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KLAS MARKSTRÖM,∗∗∗ Department of Mathematics and Mathematical Statistics, Ume̊a

Universitet. Research supported by a grant from the Swedish Research Council (Vetenskapsr̊adet).

Abstract

Let V be an n-set, and let X be a random variable taking values in the power-

set of V . Suppose we are given a sequence of random coupons X1, X2, . . .,

where the Xi are independent random variables with distribution given by X.

The covering time T is the smallest integer t ≥ 0 such that
⋃t

i=1 Xi = V .

The distribution of T is important in many applications in combinatorial

probability, and has been extensively studied. However the literature has

focused almost exclusively on the case where X is assumed to be symmetric

and/or uniform in some way.

In this paper we study the covering time for much more general random

variables X; we give general criteria for T being sharply concentrated around

its mean, precise tools to estimate that mean, as well as examples where T

fails to be concentrated and when structural properties in the distribution of

X allow for a very different behaviour of T relative to the symmetric/uniform

case.
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1. Introduction

In this paper, we study the random covering problem in a general setting: we are

interested in the distribution of the covering time T for general distributions of the

random covering variable X. With the exception of a result of Aldous [4], discussed

later, this is as far as we are aware the first time the covering problem is studied in

this generality. However, the question is a natural one: there are many applications

where the covering variable is ‘non-uniform’ in a way which puts it outside the current

literature on covering problems. Also, a common drawback of many of the existing

exact results about covering processes is that the expressions obtained often involve a

large number of summands and are hard to evaluate directly; this was pointed out for

example by Sellke [55] and Adler and Ross [2].

Our own focus is on simple, easy-to-use concentration inequalities for the covering

time which can be applied in a straightforward way. The basic questions we seek to

answer: how does the distribution of X affect the covering time? Can we exploit

‘structure’ in the choice of X to ‘speed up’ or ‘slow down’ the covering? And when

can we guarantee that T is sharply concentrated?

Our paper is structured as follows. In Section 2, we gather together elementary

bounds for the covering time, and identify the range of possible speeds of the covering

process, giving examples going over the entire spectrum. We follow on in Section 3

with the main results of this paper, namely general structure theorems giving sufficient

conditions for the covering time of an arbitrary random covering variable to be sharply

concentrated. These are stated in Section 3.1 and proved in Section 3.3–3.6. In Sec-

tion 4 we discuss ‘fast’ coverage by structured random variables. Finally in Section 5 we

give some applications of our results to the connectivity of random graphs, continuum

percolation, random graph colourings, the unsatisfiability threshold for k-SAT and the

appearance of perfect matchings in random graphs. We end with some questions and

remarks.
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Structured Coupon Collectors 3

1.1. Definitions

Let V be a finite set; usually we shall take V = [n] := {1, 2, . . . , n}. Let X be a

random variable taking values in the power-set of V . A random variable X taking

values in the power-set of V is referred to as a random covering variable, or random

COUPON. We say that X is exchangeable if the law of X is invariant under every

permutation of V . We call X transitive if the law of X is invariant under the action of

a transitive subgroup of Sym(V ). We say X is balanced if for every v, v′ ∈ V we have

P(v ∈ X) = P(v′ ∈ X). Finally, X is k-uniform if |X| = k with probability 1.

We consider an infinite sequence X = {X1, X2, . . .} of i.i.d. random covering vari-

ables Xi ∼ X. We view this as a sequence of random coupons received by a coupon

collector; we refer to Xi as the ith coupon, and to the collector as the X-coupon

collector. We set Ct = Ct(X) =
⋃
i≤tXi to be the collection of elements of V covered by

the union of the first t coupons X1, X2, . . . , Xt, and define the covering time T = T (X)

to be

T = inf{t : Ct = V }.

This quantity T is sometimes referred to as the waiting time in the literature. Note

that T could be infinite if, for example, X almost surely does not cover (contain) some

element v ∈ V . We also define

T 1
2

= T 1
2
(X) = inf

{
t : P(Ct = V ) ≥ 1

2

}
,

to be the earliest time by which we have at least a fifty percent chance of having covered

V , and for a subset A ⊆ V we let τA = τA(X) be the least t such that A ⊆ Ct if it

exists, and infinite otherwise. For v ∈ V , we let dv(t), the degree of v at time t, denote

the number of sets Xi with i ≤ t containing v.

Our aim in this paper is to prove concentration results for the covering time T

in a general setting, i.e. for arbitrary random covering variables X. We shall also

consider applications where V ⊆ Rd is a compact set and X takes values among the

compact subsets of V , and define Vt, T and T 1
2

analogously to the discrete case. In

this continuous setting, we shall use |A| to denote the Lebesgue measure of a set A.

For a sequence of events (An)n∈N, we say that An holds with high probability (w.h.p.)

if

lim
n→∞

P(An) = 1.

Page 3 of 42

Applied Probability Trust

Applied Probability Journals



4 Falgas-Ravry, Larsson, Markström

Also, we say that a sequence of random variables (Yn)n∈N is sharply concentrated

around f(n) if (Yn/f(n))n∈N converges to 1 in probability, i.e. if ∀ε > 0,

lim
n→∞

P(|Yn/f(n)− 1| > ε) = 0.

We recall here the standard Landau notation for asymptotic behaviour. For functions

f, g : N → R≥0, we say that f = O(g) if there exists C > 0 such that f(n) ≤ Cg(n)

for all but finitely many n. We write f = o(g) to denote that limn→∞ f(n)/g(n) = 0.

Finally, we use f = Ω(g) to denote g = O(f), we write f = θ(g) if both f = O(g) and

f = Ω(g) hold, and use f = ω(g) or f � g to denote g = o(f).

1.2. Some examples

We give below some examples of random covering variables X, illustrating the

definitions of exchangeable, transitive and balanced above.

Our first example is that of the quintessential ‘nice’ random covering variable: the

k-uniform, exchangeable random coupon variable, which was the focus of most of the

previous work on coupon collecting.

Example 1. Let X be a k-set of V = [n] selected uniformly at random, for some

k : 1 ≤ k ≤ n; X is k-uniform and exchangeable.

Next we give three examples of ‘structured’ coupon collectors, of the kind that

motivate our work in this paper.

Example 2. Let G be a graph on n vertices. Let X be the random coupon obtained

by selecting a vertex x of V = V (G) uniformly at random and taking as the coupon

the closed neighbourhood of x in G, Γ̄(x) := {y ∈ V (G) : xy ∈ E(G)} ∪ {x}. Here X

is balanced if and only if the graph G is regular, and transitive if and only if the graph

G has a transitive automorphism group.

Example 3. Let V = Qd be the discrete d-dimensional hypercube {0, 1}d, and let X

be a k-dimensional subcube of Qd chosen uniformly at random, for some k : 0 ≤ k ≤ d.

This random covering variable X is transitive and 2k-uniform but not exchangeable,

and, as described in Section 5, underlies the random SAT problem.

Example 4. Let V be the square of area n, [0,
√
n]2 ⊂ R2, and let X be the inter-

section of V with the disc of radius r about a uniformly chosen random point x ∈ V .
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Structured Coupon Collectors 5

This random covering variable X is neither uniform nor balanced, due to boundary

effects; it is relevant to problems of coverage in random geometric graph theory (see

Section 5).

1.3. Motivation for coupon collecting

The problem of determining the covering time of a set by a union of random subsets is

of fundamental importance in several areas of mathematics, most notably in probability

theory, discrete mathematics and mathematical statistics. This importance is illus-

trated both by the age of the problem — in its simplest form, the covering problem can

be traced back to de Moivre [44] in 1711 — and by the many appellations it has amassed

through the years. It has been studied by a large number of mathematicians from a

variety of backgrounds and under a variety of names: matrix occupancy [15], allocation

of particles in complexes [59], committee problem [40], chromosome problem [56], urn-

sampling [55] or urn-occupancy problem [16], the Dixie cup problem [46], and, perhaps

most famously, the coupon collector problem [6].

The ubiquitous nature of the covering problem is due to its wide range of ap-

plications. It is linked to the study of random walks [3], colouring [10] and degree

sequences [41] in graph theory. In Section 5 we also give applications of the coupon

collector problem to the connectivity of random graphs. The performance analysis of

many exploration or optimisation algorithms in theoretical computer science involves

a solution to a covering problem [47, 58], while the unsatisfiability threshold for SAT

corresponds to the cover time of a hypercube by random subcubes [34, 39]. The

‘reverse’ coupon collector problem — estimating the size of V given Ct — is important

to IP trace-back algorithms [54] and the study of biological diversity [48, 45] amongst

other applications, while the study of the degrees dv(t), v ∈ V , is central to hashing

and load balancing [52]. There are further applications in population genetics [36, 51],

evolutionary algorithms for fitness selection [49] and disordered system physics [28].

1.4. Previous work on coupon collecting

Most of the previous work on covering problems in the spirit of the present paper

focused on the case where X is an exchangeable, k-uniform random covering variable.

The case k = 1, known as the coupon collector’s problem has received by far the most

Page 5 of 42

Applied Probability Trust

Applied Probability Journals



6 Falgas-Ravry, Larsson, Markström

attention. It can be traced back to de Moivre [44], who computed the probability

P(Vt = V ) exactly. Laplace [12] later generalised de Moivre’s result to the k-uniform

case for k ≥ 1.

The second half of the twentieth century saw great activity on the problem, with

many results replicated independently by researchers. Pólya [50] gave an expression for

the expected covering time T in the k-uniform exchangeable case. Feller’s textbook [20]

included a computation of ET in the special case k = 1. Still in the case k = 1,

Newman and Shepp [46] computed the expected time necessary for m-coverage of V

(covering every point at least m times). Erdős and Rényi [16] computed the asymptotic

distribution of the m-coverage time for m ≥ 1; as their result is of particular relevance

to this paper, we state it below:

Theorem 1. (Erdős–Rényi.) Let V = [n], and let X be the random coupon obtained

by selecting a singleton from V uniformly at random. Denote by Tm be the time at

which every point of V has been covered by at least m of the coupons X1, . . . , XTm .

