Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Tissue classification based on 3D local intensity structures for volume rendering

Tools
- Tools
+ Tools

Sato, Y., Westin, C.-F., Bhalerao, Abhir, Nakajima, S., Shiraga, N., Tamura, S. and Kikinis, R. (2002) Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, Volume 6 (Number 2). pp. 160-180. ISSN 1077-2626.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1109/2945.856997

Request Changes to record.

Abstract

This paper describes a novel approach to tissue classification using three-dimensional (3D) derivative features in the volume rendering pipeline. In conventional tissue classification for a scalar volume, tissues of interest are characterized by an opacity transfer function defined as a one-dimensional (1D) function of the original volume intensity. To overcome the limitations inherent in conventional 1D opacity functions, we propose a tissue classification method that employs a multidimensional opacity function, which is a function of the 3D derivative features calculated from a scalar volume as well as the volume intensity. Tissues of interest are characterized by explicitly defined classification rules based on 3D filter responses highlighting local structures, such as edge, sheet, line, and blob. which typically correspond to tissue boundaries, cortices, vessels, and nodules, respectively, in medical volume data. The 3D local structure filters are formulated using the gradient vector and Hessian matrix of the volume intensity function combined with isotropic Gaussian blurring. These filter responses and the original intensity define a multidimensional feature space in which multichannel tissue classification strategies are designed. The usefulness of the proposed method is demonstrated by comparisons with conventional single-channel classification using both synthesized data and clinical data acquired with CT (computed tomography) and MRI (magnetic resonance imaging) scanners. The improvement in image quality obtained using multichannel classification is confirmed by evaluating the contrast and contrast-to-noise ratio in the resultant volume-rendered images with variable opacity values.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
Divisions: Faculty of Science, Engineering and Medicine > Science > Computer Science
Journal or Publication Title: IEEE Transactions on Visualization and Computer Graphics
Publisher: Institute of Electrical and Electronics Engineers
ISSN: 1077-2626
Official Date: 2002
Dates:
DateEvent
2002Published
Volume: Volume 6
Number: Number 2
Number of Pages: 21
Page Range: pp. 160-180
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us