Non-adherence to antihypertensive medications is related to pill burden in apparent treatment resistant hypertensive individuals

Short title: Antihypertensive nonadherence and pill burden

Alexander J LAWSON1, Mohammed Awais HAMEED1, Roger BROWN2, Francesco P CAPPUCCIO3, Stephen GEORGE1, Thomas HINTON4, Vikas KAPIL5, Jane LENART6, Melvin D LOBO5, Una MARTIN6, Madhavan MENON7, Angus NIGHTINGALE4, Paul B RYLANCE8, David J WEBB9, Indranil DASGUPTA1,10

1Heartlands Hospital, Birmingham, United Kingdom, 2Queen's Medical Research Institute, Edinburgh, United Kingdom, 3University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom, 4University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom, 5William Harvey Research Institute, Barts BP Centre of Excellence, Barts Heart Centre & Queen Mary University London, London, United Kingdom, 6Queen Elizabeth Hospital, Birmingham, United Kingdom, 7University Hospitals of North Midlands NHS Trust, Stoke, United Kingdom, 8Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom, 9BHF Centre of Research Excellence, University of Edinburgh, United Kingdom and 10Warwick Medical School, University of Warwick, United Kingdom.

This work has been presented at the British and Irish Hypertension Society and Renal Association, UK annual conferences in 2018, and published as abstracts.

Conflicts of Interest and Sources of Support: FC is Trustee and President of the British and Irish Hypertension Society and Advisor to the World Health Organization. TH is funded by the BHF and David Telling Trust. VK and ML have received funding from Barts Charity. MM has received honoraria from Vifor Pharma. AN has received funding from the Biomedical Research Centre. For the remaining authors none were declared.

Funding for this work: none

Corresponding author:

Professor Indranil Dasgupta
Renal Unit, Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS
Email: indranil.dasgupta@uhb.nhs.uk
Twitter handle: @idasgupta7

Word count: 3,369
Number of tables: 2
Number of figures: 3
Number of supplementary digital content files: 0
Abstract:
Objective: Non-adherence to medication is present in ≥50% of patients with apparent treatment resistant hypertension. We examined the factors associated with non-adherence as detected by an LC-MS/MS based urine antihypertensive drug assay.

Methods: All urine antihypertensive test results, carried out for uncontrolled hypertension (BP persistently >140/90 mmHg) between January 2015 and December 2016 at a single toxicology laboratory were analysed. Drugs detected were compared to the antihypertensive drugs prescribed. Patients were classified as adherent (all drugs detected), partially non-adherent (≥1 prescribed drugs detected) or completely non-adherent (no drugs detected). Demographic and clinical parameters were compared between the adherent and non-adherent groups. Binary logistic regression analysis was performed to determine association between non-adherence and demographic and clinical factors.

Results: Data on 300 patients from 9 hypertension centres across the UK were analysed. The median age was 59 years, 47% female, 71% Caucasian, median clinic BP was 176/95 mmHg and the median number of antihypertensive drugs prescribed was four. One hundred and sixty-six (55%) were non-adherent to prescribed medication with 20% of these being completely non-adherent. Non-adherence to antihypertensive medication was independently associated with younger age, female gender, number of antihypertensive drugs prescribed, total number of all medications prescribed (total pill burden) and prescription of a calcium channel blocker.

Conclusion: This LC-MS/MS urine analysis-based study suggests the majority of patients with apparent treatment resistant hypertension are non-adherent to prescribed treatment. Factors that are associated with non-adherence, particularly pill burden, should be taken into account while treating these patients.

Keywords: hypertension, resistant, adherence, antihypertensive, screening, LC-MS/MS
Introduction:

Hypertension is one of the most important preventable causes of premature morbidity and mortality throughout the world. In 2017, globally, 10.4 million deaths and 218 million disability-adjusted life-years were attributable to high systolic blood pressure (BP) (2). Treatment resistant hypertension (TRH) is reportedly present in 5 to 30% of the total hypertensive population [1-6]. It is defined as office BP above 140/90 mmHg whilst on ≥3 antihypertensive agents (one of which is usually a diuretic) at optimal or maximum tolerated doses [7-10].