Then for every x ∈ R,

lim
n→∞

P (Tm < n log n+ (m− 1)n log log n+ xn) = e−e
−x
.

In particular Tm, is sharply concentrated around

n log n+ (m− 1)n log log n.

Continuing work on the 1-uniform exchangeable case, Baum and Billingsley [6] proved

results on the asymptotic distribution of the size of Ct (the number of coupons collected

by time t) as a function of t; Holst [26] later generalised their result to unbalanced 1-

uniform random covering variables X. A number of researchers worked on the distribu-

tion of the degrees (dv(t))v∈V , such as Eicker, Siddiqui and Mielke [15], Mikhailov [43],

Barbour and Holst [5] and Khakimullin and Enatskaya [35], all of whom dealt with the

k-uniform case with k > 1 as well. A number of the papers cited above also deal with

the unbalanced, 1-uniform case; let us mention in addition the work of Papanicolaou,

Kokolakis and Boneh [47], who gave an expression for the expected covering time when

X is a randomly chosen 1-uniform random covering variable.

In the exchangeable k-uniform case with k > 1, several researchers [40, 24, 57] com-

puted, like Laplace, the expected covering time, giving closed-form formulae. Vatutin
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Structured Coupon Collectors 7

and Mikhailov [59] determined the asymptotic distribution of the number of degree

zero (i.e. uncovered) vertices, which in turn gives results on the distribution of the

covering time.

Recently Ferrante and Frigo [21] gave an expression for the expected covering time

when X is a k-uniform covering random variable with different v ∈ V receiving different

weights. In a different direction, improving results of Sellke, Ivchenko [30] computed

the asymptotic distribution of the covering time when n→∞ and X is a fixed (i.e. not

depending on n) non-uniform exchangeable random variable; similar results were also

obtained by Johnson and Sellke [32], while a closed-form expression for the expectation

of T appeared in Adler and Ross [2].

Finally, Aldous [4] proved a general abstract result about covering times, in connec-

tion with random walks on graphs. To state his result, we need one more definition.

Given a random covering variable X and an X-coupon collector, we let B = B(X)

denote the set of “holdouts”, which is to say the last subset of V to be covered:

B = CT \CT−1 (if the coupon collector does not cover V , we set B to be the collection

of never-covered elements of V ). Recall also that τA is the cover time of A ⊆ V .

Theorem 2. (Aldous.) Suppose ET = ω(1). Then T is sharply concentrated around

its expectation if and only if
EB(EτB)

ET
= o(1),

where EB is expectation over B.

One way to think of the quantity EB(EτB) is that we let the coupon collector process

run until V is covered at time T , then throw away the last set CT that was collected,

and continue the process. What is the expected time before V is covered again?

The power of Aldous’s theorem is its generality and the necessity and sufficiency of

its hypothesis for the concentration of the covering time. However as Aldous observed

“[w]ithout any structure being imposed [...] it is not clear how to estimate [EB(EτB)]

in order to use these results”. Indeed, computing

EB(EτB) =
∑
A⊆V

P(A = B)EτA

requires us to estimate both the probability that a given set A is the “holdout” and to

compute its expected covering time, both of which may be non-trivial tasks.
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8 Falgas-Ravry, Larsson, Markström

Several surveys have been written on coupon collectors, random allocation, urn occu-

pancy problems, etc. Amongst others, let us mention the book of Johnson and Kotz [33]

and Kolchin, Sevast’yanov and Chistyakov [38], the surveys of Ivanov, Ivchenko and

Medvedev [29] and Kobza, Jacobson and Vaughan [37], and the papers of Holst [27],

Stadje [57], Flajolet, Gardy and Thimonier [22] and McKay and Skerman [41].

2. Preliminaries: thresholds and elementary bounds

2.1. Coarse threshold

It follows from a simple application of the Bollobás–Thomason threshold theorem [7]

that a covering process as we have defined it will always have a coarse threshold:

Proposition 1. (Coarse threshold.) Let X be a covering random variable for a set V .

Then

P(Ct = V ) =

 o(1) if t� T 1
2

1− o(1) if t� T 1
2
.

Thus the covering time T is w.h.p. of the same order as T 1
2
. In the present work,

however, we are interested in a much sharper form of concentration than the one

guaranteed by Proposition 1: we want the covering time T to be sharply concentrated,

i.e. we want that T/T 1
2
→ 1 in probability. As we shall see in the next subsection,

we cannot in general guarantee this kind of sharp concentration. A question of crucial

interest is then what conditions are necessary or sufficient to have sharp concentration

for T — and how the value of ET may be computed in such cases.

2.2. Elementary bounds

Let X be a covering random variable for an n-set set V . For each v ∈ V , let

qv = P(v ∈ X), and set q? = minv qv. We have the following elementary bounds on

the location of T 1
2

and probable location of T .

Proposition 2.
log(2)

− log(1− q?)
≤ T 1

2
≤ log(2n)

− log(1− q?)
.

What is more, for any fixed ε > 0

P
(
T ≤ (1 + ε)

log n

− log (1− q?)

)
≥ 1− n−ε.
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Structured Coupon Collectors 9

Proof. For t ≥ T 1
2

we have

1

2
≤ P(Ct = V ) ≤ inf

v∈V
P(v ∈ Ct) = 1− (1− q?)t ,

from which the claimed lower bound on T 1
2

follows. For the upper bound, t ≤ T 1
2

implies

1

2
≤ P(Ct 6= V ) ≤

∑
v∈V

P(v /∈ Ct) =
∑
v∈V

(1− qv)t ≤ n(1− q?)t.

Finally, for the ‘what is more’ statement, note that for t ≥ (1 + ε) · logn
− log(1−q?) , the

expected number of vertices not yet collected is

E|V \ Ct| = n(1− q?)t ≤ n−ε,

whence by Markov’s inequality with probability at least 1− n−ε we have Ct = V and

T ≤ t. �

Note that if X is balanced then qv = µ
n for all v ∈ V , where µ := E|X|. In particular

if µ = o(n) then the bounds above can be rewritten as

n log 2

(1 + o(1))µ
=

log 2

− log
(
1− µ

n

) ≤ T 1
2
≤ log(2n)

− log
(
1− µ

n

) =
n log n

(1 + o(1))µ
.

Perhaps surprisingly, these elementary bounds are essentially sharp. As we shall

show in the next section, the covering time T for the exchangeable k-uniform coupon

collector (Example 1) is sharply concentrated around the value logn

− log(1− kn )
; in particular

if k = o(n), T 1
2

= (1 + o(1))n logn
k . We think of this as ‘slow coverage’. On the other

hand, there are instances of ‘fast coverage’, discussed in greater detail in Section 4. We

give here a simple example.

Example 5. (Coupon collector with lottery.) Set V = [n], and p = c/n for some

c = c(n) ∈ [0, n]. Let X be with probability 1− p a singleton from V chosen uniformly

at random, and with probability p the entire set V .

Note that X is an exchangeable random covering variable, with expected size

E|X| = (1− p) + pn = 1 + c− c

n
.

Proposition 3. Let X and V be as in Example 5. Assume c = o(n) and c is bounded

away from 0. Then:
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10 Falgas-Ravry, Larsson, Markström

1. T 1
2

= (1 + o(1))n log 2
c ;

2. ET = (1 + o(1))nc ;

3. limn→∞ P
(
T > xn

c

)
= e−x for any fixed x ≥ 0.

Proof. By Theorem 1, w.h.p. the 1-uniform exchangeable coupon collector does not

cover [n] in time less than 1
2n log n. Thus for time t < 1

2n log n, w.h.p. T ≤ t if and

only if we have ‘won the lottery’ by time T , that is, if Xi = [n] for some i ≤ t. This

event occurs with probability 1− (1− p)t.

To obtain part 1 of the proposition, we observe that if t ≥ T 1
2

then

1

2
+ o(1) ≤ 1− (1− p)t,

yielding t ≥ (1 + o(1)) log 2
log(1−p) = (1 + o(1))n log 2

c , and we show similarly that if t ≤ T 1
2

then t ≤ (1 + o(1))n log 2
c to conclude.

For part 2, let T ′ be the time at which we first ‘win the lottery’ by receiving all of

V as our coupon. We have

ET ′ =
∑
t

tp(1− p)(t−1) =
1

p
=
n

c
.

Since T ≤ T ′, we have that ET ≤ ET ′. Now from our estimates for the probability

of winning the lottery by time t above, w.h.p. we have T ′ = o(n log n). Thus by

Theorem 1, w.h.p. T = T ′, and

ET ≥
∑
t

tP(T ′ = t|T ′ = T )P(T ′ = T )

≥
∑
t

t (P(T ′ = t)− o(1))

= (1 + o(1))E(T ′),

whence we are done.

Finally for part 3, we simply note that w.h.p. T = T ′, and that P(T ′ > xn
c ) =

(1− p) xnc = e−x(1+O(n−1)) → e−x. �

Proposition 3 shows two things. First of all, the lower bound on T 1
2

in Proposition 2

is essentially sharp; indeed taking c = c(n) tending to infinity slowly, we have in

Example 5 that µ = E|X| = c(1+o(1)), and T 1
2

= (1+o(1))n log 2
µ . Further, by varying
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the value of c = c(n) from Ω( 1
logn ) to o(n), we can get T 1

2
to take asymptotically any

value between the bounds from Proposition 2.

Secondly, we cannot in general expect T to be sharply concentrated: part 3 of

Proposition 3 shows that we do not get sharper concentration than the Bollobás–

Thomason-type concentration guaranteed by Proposition 1. With this in mind, we

next focus on conditions on X which guarantees sharp concentration of the covering

time T and/or ‘slow coverage’.

