Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/133206

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian Approximation Potential (GAP) framework, fitted to a database of first principles density functional theory (DFT) calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties only observable using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org.

PACS numbers: 65.40.De, 71.15.Nc, 31.50.-x, 34.20.Cf

Tungsten is a hard, refractory metal with the highest melting point (3695 K) among metals, and its alloys are utilised in numerous technological applications. The details of the atomistic processes behind the plastic behaviour of tungsten have been investigated for a long time and many interatomic potentials exist in the literature reflecting an evolution, over the past three decades, in their level of sophistication, starting with the Finnis-Sinclair (FS) potential [1], embedded atom model (EAM) [2], various other FS/EAM parametrisations [3-9], modified embedded atom models (MEAM) [7-10] and bond order potentials (BOP) [11-13]. While some of these methods have been used to study other transition metals [14-16], there is renewed interest in modelling tungsten due to its many high temperature applications—e.g. it is one of the candidate materials for plasma facing components in the JET and ITER fusion projects [17-19].

A recurring problem with empirical potentials, due to the use of fixed functional forms with only a few adjustable parameters, is the lack of flexibility: when fitted to reproduce a given property, predictions for other properties can have large errors. Figure 1 shows the basic performance of BOP and MEAM, two of the more sophisticated potentials that reproduce the correct screw dislocation core structure, and also the simpler FS, all in comparison with density functional theory (DFT). While the figure emphasises fractional accuracy, we show the corresponding absolute numerical values in Table I. BOP is poor in describing the vacancy but is better at surfaces, whereas MEAM is the other way around. While this compromise can sometimes be made with good judgement for specific applications, many interesting properties, particularly those that determine the material behaviour at larger length scales, arise from the competition between different atomic scale processes, which therefore all need to be described equally well. For example, dislocation pinning, depinning and climb involve both elastic properties, core structure, as well as the interaction of dislocations with defects. One way to deal with this problem is to use multiple levels of accuracy as in QM/MM [20] or to allow the parameters of the potential to vary in time and space [21].

Here we describe a milestone in a research programme aimed at creating a potential that circumvents the problem of fixed functional forms. The purpose of the present work is twofold. Firstly, we showcase the power of the non-parametric database driven approach by constructing an accurate potential and using it to compute atomic scale properties that are inaccessible to DFT due to computational expense. Secondly, while there has been vig-

![FIG. 1. Fractional error in elastic constants and defect energies calculated with various interatomic potentials, as compared to the target DFT values.](attachment:fig1.png)

<table>
<thead>
<tr>
<th>Property</th>
<th>DFT</th>
<th>GAP</th>
<th>BOP</th>
<th>MEAM</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11 [GPa]</td>
<td>517</td>
<td>518</td>
<td>522</td>
<td>544</td>
<td>514</td>
</tr>
<tr>
<td>C12 [GPa]</td>
<td>198</td>
<td>198</td>
<td>205</td>
<td>208</td>
<td>200</td>
</tr>
<tr>
<td>C44 [GPa]</td>
<td>142</td>
<td>143</td>
<td>160</td>
<td>160</td>
<td>157</td>
</tr>
<tr>
<td>vacancy energy [eV]</td>
<td>3.27</td>
<td>3.29</td>
<td>4.30</td>
<td>3.49</td>
<td>3.61</td>
</tr>
<tr>
<td>100 surface [eV/Å²]</td>
<td>0.251</td>
<td>0.252</td>
<td>0.221</td>
<td>0.167</td>
<td>0.179</td>
</tr>
<tr>
<td>110 surface [eV/Å²]</td>
<td>0.204</td>
<td>0.204</td>
<td>0.160</td>
<td>0.144</td>
<td>0.158</td>
</tr>
<tr>
<td>111 surface [eV/Å²]</td>
<td>0.222</td>
<td>0.222</td>
<td>0.180</td>
<td>0.184</td>
<td>0.202</td>
</tr>
<tr>
<td>112 surface [eV/Å²]</td>
<td>0.216</td>
<td>0.216</td>
<td>0.182</td>
<td>0.168</td>
<td>0.187</td>
</tr>
</tbody>
</table>