Patients with TRH are nearly 50% more likely to develop a cardiovascular event compared to those without [11]. One study estimated the risk of developing a fatal or non-fatal cardiovascular event over 5 years to be 2.4 fold higher in TRH compared with non-TRH [12]. Another analysis of 470,386 hypertensive patients from a single health care system showed that patients with TRH, compared to non-TRH, had increased risks of end stage kidney disease, ischaemic heart disease, heart failure, stroke, and mortality; with multivariable adjusted hazard ratios (95% confidence intervals) of 1.32 (1.27–1.37), 1.24 (1.20–1.28), 1.46 (1.40–1.52), 1.14 (1.10–1.19), and 1.06 (1.03–1.08), respectively [13]. A post-hoc analysis of Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) suggests that the risks of end stage kidney disease, cardiovascular events and mortality may be even higher than that found in the aforementioned study [14].

However, the true prevalence of TRH is difficult to determine because of apparent resistance due to white coat hypertension, poor adherence with prescribed medication, poor BP measurement techniques and inappropriate combination of treatment [15,16]. Notwithstanding the poor prognosis, as many as 53% of those with TRH are reported to be non-adherent to their prescribed medication [17]. Until recently, however, no simple, objective test of adherence existed, with commonly used indirect methods such as patient
interview, prescription refill, and pill counts often inaccurate. Supervised administration of medications and monitoring of BP in directly observed therapy clinics are more accurate but costly in regards to bed/clinic usage and staff time, inconvenient and sometimes harmful to non-adherent patients [15,16].

This need, coupled with the increased availability of more sensitive and robust mass spectrometry instrumentation, has led our group and others [17-19] to develop an objective test of adherence that is easy to administer, quick, inexpensive, and reliable, in order to identify patients with true resistance to antihypertensive drugs to optimize their treatment.

The aims of this retrospective analysis were: (1) to determine the prevalence of non-adherence in a cohort of apparent TRH using a well validated, liquid chromatography-tandem mass spectrometry (LC-MS/MS) based urine drug assay (16); and (2) to ascertain the risk factors for non-adherence using routinely collected demographic and clinical parameters.
Materials and Methods:

Study Population – All patients with uncontrolled hypertension (clinic BP >140/90 mmHg on treatment) presenting to 9 hypertension centres across the U.K who had urine antihypertensive assay carried out in a single toxicology laboratory between January 2015 and December 2016. The centres included were Heartlands Hospital, Birmingham; University Hospitals Coventry and Warwickshire NHS Trust, Coventry; University Hospitals Bristol NHS Foundation Trust, Bristol; Barts Heart Centre, London; Queen Elizabeth Hospital, Birmingham; University Hospitals of North Midlands NHS Trust, Stoke on Trent; Royal Wolverhampton NHS Trust, Wolverhampton; and the BHF Centre of Research Excellence, Edinburgh. All patients provided verbal consent for urine drug testing, but they had not been informed beforehand that that drug testing would be carried out at their clinic visit.

Clinical Assessment – All patients had white coat hypertension excluded by ambulatory BP monitoring (by home BP in a few patients who did not tolerate or refused ambulatory monitoring), and secondary hypertension by appropriate investigations as per hospital protocol in each centre. Demographic details, clinic BP (taken using a validated BP monitor), eGFR, body weight, body mass index and list of all medications including antihypertensive medication were collected at clinic visits and recorded on urine analysis request forms for all patients. These data were used for analyses in this study.

Drug Analysis – All urine samples received for urinary anti-hypertensive drug screening during the timeframe were analysed using the method outlined elsewhere (19). Briefly, standards or samples (50 µL) were manually pipetted into a 1.1 mL screw-topped conical glass vial. To this, 150 µL of an internal standard solution containing deuterated amlodipine, bisoprolol, doxazosin, hydrochlorothiazide and ramipril was added. Samples were vortex mixed for 10 sec and transferred to the LC-MS/MS instrument for analysis. For the period of audit, the LC-MS/MS assay detected the following drugs and metabolites: amlodipine,
felodipine, nifedipine, verapamil, diltiazem, lisinopril, perindopril, ramipril, enalapril, losartan, irbesartan, candesartan, indapamide, furosemide, bendroflumethiazide, hydrochlorothiazide, spironolactone metabolite, atenolol, labetalol, bisoprolol, metoprolol, doxazosin, and moxonidine.