3. General concentration results

Let V = [n] and X be a random coupon variable for V . In this section we prove

general results establishing (simple, easily checkable) sufficient conditions for sharp

concentration of the covering time T (X). We also include some results in the special

case where the random coupon variable X is balanced, transitive or exchangeable.

Before stating our results, we need to introduce some notation.

Our proof strategy involves approximating the discrete-time process of collecting

coupons by a continuous-time process. Instead of the coupon collector drawing a

random coupon X at integer time points, she draws a random coupon X (from the

same distribution) at times given by a Poisson process with parameter 1.

The times at which any given coupon is drawn will then be a thinned Poisson process,

and the Poisson processes associated with different coupons will be independent. The

times at which any particular element x ∈ V is drawn will also be a thinned Poisson

process, though the Poisson processes associated with different elements x, y ∈ V will

not in general be independent. Working in the continuous rather than in the discrete

setting will greatly simplify calculations.

For S ⊆ [n], set h(S) = P(X = S). For every S with h(S) > 0, start a Poisson

process PS with intensity h(S). Each time an event occurs in PS , the coupon collector

draws the coupon S. Let qx :=
∑
S3x h(S) be the total intensity of all coupons covering

x, and let qxy :=
∑
S3x,y h(S) be the total intensity of all coupons covering x and y

simultaneously. Equivalently, qx = P(x ∈ X) and qxy = P(x, y ∈ X). Note that∑
x∈V qx =

∑
S |S| · h(S) = EX =: µ.

Let Zx,t be the indicator event of the element x not being covered at time t, and
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12 Falgas-Ravry, Larsson, Markström

let Zt :=
∑
x∈V Zx,t. An element x has not been covered by time t if its associated

Poisson process with intensity qx has had no events in the time interval [0, t]. The

probability of this occurring is e−qxt, and so the first two moments of Zt are:

EZt =
∑
x∈V

e−qxt and EZ2
t =

∑
x,y∈V

e−(qx+qy−qxy)t.

Many of our proofs will use the second moment method to show concentration of Zt,

which implies concentration of T (X).

3.1. Results

Definition 1. A coupon collector has the first moment property if there exists T−(n)

and T+(n) such that T− = (1 + o(1))T+, EZT− →∞ and EZT+ → 0.

This holds trivially for balanced coupon collectors, but may fail ifX is far from balanced

— for instance, if some elements of V occur very rarely. Our first result gives us

sufficient conditions for the first moment property to hold.

For any α ∈ R, let ‖q‖α be the α-Hölder mean of the vector of intensities q = (qx),

i.e. ‖q‖α :=
(

1
n

∑
x q

α
x

) 1
α (with the usual convention that for α = 0, ‖q‖0 is the

geometric mean (
∏
x qx)1/n).

Theorem 3. Set q? := minx qx. If any of the following conditions is satisfied, then

first moment property holds.

1. There exists t� q−1
? such that EZt � 1

2. There exists α = o(log n) such that (α+ 2)‖q‖−α ≤ log n · q?

3. There exists Ar = exp(ω(r)), which does not depend on n, such that for any

r > 0 and all sufficiently large n, the number of y ∈ V satisfying qy < rq? is at

least Ar.

If qx
qy
≤ 1

2 log n for all x, y, condition 2 is met trivially with α = 0; in fact it can be

shown that the factor 1
2 can be replaced by any positive number. So in particular

Theorem 3 applies to ‘almost balanced’ random coupon variables X.

Our second result gives w.h.p. bounds on T when correlations are bounded.

Theorem 4. If the first moment property holds and there exists C = C(n) such that
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1. the coupons have C-bounded correlation, i.e. qxy ≤ Cqxqy for all x 6= y, and

2. Cq̄ = o( 1
logn ), where q̄ = E

[
qθ
∣∣θ not covered at time T−

]
is the expected size of

qθ for θ drawn uniformly at random from V ,

then T− ≤ T (X) ≤ T+ w.h.p.

The parameter q̄ should be viewed as the ‘speed’ of covering at time T−, and it is

usually hard to compute exactly. However in order to apply Theorem 4 it is enough to

give an upper bound on q̄. The simplest such bound, namely q̄ ≤ maxx qx, can easily

be improved. For instance, it is straight-forward to show that q̄ ≤ ‖q‖−α for any finite

α and all n sufficiently large. This makes condition 2 easy to check in many situations.

We can obtain further results when X is assumed to be balanced. The next theorem

tells us that if either the coupons are ‘small’ (size o(n)) or the pairwise correlations

between the elements of V are ‘not too strong’ then we have sharp concentration for

T .

Theorem 5. Let X be a balanced random coupon variable with µ := E|X|.

1. If there exists t such that
∑
x,y(eqxyt − 1) = o(n2) and

∑
x e
−qxt = ω(1), then

T (X) ≥ t w.h.p.

2. If there exists 1� β(n) < n and q = o
(

µ
n log β

)
with qxy ≤ q for all but at most

1
βn

2 ‘bad’ pairs (x, y), then T (X) ≥ n
µ (log β − ω(1)) w.h.p.

In particular, if q = o
(

µ
n logn

)
and there are at most n1+o(1) such ‘bad’ pairs,

then

T (X) = (1± o(1))n logn
µ w.h.p.

3. If all coupons have size at most M , then T (X) ≥ n
µ (log n− logM −ω(1)) w.h.p.,

for ω(1) tending to infinity arbitrarily slowly.

In particular, if M = no(1), then T (X) = (1 + o(1))n logn
µ w.h.p.

4. If qxy = qx′y′ for all x 6= y, x′ 6= y′, and all coupons have size at most M , and

T− is such that T− = n
µ ·min

(
o( nM ), log n− ω(1)

)
, then T− ≤ T (X) w.h.p.

In particular, if M = o( n
logn ), then T (X) = (1 + o(1))n logn

µ w.h.p.
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14 Falgas-Ravry, Larsson, Markström

There are examples where the w.h.p. lower bounds given by this theorem are sharp,

while the upper bounds given by the first moment method are not; see for instance

Example 6 in Section 4. Note also that unlike Theorem 2, Theorem 5 also locates the

threshold.

For balanced random covering variables we also have good control for both con-

centration and the covering time when X satisfies an ‘almost negative correlation’

condition. Here below we say that a function m = m(n) is sub-polynomial in n if

m = no(1).

Theorem 6. Let δ > 0 be fixed. Let X be a balanced covering random variable for

an n-set V , with P(x ∈ X) = c for some c ∈ (0, 1 − δ). Suppose further that we

have almost negative correlations, namely that there exist η = o(1/ log n) and b = b(n)

sub-polynomial in n such that for any x ∈ V

P(x, y /∈ X) ≤ (1− c)2(1 + η).

holds for all but at most b elements y. Then, w.h.p., T (X) = (1 + o(1)) · logn
− log(1−c) .

Note that if η = 0 then the correlation condition is the same as the commonly used

pairwise negative correlation condition. Recently a substantial theory for negatively

correlated random variables has been developed and numerous common examples have

been shown to have this and even stronger correlation properties, see [8].

Corollary 3.1. Suppose that X is balanced, has pairwise negative correlation, and

P(x ∈ X) = c ≤ 1− δ for a fixed δ > 0. Then w.h.p. T (X) = (1 + o(1)) logn
− log(1−c) .

If c = o(1) then the equality above may be rewritten as T (X) = (1 + o(1))n logn
E|X| .

We next give conditions implying sharp concentration for the covering time of an

exchangeable random variable X around the same value as a uniform exchangeable

random variable with the same mean coupon size.

Theorem 7. Let X be an exchangeable random coupon variable, for V = [n], with

maximum coupon size M , average coupon size µ and mean square coupon size χ. If

any of the four conditions below holds, then w.h.p. T (X) = (1 + o(1)) logn
− log(1− µn ) (which

in the case µ = o(n) can be rewritten as T = (1 + o(1))n logn
µ ).

1. M = o(
√
n log n);
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2. M = o(n) and M = o(
√
µn log n);

3. M = o(n) and χ = o(µn log n);

4. µ < (1− δ)n for some δ > 0 and χ = (1 + o( 1
µn logn ))µ2.

Note that the theorem includes the case when X is k-uniform for k = cn. Roughly

speaking, the conditions in the theorem move from small coupons, with no other

assumptions, to larger coupons where successively stronger size concentration is needed.

In some applications it is useful to have more accurate information about the

sharpness of the concentration. We thus include a final result on the cover time T

for the k-uniform exchangeable coupon collector in the sublinear case k = o(n), in the

spirit of the theorem of Erdős and Rényi (Theorem 1) mentioned in the introduction.

Theorem 8. If k = o (n), then the covering time T for a k-uniform exchangeable

coupon collector is sharply concentrated around n logn
k . More precisely, we have P

(
|T −

n logn
k | > cn

k

)
→ e−c as n→∞.

3.2. Continuous-time approximation of the coupon collector

In this subsection, we formalize our approximation of the discrete-time coupon

collector by a continuous-time process. As described above, for every subset S ⊆ V

with h(S) = P(X = S) > 0, we start at time t = 0 a Poisson process PS with

intensity h(S). Our continuous coupon collector receives S as a coupon each time an

event occurs in PS . List the coupons in the order they are received by the continuous

collector as S1, S2, S3, . . . The distribution of the sequence S = (Sn)n∈N is identical to

that of the sequence of coupons X received by the (discrete-time) X-coupon collector.

Furthermore, the time tm at which the continuous coupon collector receives his mth

coupon is sharply concentrated around m for m = ω(1). Indeed, by a standard bound

on the Poisson distribution, for any ε > 0,

P (|tm −m| ≥ εm) = O

(
1√
mε2

e−
mε2

2

)
.

In particular, provided the covering time for the continuous coupon collector tT is

large (grows with n), we have that w.h.p. tT = (1 + o(1))T . Thus it is enough to prove

w.h.p. bounds on tT to establish w.h.p. bounds on T . We shall thus in a slight abuse of
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16 Falgas-Ravry, Larsson, Markström

notation identify tT with T in the rest of the paper, and prove bounds for the covering

time via the continuous coupon collector. In particular we shall set T = inf{t : Zt = 0}.