TABLE I. Elastic constants and defect energies calculated with various interatomic potentials, and corresponding target DFT values.
oruous activity recently in developing such models, most of the attention has been focussed on the interpolation method and the neighbourhood descriptors (e.g., neural networks \cite{22, 24}. Shepherd interpolation \cite{25, 26}, invariant polynomials \cite{27, 29}, Gaussian processes \cite{30, 34}), rather less prominence was given to the question of how to construct suitable databases that ultimately determine the range of validity of the potential. Our second goal is therefore to study what kinds of configurations need to be in a database so that given material properties are well reproduced. A larger database costs more to create and the resulting potential is slower, but can be expected to be more widely applicable, thus providing a tuneable tradeoff between transferability, accuracy and computational cost.

In our Gaussian Approximation Potential (GAP) framework \cite{30, 31}, the only uncontrolled approximation is the one essential to the idea of interatomic potentials: the total energy is written as a sum of atomic energies,

\[E = \sum_i \varepsilon(\hat{q}_i), \]

(1)

with \(\varepsilon \) a universal function of the atomic neighbourhood structure inside a finite cutoff radius as represented by the descriptor vector \(\hat{q}_i \) for atom \(i \) (defined below). This function is fitted to a database of DFT calculations using Gaussian process regression \cite{35, 36} so, in general, it is given by a linear combination of basis functions,

\[\varepsilon(\hat{q}) = \sum_j \alpha_j K(\hat{q}_j, \hat{q}) \equiv k(\hat{q})^T \alpha, \]

(2)

where the sum over \(j \) includes (some or all of) the configurations in the database, the vector of coefficients \(\alpha \) are given by linear algebra expressions (see below and in \cite{30}), and the meaning of the covariance kernel \(K \) is that of a similarity measure between different neighbour environments.

The expression for the coefficients \(\alpha_j \)—normally simple in Gaussian process regression—is more complicated in our case because the quantum mechanical input data we can calculate is not a set of values of the atomic energy function that we are trying to fit. Rather, the total energy of a configuration is a sum of many atomic energy function values, and the forces and stresses, which are also available analytically through the Hellmann-Feynman theorem, are sums of partial derivatives of the atomic energy function. The detailed derivation of the formulas shown below is in \cite{38, 40}. Let us collect all the input data values (total energies, force and stress components) into the vector \(y \) with \(D \) components in total and denote by \(y' \) the \(N \) unknown atomic energy values corresponding to all the atoms that appear in all the input configurations. We construct a linear operator \(L \) that describes the relationship between them through \(y = L^T y' \). For data values that represent total energies,

\[
\phi_n(r) = \exp[-(r - r_{cut}n/n_{max})^2/2\sigma_{atom}^2]
\]

\[
S_{nn'} = \int_0^{r_{cut}} dr r^2 \phi_n(r)\phi_{n'}(r)
\]

\[
g_n(r) = \sum_{n'}(U^{-1})_{nn'}\phi_{n'}(r)
\]

\[
f_{cut}(r) = \begin{cases}
1 & 0 < r \leq (r_{cut} - r_{\Delta}) \\
\frac{1}{2} \cos(1 + \pi \frac{r - r_{cut} + r_{\Delta}}{r_{\Delta}}) & (r_{cut} - r_{\Delta}) < r \leq r_{cut} \\
0 & r_{cut} < r
\end{cases}
\]

\[
\sigma_{\text{energy}} \quad 0.0001 \text{ eV/atom}
\]
\[
\sigma_{\text{force}} \quad 0.01 \text{ eV/Å}
\]
\[
\sigma_{\text{virial}} \quad 0.01 \text{ eV/atom}
\]
\[
\sigma_w \quad 1.0 \text{ eV}
\]
\[
\sigma_{\text{atom}} \quad 0.5 \text{ Å}
\]
\[
\xi \quad 4
\]
\[
n_{\text{max}} \quad 14
\]
\[
l_{\text{max}} \quad 14
\]