Data Analysis - All urine antihypertensive test results performed for apparent TRH patients between January 2015 and December 2016 at Heartlands Hospital toxicology laboratory were included in the data set. Drugs detected were compared to the antihypertensive drugs prescribed. Patients were classified as adherent (all drugs detected) or non-adherent (≥1 prescribed drug not detected). None of the subjects in the present cohort was on a drug that was not detectable by the assay.

Statistical Package for the Social Sciences (SPSS) version 22 (IBM) was used for statistical analysis. Demographic and clinical data were compared across the two groups using a Mann-Whitney U, for the continuous variables which were non-parametric). Pearson Chi-Square test was used for categorical variables. The parameters compared were age, gender, ethnicity, body weight, body mass index (BMI), estimated glomerular filtration rate (eGFR), clinic systolic and diastolic BP readings at the point of urine testing, total number of medications prescribed (total pill burden) and number of antihypertensive medications prescribed. Class of drugs prescribed (angiotensin-converting enzyme inhibitors [ACE-I], angiotensin II receptor antagonists [ARB], beta-blockers, calcium channel antagonists, diuretics and other antihypertensive medications) were also compared to adherence class.

Binary logistic regression was used to generate prediction models for overall non-adherence (20). Adherence status was used as the binary dependant variable, where non-adherence was defined as absence of at least 1 antihypertensive in the urine antihypertensive assay. A preliminary analysis was carried out which included all basic demographics (age, gender
ethnicity) and clinically-relevant variables (systolic and diastolic BP, eGFR, BMI, total pill burden, number of prescribed antihypertensive drugs and antihypertensive drug classes). Variables that were significantly different (p<0.05) between the Adherent and Non-adherent groups were included in the regression model. Thus, the final prediction model was adjusted for gender, age, systolic and diastolic BP, eGFR, number of prescribed antihypertensive drugs, total pill burden, and a binary variable indicating whether a patient was prescribed calcium channel blockers and diuretics (Model 1). To check for the sensitivity of the missing values, a second model was produced which was adjusted for gender, age, number of antihypertensives, calcium channel blocker and diuretic use (Model 2). The models’ generalisability was evaluated using receiver operating characteristic (ROC) curve to estimate the area under the curve. Nagelkerke pseudo R2 was used to summarise the proportion of variation in the dependant variable associated with the predictor or independent variables.

As this analysis was conducted as part of a clinical audit project, Research Ethics Committee approval for the study was not required.
Results:

Three hundred and twenty-two urine samples from 9 hypertension centres across the UK were received for analysis during the timeframe. Nineteen patients were excluded for duplicate urine samples received and 3 for missing gender description. Thus, 300 patients were included in the analysis: the median age was 59 years, 47% were female and 71% Caucasian. The demographic and clinical characteristics of the patients are shown in Table 1.

The median number of antihypertensive drugs prescribed was 4; 166 (55.3%) were non-adherent to prescribed medication with no prescribed drug detected in 60 (20%) of patients. Non-adherent patients were younger with a median age of 57 years compared to 66 years in the adherent group (p<0.001). There were more females (54% vs. 37%, p<0.001) (Figure 1).

Non-adherent patients had higher systolic (mean 181 vs. 172 mmHg, p = 0.027) and diastolic BP (100 vs 90 mmHg, p<0.001); and they were on higher number of antihypertensive drugs (median 4 vs 3, p<0.001, Table 1, Figure 1) and total number of drugs prescribed (median 7 vs 5, p<0.001, Table 1, Figure 2). They also had higher median eGFR (76 ml/min/m²) compared with adherent patients (66 ml/min/m²). More patients in the non-adherent group were prescribed calcium channel blockers (87% vs 59%) and diuretics (84% vs 64%) compared with the adherent group (Table 2). Figure 3 shows the number of drugs in each class of antihypertensive agents prescribed versus number detected on urine testing. Further sensitivity analysis suggested that dihydropyridine calcium channel blockers were more likely to be associated with non-adherence (66.3% in non-adherent group, 33.7% in adherent group, p<0.0001) than the non-dihydropyridine calcium channel blocke, (55.6% in non-adherent group, 44.4% adherent group, p=1).