3.3. Proofs: concentration of the covering time

It will be useful to consider the function f(t) = log(EZt). The first two derivatives

of f are

f ′(t) = −
∑
x qxe

−qxt∑
x e
−qxt

≤ 0, f ′′(t) =
1

2
·
∑
x,y(qx − qy)2e−(qx+qy)t∑

x,y e
−(qx+qy)t

≥ 0,

from which we can see that f is a decreasing convex function. In particular for any

t ≥ 0,

f(t)− tf ′(t) ≤ f(0) = log n. (1)

Similarly, for any t > 0 and ∆ < t,

f(t−∆)− f(t) ≥ −∆f ′(t) and f(t)− f(t+ ∆) ≥ −∆f ′(t). (2)

Finally, note that f ′(t) = −E[qθ|θ not covered at time t], where θ is chosen uniformly

at random from V . The following lemma gives the basic first and second moment

bounds on the covering time.

Lemma 1. Let T = T (X) be the covering time for a coupon collector X, and let (qx)

and (qxy) be its associated single and pairwise intensities.

1. If t = t(n) is such that
∑
x e
−qxt → 0, as n→∞, then T ≤ t w.h.p.

2. If t = t(n) is such that
∑
x6=y(eqxyt−1)·e−(qx+qy)t∑

x,y e
−(qx+qy)t = o(1) and

∑
x e
−qxt → ∞, then

T ≥ t w.h.p.

Proof. We divide the proof into two parts.

Part 1. Suppose t = t(n) satisfies the lemma’s assumption. By Markov’s inequality

P(t ≥ T ) = P(Zt > 0) ≤ EZt =
∑
x e
−qxt → 0, so t < T w.h.p.

Part 2. Suppose t = t(n) satisfies our assumption. Then EZt →∞, and

Var[Zt]

E[Zt]2
=

∑
x,y(eqxyt − 1) · e−(qx+qy)t∑

x,y e
−(qx+qy)t

<

∑
x6=y(eqxyt − 1) · e−(qx+qy)t∑

x,y e
−(qx+qy)t

+
1∑

x e
−qxt

= o(1) + o(1),
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so by Chebyshev’s inequality Zt = (1+o(1))EZt →∞ w.h.p., so that w.h.p. Zt >

0 and T > t. �

Proof of Theorem 4. By the first moment property, EZT+ → 0, from which it is

immediate by Lemma 1 part 1 that w.h.p. T ≤ T+. To establish the lower bound on

T , we shall consider the set of ‘rare’ coupons U = {x ∈ V : qx ≤ 2q̄}. Let Yt be the

number of x ∈ U for which x is uncovered at time t.

Claim 1. EYt →∞ for any t ≤ T−

Proof. We bound q̄ from below to get:

q̄ ≥
∑
x∈V \U qxe

−qxT−∑
x∈V e

−qxT−
≥ 2q̄

∑
x∈V \U e

−qxT−∑
x∈V e

−qxT−
= 2q̄ ·

(
1− EYT−

EZT−

)
.

Dividing both sides by q̄ gives us 1 ≥ 2
(
1 − EYT−

EZT−

)
, which implies EYT− ≥ 1

2EZT− .

Since by assumption 1 EZT− → ∞, and since EYt is decreasing in t, we must have

that EYt →∞ for any t ≤ T−, as claimed. �

Now, as observed after inequality (2),

f ′(t) = −E[qθ|θ not covered at time t],

and in particular f ′(T−) = −q̄. By assumption 1 f(T−)→∞, so inequality (1) gives

T− · q̄ ≤ f(T−)− T−f ′(T−) ≤ log n (3)

We are now in a position to apply part 2 of Lemma 1 to the restriction of the

coupon collector to the set of rare coupons U (i.e. the coupon collector with covering

variable X ∩ U). For any x 6= y, we have that qxyt ≤ Cqxqyt by assumption 1. If

x, y ∈ U this quantity is at most 4C(q̄)2T−. By inequality (3) and our assumption 2,

4C(q̄)2T− ≤ 4Cq̄ log n = o(1). Thus∑
x,y∈U :x6=y(eqxyt − 1) · e−(qx+qy)t∑

x,y∈U e
−(qx+qy)t

≤ (e4Cq̄ logn − 1) ·
∑
x,y∈U :x6=y e

−(qx+qy)t∑
x,y∈U e

−(qx+qy)t
= o(1).

Since by Claim 1 EYt → ∞, we have by Lemma 1 part 2 that T− ≤ inf{t : Yt = 0}

w.h.p. Since by construction Yt ≤ Zt, this gives T− ≤ T w.h.p., as required. �
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18 Falgas-Ravry, Larsson, Markström

3.4. Proofs: sharp transition for EZt

Proof of Theorem 3. Let T ∗ = T ∗(n) be the unique real for which EZT∗ = 1.

1. By our assumption, we can find ∆ = ∆(n) such that T ∗ � ∆� 1
minx qx

. We

will show that T− := T ∗ −∆ and T+ := T ∗+ ∆ have the desired properties. By

definition of ∆, we have T− = (1+o(1))T+. Now −∆f ′(T ∗) ≥ ∆ minx qx � 1, so

by inequality (2) we have f(T ∗−∆)−f(T ∗) and f(T ∗)−f(T ∗+∆) both tending

to infinity. Since f(T ∗) = 0, this implies that EZT∗−∆ → ∞ and EZT∗+∆ → 0,

as required.

2. Let α(n) = o(log n) be as in the assumption. Pick 1 � c � log n/(α+ 2), and

set t∗ = (log n− c)/‖q‖−α. By assumption, t∗ � minx qx.

For any x ∈ V , we have

qxt
∗ ≥ (α+ 2)‖q‖−αt∗

log n
= α+ 2− (α+ 2)c

log n
= α+ 2− o(1).

Now the function z 7→ e−z
−1/α

is convex over those z satisfying z−1/α ≥ α + 1.

We can therefore apply Jensen’s inequality as follows:

EZt∗ =
∑
x∈V

e−qxt
∗

=
∑
x∈V

e−(qxt∗)
−α·(−1/α)

≥ n exp(−‖q‖−αt∗) = ec.

But ec → ∞, so this gives us a t∗ � minx qx such that EZt∗ � 1. We are then

done by part 1.

3. Let the function Ar be as in the assumption. Let R = R(n) be the largest r such

that there are at least Ar elements y with qy ≤ rminx qx; R is finite for every n,

but by assumption tends to infinity as n→∞. We can therefore find t∗ = t∗(n)

satisfying
1

minx qx
� t∗ � logAR

Rminx qx
.

We now bound EZt∗ from below:

EZt∗ ≥
∑
y∈V :

qy≤Rminx qx

e−qyt
∗
≥ ARe−Rminx qxt

∗
� 1,

by the choice of t∗. We are then done by part 1 .
�
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3.5. Proofs: balanced coupons

Proof of Theorem 5. Since X is balanced, qx = µ/n for all x ∈ V . We will show that

we can apply part 2 of Lemma 1 provided 1 holds, and then that each of conditions

2 –4 implies 1. The ‘in particular’ statements in 2 –4 combine the lower bound given

by those special cases with the upper bound on T from Proposition 2.

1. Since qx = qy for all x, y, we have∑
x,y(eqxyt − 1) · e−(qx+qy)t∑

x,y e
−(qx+qy)t

=

∑
x,y(eqxyt − 1)

n2
=
o(n2)

n2
= o(1).

We can therefore apply part 2. of Lemma 1 to conclude that T (X) ≥ T−.

2. Set t = n(log β − ω(1))/µ for some ω(1) tending to infinity arbitrarily slowly.

Note

Zt = ne− log β+ω(1) ≥ eω(1) → +∞.

Let E be the set of exceptional pairs (x, y) with qxy > q. Since qxy ≤ qx = µ
n for

any x, y, we have:∑
(x,y)/∈E

eqxyt ≤ n2eqt ≤ n2 + o(n2), and

∑
(x,y)∈E

eqxyt ≤ n2

β
· e

µt
n =

n2

β
· elog β−ω(1) = o(n2),

Together, these bound give that
∑
x,y e

qxyt = n2 + o(n2).

3. Fix x ∈ V , and consider the sum
∑
y∈V qxy. Each subset X ⊆ V containing x

contributes h(X) to |X| terms of the sum. Thus∑
y∈V

qxy =
∑
X3x
|X|h(X) ≤M

∑
X3x

h(X) = Mqx.

Furthermore, for every y, qxy ≤ qx = µ
n . We ask therefore: which choices of

q̃xy, subject to the constraints
∑
y∈V q̃xy ≤M

µ
n and 0 ≤ q̃xy ≤ µ

n , maximize the

expression
∑
y∈V e

q̃xyt − 1? Since z 7→ ezt − 1 is an increasing function for t > 0,

the optimal q̃xy must satisfy
∑
y∈V q̃xy = M µ

n . By the Karamata inequality the

maximum of the sum is then attained when M of the ˜qxy are equal to µ
n and the

rest are equal to 0. Thus∑
y∈V

(eqxyt − 1) ≤
∑
y∈V

(eq̃xyt − 1) < M · e
µt
n .
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20 Falgas-Ravry, Larsson, Markström

Setting t = n(logn−logM−ω(1))
µ for an arbitrary ω(1) tending to infinity, and

summing over all x, we get∑
x,y∈V

(eqxyt − 1) < Mn · e
µt
n = Mn · elogn−logM−ω(1) = o(n2).

In addition our choice of t ensures EZt = Meω(1) → +∞.

4. If qxy = q for all x 6= y and some q, then

Mµ ≥
∑
x,y

qxy = µ+
∑
x6=y

qxy = µ+ n(n− 1)q,

so q ≤ (M−1)µ
(n−1)n . For t ≤ n(logn−ω(1))

µ with t = o
(
n2

Mµ

)
, we have that qt = o(1) and

qxt ≤ log n− ω(1), whence Zt →∞ and∑
(x,y): x6=y

(eqxyt − 1) +
∑
x

(eqxt − 1)

< n2(eo(1) − 1) + nelogn−ω(1) = o(n2).

