMLNGWFT 8 8 8 1.57
P1 AMP
GVGFRRKR

EKALEKLIAIQK
LysAB2 Non-
AIKGMLAGWFT 16 16 16 1.58
P2 AMP
GVGARRKR

NPEKALEKLIAI
LysAB2 Non-
QKAIKGMLNG 4 8 16 1.22
P3 AMP
WFTGVGFRRKR

AUC-ROC

=
o

Precision

=
s

§ —— Proposed model (AUC: 97.0) —— Proposed model (AUC: 95.6)
024 ¥ ---- MLAMP (AUC: 88.1) ---- MLAMP (AUC: 81.4)

: —— CAMP(R3)RF (AUC: 94.1) | == CAMP(R3)RF (AUC: 89.8)
------- BLAST (AUC: 77.4) - BLAST (AUC: 72.0)

True Positive Rate (Sensitivity)
=]

o
o

O-IU 0.2 O:-‘l 0.6 0:8 l:D 0.0 0:2 U.‘-‘-l O.Iﬁ 0:5 10
False Positive Rate Recall

(a) (b)

Fig 1: (a) ROC curves on our dataset &yr proposed modeaind othemodelsin comparison(b)

PR curves on our dataset tyr proposed mod@ndothermodels in comparison
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Fig 2: Scatter plots o-SNE 2dimensional data of AMPs and né&MPs. The numbers in

parenthesis in the legend are the number of examples of each class. (a) pleAdiRoand
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AMPs (b) plot of NorAMPs and Antibacterigbeptideqc) plot ofnonrAMPs and Antiungal
peptideqd) plot of nonRAMPs and Anticanceroupeptidege) plbt of norAMPs and Antiviral

peptides (f) plot of noRAMPs andbiologically active peptideom rest of theclasses.
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Fig 3: Plot of weight vector of Linear\8B\V corresponding to different amino acids in the

composition feature space
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Fig5: AMP <cores ofsliding sequence window of length 20 on Capsid protein

Anti-Microbial Activity Predictor (AMAP)

This is the webserver for predicting whether a peptide sequence contains any antimicrobial activity or not. It displays scores for 14 types of activities for example Antibacterial, Antifungal etc

To use it for prediction enter a peptide sequence or multiple sequences in FASTA format and click on Predict Activity button.

|Enter sequences in FASTA format here

Peptide Sequence: | 4

Predict Activity

Fig 6: User interface othe web server for predictifgologically activepeptides
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