\textbf{TABLE II. DFT parameters used to generate training data and GAP model parameters.}

the corresponding rows of \(L \) have just 0s and 1s as their elements, but for forces and stresses, the entries are differential operators such as \(\partial \partial x_i \) corresponding to the force on atom \(i \) with cartesian \(x \) coordinate \(x_i \). Writing \(K_{ij} = K(\hat{q}_i, \hat{q}_j) \) for the element of the covariance matrix \(K_{NN} \) corresponding to atoms \(i \) and \(j \), the covariance matrix of size \(D \times D \) of the observed data is,

\[K_{DD} = L^T K_{NN} L, \]

(3)
where the differential operators in L act on the covariance function K that defines K_{NN}. In our applications, N can exceed a hundred thousand, and therefore working with $N \times N$ matrices would be computationally very expensive. Because many atomic environments in our dataset are highly similar to one another, it is plausible that many fewer than N atoms could be chosen efficiently to represent the range of neighbour environments. We choose M representative atoms from the full set of N atoms that appear in all the input configurations (typically with $M \ll N$), and denote the square covariance matrix between the M representative atoms by K_{MM} and the rectangular covariance matrix between the M representative atoms and all the N atoms by K_{MN} (with $K_{NM} = K_{MN}^T$). The expression for the vector of coefficients in equation (2) is then,

$$\alpha = [K_{MM} + K_{MN}L\Lambda^{-1}L^TK_{NM}]^{-1}K_{MN}L\Lambda^{-1}y,$$

with

$$\Lambda = \sigma^2 I,$$

where the parameter σ represents the tolerance (or expected error) in fitting the input data. It could be a single constant, but in practice we found it essential to use different tolerance values corresponding to the different kinds of input data, so that the Λ matrix is still diagonal, but has different values corresponding to total energies, forces and stresses as they appear in the data vector y. Although one might initially expect zero error in $ab \ initio$ input data, this is not actually the case due to convergence parameters in the electronic structure calculation. A further source of error in the fit is the uncontrolled approximation of equation (3), i.e. writing the total energy as a sum of local atomic energies. The numerical values we use are shown in Table I. They are based on convergence tests of the DFT calculation carried out on example configurations.

We note the following remarks about the expression in (4). The quantum mechanically not defined and therefore unknown atomic energies for the input configurations, y', do not appear. The number of components in the coefficient vector α is M, so the sum in equation (2) is over the M representative configurations. The cost of calculating α is dominated by operations which scale like $O(NM^2)$, so it can be significantly reduced by choosing M to be smaller and accepting a reduced accuracy of the fit. After the fit is made the coefficient vector α stays fixed, and the evaluation of the potential is accomplished by the vector dot product in (2) with most of the work going towards computing the vector k for each new configuration, and thus scaling like $O(M)$. The M representative atoms can be chosen randomly, but we found it beneficial to employ the k-means clustering algorithm to choose the representative configurations.

We now turn to the specification of the kernel function. We use the “smooth overlap of atomic positions” (SOAP) kernel [31],

$$K_{ij} = \sigma^2 \frac{\bar{q}_i \cdot \bar{q}_j}{|\bar{q}_i| |\bar{q}_j|}^\xi$$

where the exponent ξ is a positive integer parameter whose role is to “sharpen” the selectivity of the similarity measure, and σ is an overall scale factor. Note that for the special choice of $\xi = 1$, the Gaussian process regression fit is equivalent to simple linear regression, and so potential energy expression in (2) simplifies to $\varepsilon(\bar{q}) = \sigma^2 \sum_\alpha \alpha \cdot \bar{q}$, in which the term in parentheses can be precomputed once and for all. Unfortunately we found that such a linear fit significantly limits the attainable accuracy of the potential.