In all cases, condition 1 is satisfied. �

Proof of Theorem 6. Since X is balanced, we have that t0 = logn
− log(1−c) is a first-

moment threshold for the expected number of uncovered vertices EZt = n(1 − c)t.

In particular we have that for any fixed ε > 0 the covering time T = T (X) satisfies

T < (1 + ε) logn
− log(1−c) w.h.p. We turn our attention to the variance of Zt to show

concentration of its value just below the first-moment threshold t0.

E[Z2
t ] =

∑
x,y

P(x, y /∈ Ct) =
∑
x,y

(1− P(x, y ∈ X))t

≤ n
(
(1− c)2t(1 + η)t(n− b) + (1− c)tb

)
< n2(1− c)2t

(
(1 + η)t + b

(
1

n(1− c)t

))
.

Now for ε > 0 fixed and t ≤ (1− ε) logn
− log(1−c) , our assumptions on b and η tell us that

the above is at most

(EZt)2

(
e

η logn
− log(1−c) +

b

nε

)
= (EZt)2

(1 + o(1)).

Chebyshev’s inequality is then enough to give us concentration of Zt about its (large,

non-zero) mean for these values of t. In particular w.h.p. T > (1− ε) logn
− log(1−c) . Thus

w.h.p. T = (1 + o(1)) logn
− log(1−c) , as required. �
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3.6. Proofs: exchangeable coupons

In the case where X is an exchangeable random variable, we exhibit a (natural)

coupling between the process of covering V by X with the classical coupon collector

problem (covering by singletons chosen uniformly at random), which allows us to

determine (up to a small error) the expectation of the covering time T as well as,

in the case where |X| = o(n) holds w.h.p., to prove that T is concentrated around its

mean. We note that a similar coupling appears in a work of Sellke [55], though it is

used for a different purpose.

We begin by proving Theorem 8. Let k = k(n) be a sequence of natural numbers.

Set V = V (n) = [n], and let X = X(n) be the random covering variable for V

obtained by selecting a k-set from V uniformly at random. Let also Y = Y (n) be the

classical random coupon variable for V , namely the random covering variable obtained

by selecting a singleton from V uniformly at random.

Proof of theorem 8. We couple the k-uniform coupon sequence X to the sequence of

coupons received by the Y -coupon collector, Y = (Yi)
∞
i=1. For natural numbers a ≤ b,

set CY [a, b] :=
⋃
i∈[a,b] Yi. Let a0 = 0, and define ai, i ≥ 1, recursively to be the least

integer such that |CY [ai−1+1, ai]| = k. Next, let Xi = CY [ai−1+1, ai]. Clearly, the Xi

obtained are independent random sets, uniformly distributed among the k-sets in V ,

so (Xi)
∞
i=1 ∼ X. Furthermore, the integers `i := ai − ai−1 are i.i.d. random variables.

This coupling between the coupon collectors enables us to relate T (X) to T (Y). For

any natural number t, we have that

t⋃
j=1

Xj =

at⋃
i=1

Yi,

so T (X) ≤ t if and only if T (Y) ≤ at. Conversely, T (X) > t if and only if T (Y) > at.

In other words,

T (X)−1∑
i=1

`i = aT (X)−1 < T (Y) ≤ aT (X) =

T (X)∑
i=1

`i. (4)

At this point, it is straightforward to get an estimate for ET (X) in terms of the (well–

known) expectations of T (Y) and `1, via an application of Wald’s inequality. To obtain

sharp concentration for T (X) we need only do a little more work. Let Sm :=
∑m
i=1 `i.

We shall use the following lemma, establishing sharp concentration for Sm, together
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with the Erdős–Rényi sharp concentration theorem for T (Y) to deduce we have the

desired sharp concentration for T (X).

Lemma 2. If k = o(n), then for all c > 0 and m > n
k the following inequality holds:

P
(
|Sm − ESm| > c · k

√
m

n

)
< 4 · e−c.

Proof of Lemma 2. For 0 ≤ i ≤ k − 1, let τi be the time it takes for the singleton

collector to draw the (i+1)th distinct coupon after she has collected i distinct coupons.

Clearly, τi ∼ Geom(n−in ). and has moment-generating function

Mτi(λ) := E[eλτi ] =
(1− i

n )eλ

1− i
ne

λ
.

Note that `1 =
∑k−1
i=0 τi. Since Sm =

∑m
i=1 `i is the sum of m independent copies of

`1, its moment generating function is given by

MSm(λ) =

(
k−1∏
i=0

(1− i
n )eλ

1− i
ne

λ

)m
.

Applying Markov’s inequality to the random variable exp (λSm), for some λ: λ 6=

0, λ = o(1) to be specified later, gives

P
(
eλSm > eλESm+c

)
<

MSm(λ)

exp (λESm + c)
=

=
exp

(
m
∑k−1
i=0 (λ+ log(1− i

n )− log(1− i
ne

λ))
)

exp
(
m
(∑k−1

i=0
λ

1− i
n

)
+ c
)

= exp

(
m

k−1∑
i=0

(
λ+ log

(
1− i

n

)
− log

(
1− i

n
eλ
)
− λ

1− i
n

))

≤ exp

(
mk
[
λ+ log

(
1− k

n

)
− log

(
1− k

n
eλ
)
− λ

1− k
n

]
+ c

)
, (5)

where the last inequality holds since the summands are non-decreasing in i (this can

be checked e.g. by computing the derivative of a summand with respect to i). We use

a Taylor expansion of degree d = d− log |λ|e to estimate the quantity inside the square

brackets.

λ+ log

(
1− k

n

)
− log

(
1− k

n
eλ
)
− λ

1− k
n

≤
d∑
j=1

(ejλ − jλ− 1)
kj

jnj
+

kd+1

(d+ 1)(n− k)d+1
(6)
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Note that (ejλ − jλ − 1) = ( 1
2 + o(1)) · (jλ)2, since jλ = o(1), whereas kd+1

(n−k)d+1 �

(e−2)d · kn ≤
λ2k
n , since k

n−k = o(1) by assumption. The right hand side of inequality

(6) can thus be bounded by(
1

2
+ o(1)

)
· λ2

d∑
j=1

jkj

nj
+ o

(
λ2k

n

)
=

(1 + o(1))λ2k

2n
.

Applying this bound to the right-hand side of inequality (5) gives us the following:

P
(
eλSm > eλESm+c

)
< exp

(
(1 + o(1))mλ2k2

2n
+ c

)
.

Letting λ = ± 1
k

√
n
m we obtain

P
(
Sm − ESm > ck

√
m

n

)
< e

1
2 +o(1)−c, and

P
(
Sm − ESm < −ck

√
m

n

)
< e

1
2 +o(1)−c.

Thus for n sufficiently large, the probability that Sm diverges from its expectation by

more than ck
√

m
n is at most 2e( 1

2 +o(1))−c < 4e−c. �

Equation (4) can also be formulated as

ST (X)−1 < T (Y) ≤ ST (X). (7)

Lemma 2 gives us that |Sm−ESm| <
√
mk with probability 1−O(e−

√
n/k) = 1−o(1).

Since each `i is independent from T (X) (how long it takes to collect one k-set tells

us nothing about how many k-sets are needed to cover the entire set of coupons), we

can use the lemma with m = T (X) to bound the right-hand side of inequality (7), and

m = T (X)−1 for the left-hand side. (The lemma requires that T (X) > n
k , which holds

w.h.p. by the first moment method.) This gives us that, w.h.p.,

k(T (X)− 1)−
√
k(T (X)− 1) < T (Y) ≤ kT (X) +

√
kT (X).

By Theorem 1, T (X) < 2n logn
k holds w.h.p., and |T (Y)− n log n| < cn holds with

probability at least 1− e−c + o(1). Applying the triangle inequality, we see that∣∣∣∣T (X)− n log n

k

∣∣∣∣ ≤ ∣∣∣∣T (Y)

k
− n log n

k

∣∣∣∣+

∣∣∣∣T (X)− T (Y)

k

∣∣∣∣
≤ c · n

k
+

√
T (X)

k
+ 1 ≤ c · n

k
+

√
2n log n

k
√
k

= (c+ o(1)) · n
k
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holds with probability at least 1− e−c + o(1). The theorem follows. �

We now turn our attention to Theorem 7. Suppose that we have an exchangeable

random covering variable W for the set V = [n]. Let µ = E|W |, let M be the maximum

value that |W | takes with strictly positive probability, and let χ = E[|W |2].

Coupling the W -coupon sequence W = (W1,W2, . . .) with the singleton coupon

sequence Y1, Y2, . . . as in the proof of Theorem 8, we get the following analogue of

Equation (4):
T (W)−1∑
i=1

`i < T (Y) ≤
T (W)∑
i=1

`i, (8)

where `i is the least integer such that CY [`1 + · · · + `i−1 + 1, `1 + · · · + `i] = |Wi|.

Applying Wald’s inequality, we get that

ET (Y)

E`1
≤ ET (W) < 1 +

ET (Y)

E`1
. (9)

In particular if E`1 = o(n log n), we have ET (W) = (1 + o(1))n logn
E`1 . An inconvenient

aspect of this expression is that it remains in terms of E`1, the expected number

of single coupon we need to draw in order to see |W | distinct coupons. However if

M = o(n), note that for any m ≤ M the expected number of single coupons we need

to draw in order to see m distinct coupons is

m−1∑
i=0

n

n− i
= (1 + o(1))n log

(
n

n−m

)
= (1 + o(1))m, (10)

and thus E`1 = (1 + o(1))E|W |. Together with (9), (10) establishes the following:

Proposition 4. For the W -collector with maximum coupon size M and mean coupon

size µ, the following hold:

1. if M = o(n), ET (W) = (1 + o(1))n logn
µ ;

2. if E`1 = o(n log n), ET (W) = (1 + o(1))n logn
E`1 ;

3. if E`1 = Ω(n log n), ET (W) = O(1).