We also conducted an exploratory comparative analysis of demographic and clinical correlates of complete non-adherence and partial non-adherence. Those who were completely non-adherent were younger (median age 53 vs 58 years, p=0.033) and there were more males
(54% vs 46%, p=0.003) in the complete non-adherence group. All of the other parameters were equally distributed between the groups.

A logistic regression was performed on 206 patients with complete data on all variables, to ascertain the effects of gender, age, systolic and diastolic BP, number of all prescribed antihypertensive medications, prescribed diuretics and calcium channel blockers, and total number of all medications prescribed on the odds that patients are non-adherent to antihypertensive medications (Table 2). The logistic regression model was statistically significant, χ^2 (d.f. 4) = 80.8, $p<0.001$, Nagelkerke R-square 43.3%, correctly predicted 73.3% and the area under the curve for this logistic regression model was 0.79 (CI: 0.74, 0.84; $p<0.001$) suggesting a fair level of discrimination.

In this model (Model 1, n = 206) female gender, total pill burden, higher number of antihypertensive drugs and prescription of calcium channel blockers were all associated with a higher odds ratio (OR) of non-adherence; whilst increasing age was associated with lower OR of non-adherence. Model 2 (n=298, after excluding variables with missing data), supported the results (Table 2). Figure 4 shows the probability of non-adherence in each age quartile in relation to gender, the number of antihypertensive drugs prescribed and prescription of calcium channel blockers.
Discussion:

This study, using a LC-MS/MS based urine drug assay in 300 patients with apparent TRH from nine hypertension centres in the UK, demonstrated that 55% of patients were non-adherent to their prescribed medications with 20% being completely non-adherent. Younger age, female gender, total pill burden, number of antihypertensive drugs prescribed and prescription of calcium channel blockers were independently associated with non-adherence.

Suboptimal adherence or non-adherence is common in all chronic conditions; on average around 50% of all prescribed medications for chronic conditions are not taken as prescribed [21,22]. The conditions most frequently studied have been HIV/AIDS, tuberculosis, epilepsy, psychiatric disorders, asthma, chronic obstructive pulmonary disease, cardiovascular disease or cardiovascular risk, hypertension, and diabetes [21,23]. Medication wastage due to non-adherence places an enormous cost burden on the health care system [24].

In hypertension, the reported prevalence rate of non-adherence varies between 3 and 65% [15-18,25,26]. This wide variation may be related to the method of assessment and the study population. Studies that used a direct method of assessment - e.g. drug screening using LC-MS/MS or directly observed therapy – report a higher prevalence of non-adherence compared with those that used an indirect method, e.g. prescription refill rate or patient interview. Similarly, studies involving patients with apparent TRH report a much higher prevalence of nonadherence compared with studies in unselected cohorts of hypertensive individuals. The prevalence rate of 55% in our study is similar to other studies that used urine drug monitoring in cohorts of apparent TRH [17,25].

The patient cohort in this study was derived from nine hypertension clinics across the UK. The median number of antihypertensive agents prescribed was four, and all of the patients had secondary hypertension and white-coat effect excluded before urine drug screening was
carried out. Therefore this was a group of patients with apparent resistance to antihypertensive treatment. Observational cohort or cross-sectional studies from specialist hypertension centres form the mainstay of studies describing the prevalence of non-adherence among patients with TRH reporting high non-adherence rate (50-65%) using serum or urine drug assays [17,25,26]. On the other hand, population studies using indirect measures of adherence in large populations report much lower non-adherence rates [27,28].

A recent systematic review summarized 24 published studies reporting adherence in TRH [25]. There was an average of 86 patients from 21 studies, the largest of which included 339 patients. Pooled mean non-adherence rate was 31.2%, with the highest rates reported in studies that used direct methods testing patients’ sera or urine, followed by studies that used directly observed therapy (47.9% and 44.6% respectively). The lowest rate of non-adherence was found in a study reporting on medication possession ratio at 3.3%.

There were significant differences in demographic and clinical parameters between adherent and non-adherent patients in this study. Younger age, female gender, number of antihypertensive medications prescribed and the prescription of calcium channel blockers were independently associated with antihypertensive drug non-adherence. These findings are consistent with a recently published study of 1348 patients with hypertension from the UK and Czech Republic, in which adherence was measured in urine and serum respectively by LC-MS/MS. That study found younger age, female gender, the number of antihypertensive medications prescribed and prescription of diuretics to be associated with non-adherence [29]. However, in the aforementioned study, the number of antihypertensive medications prescribed was fewer (median 4 and 3 respectively); and BP readings, the number of all
medications (hypertensive and non-hypertensive) prescribed, ethnicity, BMI and eGFR were not reported.