The elements of the descriptor vector \bar{q} are constructed as follows. The environment of the ith atom is characterised by the atomic neighbourhood density, which we define as

$$\rho_i (r) = \sum_j e^{-|\bar{r} - r_j|^2/2\sigma^2} f_{\text{cut}}(|\bar{r} + \bar{r}_j|)$$

$$= \sum_{m \leq n \leq \text{max} \ |m| \leq \text{cut}} e^{i\cdotq_n} g_n(|\bar{r} + \bar{r}_ij|) Y_{lm} (\bar{r})$$

where \bar{r}_ij are the vectors pointing to the neighbouring atoms, σ is a parameter corresponding to the “size” of atoms, f_{cut} is a smooth cutoff function with compact support, and the expansion on the second line uses spherical harmonics and a set of orthonormal radial basis functions, g_n, with n, l and m the usual integer indices. The elements of the descriptor vector \bar{q} are then, $\bar{q}_i = \left\{ \sum_m (e^{i\cdot q_n})^* c_{nm} \right\}^\bar{q}, \bar{q}_i = q_i/|q_i|$. Values for the all the parameters and other necessary formulas are given in Table I. The orthonormal radial basis is obtained from a set of equispaced Gaussians by Cholesky factorisation of their overlap matrix.

The SOAP kernel is special because it is not only invariant with respect to relabelling of atoms and rotation of either neighbour environment, but it is also faithful in the sense that K only takes the value of unity when the two neighbourhoods are identical. This is because it is directly proportional to the overlap of the atomic neighbourhood densities, integrated over all three dimensional rotations \bar{R},

$$K_{ij} \propto \int d\bar{R} \int d\bar{r} \rho_i (r) \rho_j (\bar{r}) |\bar{r}|^2 |\bar{r}_ij|^\xi.$$

The SOAP kernel is therefore also manifestly smooth and slowly varying in Cartesian space, just as we know the
true Born–Oppenheimer potential energy surface to be, away from electronic energy level crossings and quantum phase transitions. The entire GAP framework, including the choice of descriptor and the kernel, is designed so that its parameters are easy to set and the final potential is not very sensitive to the exact values. Some are physically motivated and stem from either the properties of the quantum mechanical potential energy surface \(r_{\text{cut}}, \sigma_w, \sigma_{\text{atom}} \) or the input data (e.g. \(\sigma_p \)), while others are convergence parameters and are set by a tradeoff between accuracy and computational cost \(n_{\text{max}}, l_{\text{max}}, M \). We include in the supplementary information a table demonstrating convergence of the fitted potential as a function of \(n_{\text{max}}, l_{\text{max}}, r_{\text{cut}} \). By far the most “arbitrary” part of the potential is thus the set of configurations chosen to comprise the training database.

Since the potential interpolates the atomic energy in the space of neighbour environments, we need good coverage of relevant environments in the database. We therefore need to start by deciding what material properties we wish to study and what are the corresponding neighbour environments. Our strategy is to define, for each material property, a set of representative small unit cell configurations that are amenable to accurate first principles calculation. In Table III we show the performance with respect to key material properties of six models, each fitted to a database that contains the configurations indicated on the left, in addition to all the configurations of the preceding one. In particular, as proposed by Vitek [41–43], the structure of \(\frac{1}{2}(111) \) screw dislocations in bcc transition metals can be rationalised in terms of the strictly planar gamma surface concept, and therefore we use gamma surfaces in the database to ensure the coverage of neighbour environments found near the dislocation core. Where the dislocation structure is very far from correct, the numerical performance metric on it has been omitted. The table shows that, broadly speaking, the small representative unit cells are necessary and also sufficient to obtain each property accurately, so the GAP model interpolates well but does not extrapolate to completely new kinds of configurations. Adding new configurations never compromises the accuracy of previously incorporated properties. For information, Table IV shows the results of the automatic allocation of the repre-
TABLE IV. Number of representative atomic environments in each database of the six GAP models. The rows represent the successive GAP models and the columns represent the configuration types in the databases, grouped according to which GAP model first incorporated them. The allocations shown are based on k-means clustering. The rightmost column shows the total number of representative atoms in each GAP model (\(M\)).