Theorem 7, which we now prove gives conditions for the covering time T (W) to be

sharply concentrated around its expected value.
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Proof of Theorem 7. We first prove that if any of conditions 1–3 holds, then w.h.p. T (W) =

(1 + o(1))n logn
µ . Note that 1–3 give us M = o(n), whence E`1 ≤ (1 + o(1))M =

o(n log n). As in Theorem 8, having sandwiched T (Y) between two sums of indepen-

dent identically distributed random variables ST (W)−1 :=
∑T (W)−1
i=1 ti and ST (W) :=∑T (W)

i=1 ti, the crux of the proof lies in showing these two (random) sums are concen-

trated around their respective means. Indeed, provided we can show that w.h.p. ST (W) =

(1 + o(1))T (W)E`1 and ST (W)−1 = (1 + o(1))(T (W)− 1)E`1, we have that w.h.p.

(1 + o(1))
n log n

E`1
= (1 + o(1))

T (Y)

E`1
≤ T (W), and

T (W) ≤ (1 + o(1))
T (Y)

E`1
+ 1 = (1 + o(1))

n log n

E`1

by appealing to Theorem 1 (and the fact that E`1 = o(n log n) by (10). Let us therefore

establish the concentration we require.

We use the following generalized Chernoff bound, see e.g. Theorems 2.8 and 2.9

in [9].

Lemma 3. (Generalized Chernoff bound.) Let (Ui)
t
i=1 be a sequence of independent,

identically distributed non-negative integer-valued random variables, with U := U1 ≤M

with probability 1. Let ε > 0 be fixed. Then

P

(∣∣∣∣ t∑
i=1

Ui − tEU
∣∣∣∣ ≥ εEU

)
≤ 2 exp

(
− ε2t2(EU)2

2tE[U2] + 2MtEU/3

)
.

We apply the Lemma to |W |. Suppose condition 2 holds. Then M = o(n) and thus

E`1 = (1 + o(1))µ. For any fixed ε > 0 and t = (1 + o(1))n logn
µ we have that

P

(∣∣∣∣ t∑
i=1

|Wi| − tµ
∣∣∣∣ ≥ εtµ

)
≤ 2 exp

(
− ε2tµ2

2χ+ 2Mµ/3

)
≤ 2 exp

(
−ε2(1 + o(1))

n log nµ

2M2 + 2Mµ/3

)
= exp

(
−ε2(1 + o(1))

n log nµ

2M2

)
= o(1),

where the last equality used the fact that M = o(n log n). Thus for t around the

expected value of T (W), the sum St =
∑t
i=1 `i is w.h.p. concentrated around its mean

(1 + o(1))µt. It follows that if 2 is satisfied then w.h.p. T (W) = (1 + o(1))T (Y)
µ , as

desired. Since condition 2 implies 1 this also establishes that 1 is sufficient for T (W)
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to be sharply concentrated around n logn
µ . For condition 3, we use the same argument

as for 2 but use the assumption χ = o(n log nµ) to bound χ instead of the bound

χ ≤M2.

For conditions 4, we show that we can truncate W ; for ε > 0 fixed, Chebyshev’s

inequality implies

P
(∣∣|W | − µ∣∣ > εµ

)
≤ χ− µ2

ε2µ2
= o

(
1

n log nµ

)
.

Thus the expected number of coupons with size differing from µ by more than εµ

which occur by time t = (1 + o(1))n logn
E`1 ≤ (1 + o(1))n logn

µ is o(1). By Markov’s

inequality w.h.p. no such coupon is seen by that time, and we can couple/sandwich

the W -coupon collectors between two k-uniform exchangeable coupon collectors X−

and X+, collecting coupons of size k− = (1 − ε)µ and k+ = (1 + ε)µ respectively, in

such a way as to have T (X−) ≤ T (W) ≤ T (X+).

We then split into two cases. If µ = o(n), then by Theorem 8 w.h.p. these two

sandwiching coupon collectors finish at times T (X−) = (1 + o(1)) n logn
(1−ε)µ and T (X+) =

(1 + o(1)) n logn
(1+ε)µ respectively. Since ε > 0 was arbitrary we deduce that T (W) =

(1 + o(1))n logn
µ as desired. If on the other hand µ = cn for some c ∈ (0, 1), then by

Corollary 3.1 w.h.p. these two sandwiching coupon collectors finish at times T (X−) =

(1 + o(1)) logn
− log(1−c(1−ε)) and T (X+) = (1 + o(1)) logn

− log(1−c(1+ε)) respectively (provided

we picked ε sufficiently small so that c(1 + ε) < 1 and c(1− ε) > 0). Since ε > 0 was

arbitrary we deduce that T (W) = (1 + o(1)) logn
− log(1−c) as desired. �

4. Fast coverage

Let V be an n-set, and let X be a random covering variable for V with average

coupon size µ = E|X|. If µ < (1 − δ)n for some fixed δ > 0 and X is exchangeable

and uniform, then w.h.p. the covering time T (x) for the X-coupon collector satisfies

T (X) = (1 + o(1)) logn

− log(1− µn )
(Corollary 3.1). However if we replace the ‘exchangeable’

assumption by ‘transitive’, T (X) can be sharply concentrated on a strictly smaller

value. For a balanced, not necessarily uniform X with average coupon size µ < (1−δ)n,

we say that the X-coupon collector is fast if there exists a strictly positive constant

η > 0 such that w.h.p. T (X) < (1 − η) logn

(1− µn )
. In this section, we briefly discuss fast
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coverage. We have already seen one example of a fast coupon collector in Example 5.

We now give a second example of a fast collector which demonstrates a different way

of getting fast coverage.

Example 6. [Coupon collecting on a smaller set] Let V = [k]× [n]. For every i ∈ [n],

let X = [k]× {i} with probability 1
n .

The covering variable X in the example above is transitive and k-uniform. Set N = |V |

and k = nα = N
α

1+α . Provided k = o(N) (i.e. provided α = O(1)), the covering

time of a exchangeable k-uniform coupon collector on an N -set is w.h.p. concentrated

around (1 + o(1))N logN
k . However the X-coupon collector is really collecting from a

smaller set of size n: we may identify each of the coupons [k] × {i} with a singleton

{xi}. We can then couple the X-collector on V with a 1-uniform exchangeable coupon

collector X′ on the set {x1, x2, . . . xn}. By Theorem 1, the covering time T (X) is thus

w.h.p. concentrated around T (X′) = (1 + o(1))n log n =
(

1
1+α + o(1)

)
N logN

k . Thus

for any α > 0, the X-coupon collector finishes collecting earlier than one would expect

knowing only the mean-size of its coupons.

4.1. Sufficient conditions for fast coverage

We have given two instances of fast coverage so far. In Example 5, fast coverage

occurred because though the average coupon size was small, there was a small chance

of ‘winning the lottery’ and receiving a very large coupon. In Example 6, fast coverage

occurred because X was structured in such a way that the problem of covering V = [kn]

with k-sets was actually equivalent to the problem of covering a much smaller set

V ′ = [n], which could be achieved more rapidly (and also entailed having some very

large pairwise correlations qxy).

We can restate these two ‘speeding up’ properties in a formal way.

Theorem 9. Let V be an n-set. Let X be a transitive coupon variable for V with

average coupon size µ = o(n). Then if any of the following conditions are satisfied, X

is fast:

1. there exist some ε > 0 and C ≥ 1 + ε such that P[|X| ≥ Cµ] ≥ 1+ε
C ;

2. there exists 1 � n′ ≤ n
µ , and a partition of V into n′ subsets V = tn′i=1Vi such
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that P(Vi ⊆ X) ≥ (1 + ε) logn′

logn

(
− log

(
1− µ

n

))
for every i ∈ [n′].

Proof. Suppose condition 1 is satisfied. Let η > 0 be a fixed positive number to

be fixed later. We say that coupons of size at least Cµ are large, and we call other

coupons small. We couple X with a transitive Cµ-uniform covering variable Y , by

setting Y to be a Cµ-subset of X chosen uniformly at random if X is large, and to be

the empty set otherwise. By Proposition 2, w.h.p. the Y -collector will need at most

(1 + η) logn

− log(1−Cµn )
non-empty coupons to cover V . Set p = 1+ε

C . Let t be an integer

with (
1 + η

1− η

)(
1

p

)
log n

− log
(

1− Cµ
n

) ≤ t ≤ (1− η)
log n

− log
(
1− µ

n

) .
Since the left hand side is at most 1+η

1−η
1+o(1)

1+ε
logn

− log(1− µn )
, picking η sufficiently small

relative to ε and n sufficiently large, we can always do this. We claim that w.h.p. the

Y -collector will have covered all of V by time t. Indeed, the probability that Y 6= ∅

is, by assumption, at least p. By a standard Chernoff bound, the probability that at

least (1 − η)pt of the first t coupons of the Y -coupon collectors are non-empty is at

least 1 − e−
η2pt

3 = 1 − o(1). (Here we use the fact that pt = Ω

(
logn

− log(1−Cµn )

)
→ ∞

as n → ∞.) Thus w.h.p. by time t we have seen at least (1 − η)pt non-empty Y -

coupons; since, by our choice of t, this is at least (1+η) logn

− log(1−Cµn )
, whence w.h.p. these

non-empty Y -coupons cover all of V . Our coupling of Y with X then implies that

w.h.p. T (X) ≤ t. Since by definition t ≤ (1− η) logn

− log(1− µn )
, we conclude that X is

fast.

For the second part of the theorem, suppose condition 2 is satisfied. We define

a random covering variable Z for [n′] as follows: set Y = {i : Vi ⊆ X}. Set p =

(1+ε) logn′

logn

(
− log

(
1− µ

n

))
. Let η > 0 be chosen sufficiently small so that 1+ε > 1+η

1−η .