The association between younger age and medication non-adherence has been observed in many chronic conditions including hypertension, diabetes, asthma, heart failure and depression [30]. However, the association between age and non-adherence in hypertension is variable with younger age [29,31-33], older age [34] or no association reported [35,36]. Younger patients with busy working lives may have higher unintentional non-adherence. Lifelong treatment for a chronic asymptomatic illness may also be a contributing factor. Conversely, older patients, with greater burden or severity of illness, are more motivated to adhere, and some may have carers to ensure optimal adherence. Furthermore, these patients may represent a survivor cohort effect, implying successful medication-taking behaviour.

Lower medication adherence among women has been observed in various chronic conditions [37-39] including hypertension [29,32,34,40] The underlying mechanism for this association is unclear, but gender-specific factors may be responsible. Different behavioural attitudes have been observed with more men admitting to forgetting or changing the dosage or think they have recovered from the condition. More women report filling the prescription but not taking the drug, and attribute non-adherence to adverse drug reactions [41]. Whilst sexual dysfunction and body mass index of ≥ 25.0 kg/m2 are associated with non-adherence in hypertensive men, dissatisfaction with communication with the healthcare provider and depressive symptoms are associated with lower adherence in women [42].

The most important and novel observation in our study is that non-adherence to antihypertensive treatment was independently associated with two separate measures of
polypharmacy, i.e. the number of prescribed antihypertensives and the total number of prescribed medications in a cohort with apparent treatment resistant hypertension. The association between polypharmacy and medication non-adherence has been reported in a number of chronic conditions; including hypertension, type 2 diabetes, coronary artery disease and after discharge from hospital following inpatient admission; and has been shown to be associated with poorer outcomes [43-48]. Non-adherence is particularly common among community dwelling elderly adults who are on multidrug regimens for several comorbid conditions presenting a unique challenge to patients and caregivers, and is a public health concern [49,50]. Limited evidence suggests that deprescribing may improve medication adherence in this situation [51]. In addition to improving adherence, deprescribing helps resolution of adverse drug reactions, increases patient engagement with treatment, and reduces medication wastage and cost to the health service [52].

In hypertensive individuals, simplification of treatment regimen has been shown to improve BP control [53]. Indeed, a number of studies in mild to moderate hypertension have demonstrated improvement in BP control with single pill fixed-dose combination therapy [54-56], supporting the view that pill burden is an important intervention target for improving long term medication adherence [40]. This concept has been incorporated into the recent European Society of Cardiology – European Hypertension Society (ESC-ESH) Guidelines on hypertension [57]. However, the evidence in apparent TRH is scanty. A pilot study of 13 patients found a single-pill fixed triple drug combination reduced clinic BP by 22.8/13.6 mmHg and 9.3 mmHg in 24-hr mean arterial BP after 18 weeks [58]. Larger studies are required to substantiate this.
Previous findings of a highest risk of nonadherence with diuretics [29,59], when compared to other classes of antihypertensives, is not replicated in our logistic regression model. Instead, prescription of a calcium channel blocker (mainly dihydropyridine) was predictive of non-adherence. The reason for this discrepancy is unclear. However, in the metanalysis quoted above (59), the authors suggested that their observation of diuretics being the most common class of antihypertensive associated with non-adherence could not be generalised to those taking ≥1 agent. Moreover, this meta-analysis excluded cross-sectional studies reporting adherence at a single point in time, making direct comparison with our results inappropriate.

A recently published study investigating the contribution of adverse effects on antihypertensive medication non-adherence has demonstrated that both hydrochlorothiazide, a diuretic, and nifedipine, a dihydropyridine calcium channel blocker, are independently associated with non-adherence, attributable to adverse effects [60]. This finding should prompt clinicians to assess the impact of adverse effects and pharmacological interactions of commonly prescribed antihypertensive agents.

