Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Forest harvest intensity and soil depth alter inorganic nitrogen pool sizes and ammonia oxidizer community composition

Tools
- Tools
+ Tools

Mushinski, Ryan , Gentry, Terry J., Dorosky, Robert J. and Boutton, Thomas W. (2017) Forest harvest intensity and soil depth alter inorganic nitrogen pool sizes and ammonia oxidizer community composition. Soil Biology and Biochemistry, 112 . pp. 216-227. doi:10.1016/j.soilbio.2017.05.015

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1016/j.soilbio.2017.05.015

Request Changes to record.

Abstract

Intensive forest harvest techniques have the potential to alter soil carbon and nutrient stocks and biogeochemical processes. We investigated how differing levels of organic matter removal (OMR) during timber harvest influenced the long-term stability of nitrification and the microbes regulating this process. Nitrification is limited by the activity of ammonia oxidizing bacteria (AOB) and archaea (AOA); however, reports on the relative contribution of each of these groups to forest soil nitrification have varied and have not been investigated in response to OMR. The influence of soil depth on the structure and function of the ammonia-oxidizing community has also been underreported and was included in this study. We quantified soil physicochemical properties including concentrations of ammonium (NH4+) and nitrite (NO2−) + nitrate (NO3−), and also coupled next generation sequencing and qPCR of the amoA gene to a whole-soil assay that stimulates nitrification and allows for the discrimination of AOA-from AOB-activity using 1-octyne, which inhibits bacterial ammonia monooxygenase activity. Soils were collected (1 m depth) from replicated loblolly pine (Pinus taeda L.) stands subjected to three different intensities of OMR (i.e., unharvested control, bole-only harvest, and whole-tree harvest + forest floor removal). Increasing intensity of OMR and increasing soil depth lead to significant reductions in concentrations of in situ NH4+ and NO2− + NO3−. Sequencing and subsequent annotation of the ammonia oxidizing community revealed that AOA were dominated by Crenarchaeota and AOB were dominated by Nitrosospira spp. The abundance of both bacterial and archaeal amoA were influenced by OMR and soil depth; furthermore, archaeal amoA was more abundant than bacterial amoA across all soil depths and the ratio of AOA to AOB increased with depth. Community structure of AOA and AOB were influenced by soil depth; however, only AOB were altered by OMR. Soil incubations revealed nitrification was N-limited in these forest soils. Furthermore, AOA- and AOB-contributions to total nitrification were nearly equivalent in surface soils; however, AOA contribution increased to 75% at 1 m. In general, the highest rates of nitrification occurred in the soils taken from unharvested control stands; however, OMR treatment differences were only significant when soils were amended with high levels of ammonia indicating that at ambient levels, intensive OMR may not lead to long-term alterations in nitrification potential.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Soil Biology and Biochemistry
Publisher: Elsevier
ISSN: 0038-0717
Official Date: September 2017
Dates:
DateEvent
September 2017Published
23 May 2017Available
16 May 2017Accepted
Volume: 112
Page Range: pp. 216-227
DOI: 10.1016/j.soilbio.2017.05.015
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us