Let t be an integer with

(1 + η) log n′

p
≤ t ≤ (1− η)

log n

− log
(
1− µ

n

) .
By our choice of η, and for n sufficiently large, we can always pick such a t. We claim

that w.h.p. the Y -collector will have covered all of [n′] by time t. Indeed by condition

2 the expected number of i ∈ [n′] not covered by the Y -coupon collector by time t is∑
i∈[n′]

(1− P(i ∈ Y ))t ≤ n′(1− p)t ≤ e−η log(n′) = o(1),
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so that by Markov’s inequality w.h.p. the Y -coupon collector has covered [n′] by time t.

By the coupling of Y with X, and the fact that
⋃
i Vi = V , it follows that w.h.p. T (X) ≤

t. Since we chose t ≤ (1− η) logn

− log(1− µn )
, we conclude that X is fast. �

Theorem 9 leaves a number of interesting questions open. To begin with, are there

other, subtler ways of being fast than either winning the lottery or collecting a smaller

coupon set? In particular, are there conditions on the pairwise intensities (qxy)x,y∈V

which imply fast coverage? Furthermore, Theorem 9 says nothing on what the probable

value of T (X) actually is. In cases where X is fast, can we determine good bounds for

ET? With its ties to the k-SAT problem (see the next section), this is one of the most

important open problems related to this paper.

5. Applications

5.1. Connectivity in random graphs

We consider the discrete time multigraph process (Gt)t≥0 obtained by starting with

the empty graph G0 on V = [n] and at each time step t ≥ 1 selecting an edge uv

uniformly at random and adding it to Gt−1 to form Gt. We associate n/2 coupon

collectors Xi to this process, 1 ≤ i ≤ n
2 . The ith such collector aims to cover each i-set

A with an edge from A to V \ A. Since each edge uv connects 2
(
n−2
i−1

)
i-sets to their

complements in V , the ith collector is 2
(
n−2
i−1

)
-uniform and balanced, and aims to cover

a set of size
(
n
i

)
. By Proposition 2, we thus have that her covering time T (Xi) will be

w.h.p. at most (1 + o(1))ti where

ti =
log
(
n
i

)
− log

(
1− 2(n−2

i−1)
(ni)

) =
log
(
n
i

)
− log

(
1− i(n−i)

(n2)

) .
For i = o(n), ti = t1 − n log i

2 + o(n), while for i = θ(n) ti = O(t1/ log n). Further by

Proposition 2 we know that for any fixed η > 0 we have that T (Xi) > (1 + η)ti with

probability at most n−η. Also in the case i = 1 the collector’s random coupon variable

is in fact exchangeable and 2-uniform. By Theorem 8, for any x > 0

P(T (X1) > t1 +
xn

2
) ≤ e−x(1 + o(1)), and

P(T (X1) < t1 −
xn

2
) ≤ e−x(1 + o(1)).
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Thus by the union bound we have that for any x = x(n) > 0,

P
(

max
i
T (Xi) > t1 +

xn

2

)
≤
∑
i

P
(
T (Xi) > ti

(
1 +

log i+ x

log n

)
(1 + o(1))

)
≤(1 + o(1))

∑
i≥1

e− log i+x

≤(1 + o(1))e−x log n

In particular, setting x = ε log n, the inequality above together with our bound on

P(T (X1) < t1 − xn) establishes the following:

Theorem 10. Let ε > 0 be fixed. Then

P (Gt is connected) ≤ n−ε+o(1) for t ≤ n log n

2
(1− ε),

P (Gt is connected) ≥ 1− n−ε+o(1) for t ≥ n log n

2
(1 + ε).

It is easy to relate Gt to the size model Gn,m of random graphs obtained by selecting

m-distinct edges uniformly at random and adding them to the empty graph on n

vertices. Indeed Markov’s inequality shows that for t = O(n log n), w.h.p. Gt contains

only O( t
2

n2 ) = O((log n)2) repeated edges, so one can couple Gt with with Gn,m up

to the connectivity threshold for Gt in such a way that Gn,t−O((logn)2) ⊆ Gt ⊆ Gn,t.

In this way, Theorem 10 allows us to recover (a slightly weaker form of) the classical

results of Erdős and Rényi [17] on the connectivity threshold for Gn,m: w.h.p. Gn,m

becomes connected at size m = (1 + o(1))n logn
2 .

5.2. Covering a square with random discs

We return to Example 4. Let V be the torus obtained by identifying the opposite

sides of the square of area n [0,
√
n]2 ⊂ R2, and let X be the intersection of V with

the disc of radius r = r(n) about a uniformly chosen random point x ∈ V . Draw a

sequence X = (X1, X2, . . .) of independent random subsets of V distributed according

to X. When does their union w.h.p. cover V ? This is known as a coverage problem,

and is a continuous analogue of the coupon collector problem. Coverage problems

have been widely studied in random geometric graph theory, with motivation coming
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from applications to wireless networks, especially sensor networks (see the introduction

of [53] for a history of coverage problems).

We discretise the problem and apply our results to show sharp concentration of the

covering time T = T (X) in the case where r(n) is of order o(
√
n) and bounded away

from 0 (so the measure of X is O(πr2) = o(n)). Tile V with squares of side length s,

where s = s(r, n) is chosen so that s = o(r), s = no(1), and
√
n/s ∈ N. Let T denote

the collection of all the tiles; by construction, |T | = n/s2 Given a disc D of radius r

in V , we let I− to be the collection of tiles wholly contained inside D, and I+ to be

the collection of tiles having non-empty intersection with D. The random variable X

gives rise, via I− and I+, to two random variables X− and X+ taking values among

the subsets of T .

For any D as above, it is easy to show (see e.g. Lemma 8 of [18]) that the boundary

of D meets at most 18πr
s tiles; thus |I−| and |I+| are both within 18πr

s of |D|s2 = πr2

s2 .

Both of X− and X+ are clearly balanced random covering variables for T .

By part 3 of Theorem 5 their covering times T (X−) and T (X+) are therefore

w.h.p. concentrated around log(ns−2)

− log
(

1−πr2n
) = (1 + o(1))n logn

πr2 . Since by construction

of the random variable X− and X+ we have that T (X−) ≤ T (X) ≤ T (X+), we deduce

that w.h.p. the covering time for the torus V satisfies T (X) = (1 + o(1))n logn
πr2 .

It is easy to adapt the argument above to show that the covering time does not

change significantly if instead of a torus we try to cover a square S of area n with discs

of radius r centred at uniformly chosen random points in S. The random covering

variables we use are no longer quite balanced: there are O( r
√
n

s2 ) tiles within distance r

of the boundary of S, each of which is covered with probability at least πr2

2n (1 + o(1)),

and O( r
2

s2 ) tiles within distance r of a corner of S, each of which is covered with

probability at least πr2

4n (1 + o(1)). The first moment method shows both of these sets

of ‘boundary tiles’ are w.h.p. covered by the time we have drawn (1 + ε)n logn
πr2 discs,

while the ‘central tiles’ at distance at least r from the boundary are w.h.p. covered by

that time by our result for the torus. This yields the following well-known result on

covering processes (see [25]).

Theorem 11. Let V be a square or torus of area n. Let X be the intersection of V

with a disc of radius r about a uniformly chosen random point in V , where r = r(n) is
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bounded away from 0 and satisfied r(n) = o(
√
n). Then w.h.p. the covering time T of

the continuous X-coupon collector on V satisfies T (X) = (1 + o(1))n logn
πr2 .

As an example of how to apply part 2 of Theorem 5, we can instead let the radius

be a random variable R satisfying F (r) := P(R ≥ r) = Θ(r−α) (as r → ∞) for

some fixed α > 0. We now want to show that for all but n1+o(1) pairs of tiles x, y,

qxy/qx = o(1/ log n) (uniformly in x and y).

A necessary condition for a disc C covering x to also cover y is that its radius is

at least d(x, y)/2. The distribution of the area of C, conditional on x ∈ C, is the

size-biased version of πR2. Hence

P(radius(C) ≥ r) = Θ(r2P(R ≥ r)) = Θ(r2−α),

and it follows that qxy/qx = O(d(x, y)2−α). If α = 2 + ε for some ε > 0, then we can

apply part 2 of Theorem 5 with pairs x, y considered ’bad’ if d(x, y) < (log n)2/ε. For

each x there are O((log n)4/ε) = no(1) y’s within that distance, and for x, y further

apart qxy/qx = O((log n)−2) = o(1/ log n). So the conditions of part 2 are satisfied,

and the cover time is concentrated around its mean. If on the other hand α ≤ 2, the

probability that R >
√

2n (in which case that disc will cover the entire torus) is at

least Ω(n−1). This is analogous to Example 5 (coupon collector with lottery) and the

cover time will not be sharply concentrated.

More generally, our argument for Theorem 11 in the torus adapts immediately to

any balanced random covering variable X taking values among the compact subsets

of V and satisfying with probability 1 1 |X| ≤ ε|V |, and 2 |∂X| ≤ ε|X|, where |∂X|

denotes the measure (length) of the boundary of X and ε = o(1). For such X, we

again have

T (X) = (1 + o(1))
|V | log |V |

E|X|
.

Thus we may replace ‘disc’ in the results above by e.g. ‘ellipse’, ‘annulus’, ‘square’,

‘polygon’, or even let X be given by a probability distribution on a finite collection

of shapes having the same Lebesgue measure and satisfying the required isoperimetric

inequality. These are special cases of a celebrated result of Janson [31].
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5.3. Covering the edges of a graph by spanning trees, and matroids by bases

Let G be a connected edge-transitive graph, on n vertices, of minimum degree d

and let X be a spanning tree of G drawn uniformly at random from the set of all such

trees. Our goal is now to cover the edge set E of G with the edges of trees from X.