Reasons for medication non-adherence are complex and multifactorial. Socio-economic, health system-related, therapy-related, condition-related and patient-related factors have been implicated [61,62]. Patients’ perception of disease and control, treatment-related beliefs, coherence of beliefs from experience with medication, habit strength, and pill burden play important roles [355,40]. Longitudinal studies are needed to elucidate the roles of these factors in predicting adherence at various stages of the chronic illness trajectory including that of hypertension.

Our study has a number of limitations. This was a retrospective study based on the demographic and clinical information provided on the request form for urine drug assay. The
BP readings used in the analysis were clinic/office BP readings at the point of urine testing; ambulatory readings were not taken at the point of sending the urine sample. Medication doses were not consistently recorded. Adherence was tested only at a single point of time; no conclusion can be drawn on long-term adherence in this cohort. Indeed, adherence testing at a single time point may have overestimated adherence as medication adherence is known to increase as a clinic visit approaches - the so called ‘white coat adherence’ [63]. Finally, there were some missing data, for which we performed a further logistic regression analysis, excluding parameters with missing values, which supported the results of the main model.

The strengths of the study are that the patient sample was drawn from nine hypertension centres across the UK and the urine tests were carried out at a single toxicological laboratory using a clinically validated, sensitive and specific LC-MS/MS assay. The patient cohort had ethnicity composition reflecting the current British urban population. They had uncontrolled hypertension and were prescribed a median of 4 antihypertensive drugs each. All patients had whitecoat effect and secondary hypertension excluded. To our knowledge, this is the largest reported TRH population to have direct testing for adherence to medication. We believe the results of this study are generalizable to the apparent TRH population in the UK.

In conclusion, this study adds to the evidence base suggesting non-adherence to prescribed medications is a major cause of apparent resistance to treatment in hypertensive individuals. Prospective longitudinal studies are needed to confirm this. This study also identifies a number of risk factors for non-adherence in this population, which may help to identify patients at risk of medication non-adherence. Of these, pill burden is a modifiable risk factor, which provides an intervention target to improve long-term BP control.

Acknowledgement:
Dr. M. Sayeed Haque, Senior Lecturer in Medical Statistics, Institute of Applied Health Research, University of Birmingham, UK for statistical advice
References:

Table 1: Demography and clinical parameters

<table>
<thead>
<tr>
<th>% missing data</th>
<th>All patients</th>
<th>Adherent</th>
<th>Non-Adherent</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Patients (%)</td>
<td>0</td>
<td>300</td>
<td>134 (44.7)</td>
<td>166 (55.3)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>0</td>
<td>141 (46.8)</td>
<td>52 (36.9)</td>
<td>89 (63.1)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0</td>
<td>59 (49 – 70)</td>
<td>66 (55 – 74)</td>
<td>57 (48 – 64)</td>
</tr>
<tr>
<td>Non-Caucasian (%)</td>
<td>26</td>
<td>65 (29.3)</td>
<td>28 (43.1)</td>
<td>37 (56.9)</td>
</tr>
<tr>
<td>Antihypertensive drugs prescribed</td>
<td>0</td>
<td>4 (3 – 5)</td>
<td>3 (2 – 4)</td>
<td>4 (3 – 5)</td>
</tr>
<tr>
<td>CCB</td>
<td>0</td>
<td>223 (74.3)</td>
<td>79 (59.0)</td>
<td>144 (86.7)</td>
</tr>
<tr>
<td>RASi</td>
<td>0</td>
<td>255 (85.0)</td>
<td>108 (80.6)</td>
<td>147 (88.6)</td>
</tr>
<tr>
<td>Diuretic</td>
<td>0</td>
<td>226 (75.3)</td>
<td>86 (64.2)</td>
<td>140 (84.3)</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>0</td>
<td>136 (45.3)</td>
<td>57 (42.5)</td>
<td>79 (47.6)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>184 (61.3)</td>
<td>74 (55.2)</td>
<td>110 (66.3)</td>
</tr>
<tr>
<td>Total drugs prescribed</td>
<td>24.4</td>
<td>6 (4 – 8)</td>
<td>5 (4 – 7)</td>
<td>7 (5 – 10)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>22.7</td>
<td>176 (160 – 197)</td>
<td>172 (158 – 188)</td>
<td>181 (161 – 201)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>22.7</td>
<td>95 (81 – 110)</td>
<td>90 (75 – 105)</td>
<td>100 (84 – 115)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td>20</td>
<td>71 (55 – 86)</td>
<td>66 (51 – 79)</td>
<td>76 (61 – 89)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>41</td>
<td>31.4 (28.4 – 35.5)</td>
<td>31.0 (28.8 – 36.0)</td>
<td>31.6 (27.8 – 34.9)</td>
</tr>
</tbody>
</table>