<table>
<thead>
<tr>
<th>Database:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP(_1)</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>GAP(_2)</td>
<td>814</td>
<td>3186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>GAP(_3)</td>
<td>366</td>
<td>1378</td>
<td>4256</td>
<td></td>
<td></td>
<td></td>
<td>6000</td>
</tr>
<tr>
<td>GAP(_4)</td>
<td>187</td>
<td>617</td>
<td>1890</td>
<td>6306</td>
<td></td>
<td></td>
<td>9000</td>
</tr>
<tr>
<td>GAP(_5)</td>
<td>158</td>
<td>492</td>
<td>1604</td>
<td>5331</td>
<td>2415</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>GAP(_6)</td>
<td>140</td>
<td>450</td>
<td>1500</td>
<td>4874</td>
<td>2211</td>
<td>825</td>
<td>10000</td>
</tr>
</tbody>
</table>

We also show the performance of the final GAP\(_6\) model on Figure 1 and omit the subscript from now. The phonon spectrum of the GAP model is shown in Figure 2 along with that of the DFT and FS. There is clear improvement with respect to the analytical model, but remaining deficiencies are also apparent. Strategies to enhance the training database in order to improve the description of phonons is an important future direction of study.

We now investigate the properties of the \(\frac{1}{2}\langle 111 \rangle\) screw dislocation further by calculating the Peierls barrier using a transition state searching implementation of the string method \[44, 45\]. Three different initial transition paths, shown in Figure 3, are used to explore the existence of the metastable state corresponding to a “hard” core structure \[15, 46–48\]. We find that the “hard” core is not even locally stable in tungsten—starting geometry optimisation from there results in the dislocation line migrating to a neighbouring lattice site, corresponding to the “soft” core configuration. All three initial transition paths converge to the same minimum energy pathway (MEP), shown in Figure 4, with no “hard” core transition state. For large enough systems, the MEP is independent of the boundary conditions: the “quadrupole” calculations contained two oppositely directed dislocations in periodic boundary conditions, while the “cylinder” configurations had a single dislocation with fixed far field boundary conditions. For comparison we also plot the MEP of the Finnis-Sinclair model, and show the corresponding core structures using Nye tensor maps \[49, 50\]. For the smallest periodic 135 atom model, we computed the energies at five points along the MEP using DFT to verify that the GAP model is indeed accurate for these configurations.

Due to the intrinsic smoothness of the potential, it can be expected to perform well for configurations which contain multiple defect structures as long as the local deformation around each defect with respect to the corresponding configurations in the database is small. So we finally turn to an example of the kinds of atomistic properties that are needed to make the connection to materials modelling on higher length scales, but are inaccessible to direct DFT calculations due to system size limitations imposed by the associated computational cost. Figure 5 shows the energy of a vacancy in the vicinity of a screw dislocation calculated in a system of over 100,000 atoms.

FIG. 2. Phonon spectrum of bcc tungsten calculated using GAP and FS potentials, and some reference DFT values.

FIG. 3. Representation of the three different initial transition paths for the Peierls barrier calculation. Path A corresponds to the linear interpolation directly from the initial to the final state, whereas paths B and C are the two distinct linear interpolations that include a potential meta-stable state (corresponding to the “hard” structure of the dislocation core) at reaction coordinate \(r = 0.5\).
FIG. 4. Top: the structure of the screw dislocation along the minimum energy path as it glides; bottom: Peierls barrier evaluated using GAP and FS potentials, along with single point checks with DFT in the 135 atom quadrupole arrangement.

FIG. 5. Dislocation-vacancy binding energy evaluated using GAP and FS potentials. The top panels show the interpolated binding energy using a heat map, the graphs below are slices of the same along the dotted lines shown in the top panels.

The authors are indebted to A. De Vita and N. Bernstein for comments on the manuscript. APB is supported by a Leverhulme Early Career Fellowship and the Isaac Newton Trust. GC acknowledges support from the EPSRC grants EP/J010847/1 and EP/L014742/1. All software and data necessary for the reproduction of the results in this paper are available at www.libatoms.org.