It is well known that the random spanning tree is pairwise negatively correlated,

with respect to the edges, in fact it satisfies the even stronger negative correlation

property of being a Rayleigh measure on E, see [8].

So, from Theorem 5 we can conclude that the covering time T is sharply concentrated

around (nd/2) log(nd/2)
n−1 , as long as d� 1.

Covering the edge set of a graph is a special case of the problem of covering the

ground set of a matroid by random drawn bases of the matroid. In [19] it was shown

that a large class of matroids, the balanced matroids, which contain the class of cycle

matroids of a graph, have pairwise negative correlation. In the same way as for trees

we can conclude that if a balanced matroid of size n has rank r then the covering time

T is sharply concentrated around n log(n)/r, as long as log(r) = o(log(n)).

5.4. Random k-SAT

The Random Boolean Satisfiability (SAT) problem is the following. Given n Boolean

variables x1, x2, . . . xn and an integer sequence k = k(n), we form a random clause

C = l1 ∨ l2 ∨ . . . ∨ lk by selecting a k-subset {y1, y2, . . . yk} of literals uniformly at

random, setting li = yi with probability 1/2 and li = ¬yi otherwise, independently

for each i, and taking C to be the join of the literals li. We now consider a sequence

of independent, identically distributed random clauses C1, C2, . . ., with distribution

given by C, and define a sequence of logical formulae in conjunctive normal form

Ft =
∧t
i=1 Ci for t = 0, 1, . . .. For n→∞, the random k-SAT problem asks whether or

not there exists w.h.p˙ an assignment of truth values to the variables x1, . . . , xn such

that the logical formula Ft is satisfied. The random k-SAT problem is of fundamental

importance to theoretical computer science and has been extensively studied (see [11]).

Here we note that this problem is equivalent to determining the covering time of a

coupon collector problem. The space of satisfying assignments for a formula consisting

of t clauses involving n variables can be viewed as the complement of the union of t

subcubes of {0, 1}n. If each of those t clauses involves exactly k distinct literals (that
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is, if we are working with an instance of k-SAT), then each of those t subcubes has

dimension n− k. In particular, we can couple the sequence of i.i.d. clauses C1, C2, . . .

with a sequence of independent coupons X1, X2, . . ., with Xi ∼ X, where X is the

random coupon given by selecting an (n−k)-dimensional subcube of the n-dimensional

discrete hypercube V = {0, 1}n uniformly at random. The formula Ft is then satisfiable

if and only if the X-coupon collector has failed to cover V by time t.

The random variable X is 2n−k-uniform and transitive. Proposition 2 thus gives

some elementary upper bounds on the satisfiability threshold T (X) for Ft: for any

ε > 0, w.h.p.

T (X) ≤ (1 + ε)
log 2n

− log(1− 2−k)
= (1 + ε)n

log 2

− log(1− 2−k)
.

For k(n) large enough this bound is in fact an equality, as first proven in [23]. Using

Theorem 5 we can obtain the same result.

Theorem 12. Let k = log2 n + ω(n), where ω(n) → ∞, then w.h.p. T (X) = (1 +

o(1))n2k log 2

Proof. Let N = 2n be the number of vertices in the hypercube Qn, our base

set. We shall show condition 1 in Theorem 5 is satisfied to deduce the claimed

sharp concentration result for T (X). Checking that 1 holds is a matter of simple

computations. Most of the estimates needed here are standard so we only sketch the

argument. We note first of all that in our setting, for any pair of vertices x and y at

Hamming distance i in the hypercube Qn,

qxy =

(
n−i
k

)
2k
(
n
k

)
By symmetry, condition 1 is equivalent to

S =
∑
y 6=0

(exp(tq0,y)− 1) = o(N).

Now the threshold for k-satisfiability we shall obtain from Theorem 5 (which is

the first moment threshold) is N logN/(N/2k) = 2kn log 2. We therefore let t =
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2kn log 2 · (1− δn) for some δn = o(1) to be determined later. Now

S =
∑
y

[−1 + exp(n log 2 · (1− δn) · 2kq0,y)]

=
n−k∑
i=1

(
n

i

)[
−1 + exp

(
n log 2 · (1− δn) ·

(
n−i
k

)(
n
k

) )]
Let ai be the i:th term of this sum. We deal separately with the three cases i ≥ n

2−
n
k ,

n ln k
k−1 ≤ i < n

2 −
n
k and i < n ln k

k−1 . In the first case, we change the summation index so

that i = n
2 − j. Note that(

n−i
k

)(
n
k

) ≤ (1− i

n

)k
= 2−k

(
1 +

2j

n

)k ≤ 2−k exp
(2jk

n

)
Summing over all j such that −n2 ≤ j <

n
k we get that

2−n
n−k∑

i=n
2−

n
k

ai = 2−n

n
k∑

j=k−n2

(
n

n
2 − j

)[
−1 + exp

(
n log(2) ·

(n
2−j
k

)(
n
k

) )]

≤ −1 + exp(2−ω(n)e2) = o(1)

In the second case a convexity argument shows that

2−n

n
2−

n
k∑

i=n ln k
k−1

ai ≤ exp
(

log n− 2n

k2
+ o(1)

)
= o(1)

Finally, for i ≤ n log k
k−1 , coarser bounds suffice:

(
n−i
k

)
/
(
n
k

)
≤ 1 and log

(
n
i

)
≤ 2i log(n/i).

Thus

2−n

n log k
k−1∑
i=1

ai ≤ 2−n

n log k
k−1∑
i=1

exp
(

2i log
(n
i

)
+ n log(2)(1− δn)

)
= n exp

(
n
[2 log(k)2

k
− log(2)δn

])
,

which is o(1) provided log(2)nδn− 2n log(k)2

k − log(n)→∞; this is satisfied for instance

if we choose δn = (log n)−
1
2 .

Together these three cases, and the choice of δn above give that 2−n
∑n−k
i=1 ai = o(1),

or in other words that S = o(N), and condition 1 is satisfied (since S = o(N) and∑
x e
−qxt = eNδn = ω(1)). The result is then immediate from Theorem 5. �

For constant k the simple first moment bound does not give the correct value for the

satisfiability threshold. For k = 3 our simple upper bound is T (X) ≤ (5.190 . . .+ o(1))n
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and it has been shown that T (X) ≤ 4.506n, [14]. Heuristics based on spin-glass theory

has lead to the conjecture that the correct threshold is 4.267 . . . n, see [42]. The well

known satisfiability conjecture states that for each k there exists a constant ck such

that the threshold for random k-SAT is ckn. Recently a proof of this conjecture for

sufficiently large values of k has been announced [13]. It is also known [11] that as k

increases the threshold location scales as 2k ln 2− 1/2(1 + ln 2) + ok(1), thus matching

to leading order the bound given by the coupon collector.

6. Concluding remarks

Another natural coupon collector problem is the q-colourability of the uniform

random graph. Here the set V we are covering is the set of all strings of length n over

the alphabet [q]. Each string is interpreted as a vertex colouring of an n vertex graph.

For each edge e in the complete graph on n vertices we create a coupon consisting of

all colourings in which the endpoints of e have the same colour. The covering time T

for this coupon process now corresponds to the threshold for a uniform random graph

of size T on n vertices ceasing to be q-colourable.

This coupon collector process is not balanced: colourings with more unequal colour

class sizes induce more monochromatic edges and are therefore easier to cover. How-

ever, most colourings have almost balanced color class sizes, and restricting our atten-

tion to balanced colourings leads to a transitive coupon collector.

Denote by X the random coupon variable associated with the process; X has size

q−1|V | and is transitive and uniform, but is very much non-exchangeable: there are

both strong positive and strong negative correlations between the various colourings,

so that our Theorems 5 and 6 do not apply. For q = 2, it is known that the covering

time T (X) is not sharply concentrated. This stands in contrast with the situation for

q ≥ 3: in [1] it was proven that the chromatic number of a random graph with edge

probability p = c
n has two possible values, and for all but a discrete sequence of values

for c w.h.p. only one value. This result would follow directly from a sharp threshold

result for the coupon collector process described above.

A natural question is then whether any transitive, cn-uniform random coupon

variable X with c > 0 sufficiently small has sharp concentration of T (X), i.e. whether
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random q-colouring threshold for large q is determined by general coupon collector

results (as opposed to specific structural features of the random colouring setting).

In a different direction, much remains to be done on the case of fast coupon collec-

tors, as remarked at the end of Section 4. The k-SAT problem for small k gives us an

example of a transitive, uniform and linear-sized coupon collector which is fast. The

difficulty of that problem suggests the rigorous study of fast coupon collectors will be

hard in general. Nevertheless we feel that the following problems are well-motivated,

and for µ small enough may prove tractable.

Problem 1. Let X be a µ-uniform transitive random covering variable for an n-set

V .

1. Give estimates for the value of T 1
2

in terms of µ and the pairwise intensities

qxy = P({x, y} ⊆ X), x, y ∈ V ;

2. Give sufficient conditions for T (X) to be sharply concentrated about T 1
2
.
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[8] J. Borcea, P. Brändén, and T. Liggett. (2009). Negative dependence and

the geometry of polynomials. J. Amer. Math. Soc., 22(2):521–567.

[9] Fan R.K. Chung and Linyuan Lu. (2006). Complex graphs and networks,

volume 107. American mathematical society Providence.
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usages dans la théorie des hasards. Mém. Acad. Roy. Sci. Paris, 6:353–371.

[13] J. Ding, A. Sly, and N. Sun. (2015). Proof of the satisfiability conjecture for

Large k. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory

of Computing, STOC ’15, pp 59–68.

[14] O. Dubois, Y. Boufkhad, and J. Mandler. (2000). Typical random 3-SAT

formulae and the satisfiability threshold. In Proceedings of the Eleventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp 126–127.

[15] P.J. Eicker, M.M. Siddiqui, and P.W. Mielke. (1972). A matrix occupancy

problem. The Annals of Mathematical Statistics, 43(3):988–996.
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