All continuous variables reported as median (IQR). All count variables presented as n (%). CCB – calcium channel blocker, RASi – renin angiotensin system inhibitor, BP – blood pressure (clinic), eGFR – estimated glomerular filtration rate, BMI – body mass index.
Figure 1: Number of antihypertensive drugs prescribed in relation to adherence status (n = 300)

Box-and-whisker plot to illustrate differences in antihypertensive medications prescribed (median and IQR, p<0.001).
Figure 2: Number of all drugs prescribed in relation to adherence status (n = 227)

Box-and-whisker plot to illustrate differences in all drugs prescribed (median and IQR, p<0.001).
Table 2: Factors associated with non-adherence to antihypertensive medications

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1 (n = 206)</th>
<th></th>
<th></th>
<th></th>
<th>Model 2 (n = 300)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>95% CI</td>
<td>p</td>
<td></td>
<td>Odds ratio</td>
<td>95% CI</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.97</td>
<td>0.94, 1.00</td>
<td>0.082</td>
<td></td>
<td>0.96</td>
<td>0.94, 0.98</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td>3.18</td>
<td>1.53, 6.59</td>
<td>0.002</td>
<td></td>
<td>2.76</td>
<td>1.58, 4.82</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>No. of antihypertensives</td>
<td>1.69</td>
<td>1.11, 2.58</td>
<td>0.015</td>
<td></td>
<td>1.74</td>
<td>1.32, 2.29</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>prescribed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCB</td>
<td>3.51</td>
<td>1.51, 8.16</td>
<td>0.004</td>
<td></td>
<td>2.66</td>
<td>1.37, 5.19</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Diuretic</td>
<td>0.79</td>
<td>0.30, 2.09</td>
<td>0.643</td>
<td></td>
<td>1.56</td>
<td>0.75, 3.27</td>
<td>0.234</td>
<td></td>
</tr>
<tr>
<td>Total medication</td>
<td>1.18</td>
<td>1.01, 1.37</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP</td>
<td>1.00</td>
<td>0.99, 1.02</td>
<td>0.761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>1.02</td>
<td>1.00, 1.05</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR</td>
<td>1.013</td>
<td>0.99, 1.03</td>
<td>0.112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary logistic regression analysis of factors associated with non-adherence to antihypertensive medications adjusted for age, gender, clinic systolic blood pressure (BP) and clinic diastolic blood pressure, estimated glomerular filtration rate (eGFR), number of antihypertensive drugs prescribed, prescriptions of calcium channel blocker (CCB) and diuretic, and total number of medications (antihypertensive and other medications) prescribed,
Figure 3: Graphical illustration of the number of medications in each antihypertensive class prescribed and detected in urine.

Number of antihypertensives prescribed and detected according to class

<table>
<thead>
<tr>
<th>Medication Class</th>
<th>Prescribed</th>
<th>Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium channel blockers</td>
<td>223</td>
<td>130</td>
</tr>
<tr>
<td>Renin Angiotensin System Inhibitors</td>
<td>263</td>
<td>166</td>
</tr>
<tr>
<td>Diuretics</td>
<td>295</td>
<td>148</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>136</td>
<td>89</td>
</tr>
<tr>
<td>Others</td>
<td>216</td>
<td>134</td>
</tr>
</tbody>
</table>

Calcium channel blockers: Amlodipine, Nifedipine, Felodipine, Diltiazem, Verapamil

Renin Angiotensin System Inhibitors: Lisinopril, Perindopril, Ramipril, Losartan, Irbesartan, Candesartan, Enalapril

Diuretics: Indapamide, Bendroflumethiazide, Hydrochlorothiazide, Furosemide, Spironolactone

Beta blockers: Atenolol, Bisoprolol, Labetalol, Metoprolol

Others: Doxazosin, Moxonidine
Figure 4: Probability of non-adherence by gender and prescription of calcium channel blocker in different age quartiles.