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Abstract. We consider crack propagation in a crystalline material in terms of bifurca-
tion analysis. We provide evidence that the stress intensity factor is a natural bifurcation
parameter, and that the resulting bifurcation diagram is a periodic “snaking curve”. We
then prove qualitative properties of the equilibria and convergence rates of finite-cell
approximations to the “exact” bifurcation diagram.

1. Introduction

A fundamental task of materials modelling is to understand the process of failure, which
is often facilitated by crack propagation. Cracks (and other defects) initiate and propagate
via atomistic mechanisms, which renders the task of creating accurate and efficient simula-
tions of this phenomenon on a large scale particularly difficult [BKG15]. In addition, many
of the simulation techniques in operation today rely on simplifying assumptions which are
often phenomenological; for example, it is generally unclear under which conditions con-
tinuum models become invalid [GSHY10].

There is thus a need for a robust mathematical theory of crack propagation at an atom-
istic scale, providing a rigorous grounding for a subsequent study of bottom-up multiscale
and coarse-grained models. In [BHO19] we began to lay the foundation of such a theory
by formulating the equilibration problem on a lattice in the presence of a crack as a varia-
tional problem on an appropriate discrete Sobolev space, and establishing existence, local
uniqueness and stability of equilibrium displacements for small loading parameters. Cru-
cially, we also established decay properties of the lattice Green’s function in crack geometry,
which enabled us to prove qualitatively sharp far-field decay estimates of the atomistic core
contribution to the equilibrium fields in order to quantify the “range” of atomistic effects.
This work relied on and extended the recent rigorously formalised atomistic theory of single
localised defects in crystalline structures [EOS16, HO14, BBO19].

The purpose of the present work is to go beyond the small-loading regime and introduce
a key component missing in [BHO19], demonstrating that crack propagation, facilitated by
bond-breaking events, can be described in the framework of [BHO19]. The mathematical
tools we exploit to do so are taken from bifurcation theory in Banach spaces [CST00]. While
this idea has already been explored numerically in [Li13, Li14], a key new conceptual insight
is that the stress intensity factor (SIF), which acts as a measure of stability in continuum
fracture can be interpreted as the “loading parameter” on the atomistic crack through the
far-field boundary condition allowing us to obtain rigorous results about cell size effects.

More specifically, we model the equilibration of an atomistic crack embedded in an infi-
nite homogeneous crystal as a variational problem with the continuum linearised elasticity
(CLE) solution as the far-field boundary condition. The SIF enters the model as a scaling
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parameter multiplying the CLE solution, and so varying this naturally leads to a bifurca-
tion diagram. Moreover, the fact that the CLE crack equilibrium displacement does not
belong to the energy space suggests that the bifurcation diagram consists solely of regu-
lar points and quadratic fold points, at which the equilibria found transition from being
linearly stable to linearly unstable (or vice versa).

This observation and the numerical evidence we obtain together motivate structural
assumptions on the bifurcation diagram: we assume (and confirm numerically) that it is a
‘snaking curve’ [TD10] with the stability of solutions changing at each bifurcation point.
In particular, under our assumptions, a jump from one stable segment to another captures
the propagation of the crack through one lattice cell, with the unstable segment that is
crossed in that jump being a corresponding saddle point, which represents the energetic
barrier which must be overcome for crack propagation to occur at a given value of the SIF.
This allows us to capture the phenomenon of ‘lattice trapping’ [THR71, GC00], a term
which refers to the idea that in discrete models of fracture there can exist a range of values
of SIF for which the crack remains locally stable despite being above or below the critical
Griffith stress.

As in [BHO19], we avoid significant technicalities by restricting the analysis to a two–
dimensional square lattice with nearest neighbour pair interaction. The notable difference
in the models considered is that in [BHO19], in order to prove that the variational problem
is well-posed, the bonds crossing the crack were explicitly removed from the interaction;
by contrast, in the present paper they are included in the interaction range, and instead,
the fact that they are effectively broken is encoded in the interatomic potential. This gives
rise to a physically realistic periodic bifurcation diagram, for which we subsequently prove
regularity results both in terms of its smoothness as a submanifold of an appropriate space,
as well as uniform spatial regularity of the equilibria along the corresponding solution path.

Our results for the infinite lattice model naturally lead to an investigation of the nu-
merical approximation of these solutions on a finite-domain, and we use the technical tools
established in [BHO19] to establish sharp convergence rates as the domain radius tends
to infinity. A notable novelty is that our results apply uniformly to finite segments of
the bifurcation diagram; moreover, we establish a superconvergence result for the crit-
ical values of the SIF at which fold points occur. Since the unstable segments of the
bifurcation diagram correspond to index–1 saddle points of the energy, our work in this
regard also extends the convergence results of [BO18] for saddle point configurations of
point defects and suggests possible future extensions to a full transition state analysis
[Eyr35, HTB90, Wig97, Ber13, BDO18].

1A. Outline: In Section 2 we provide a detailed motivation for our work, introducing the
model for crack propagation in the anti-plane setup, describing the underlying assump-
tions, and providing a statement of the main results about the model and its numerical
approximation. In Section 2.1 we give a brief overview of the continuum mechanics con-
text and describe how it motivates our work, and in Section 2.2 we discuss the discrete
kinematics of the atomistic model. Then, in Section 2.3 the key assumptions are presented
and discussed, and the novel components of the theory, in particular the role of the stress
intensity factor, are highlighted. The main results of the paper are also stated. Section
2.4 is dedicated to the finite-domain approximation of the problem, with sharp conver-
gence results stated, including the superconvergence result for the critical values of the
stress intensity factor. In Section 2.5 we present a numerical setup employed to compute
bifurcation paths, enabling us to numerically verify the sharpness of our results with re-
spect to regularity and rate of convergence. Section 3 then provides a discussion about the
significance of our results, and the proofs of the main results are given in Section 4.
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2. Main results

2.1. Motivation. The principal motivation for our work stems from the following limita-
tion of the continuum elasticity approaches to static crack problems. Consider a domain
D ⊂ R2, representing a cross-section of a three-dimensional elastic body, with a crack set
ΓD ⊂ D. Given a material-specific strain energy density function W : R2×k → R∪ {+∞}
(where k ∈ {1, 2, 3} depending on the loading mode), c.f. [LLS89], one can hope to find a
non-trivial equilibrium displacement u : D → Rk accommodating the presence of a crack
by minimising the continuum energy given by

E(u) :=

∫
D\ΓD

W (∇u) dx,

over a suitable function space. In line with CLE, one can approximate W by its expansion
around zero to second order and obtain the associated equilibrium equation

−div (C : ∇u) = 0 in D \ ΓD, (2.1)
(C : ∇u) ν = 0 on ΓD, (2.2)

supplied with a suitable boundary condition coupling to the bulk [Fre90]. Here C is the
elasticity tensor with entries Cjβiα := ∂iαjβW (0).

It is well-known that regardless of the details of the geometry of D and ΓD, near the crack
tip, the gradients of solutions to (2.1)-(2.2) exhibit a persistent 1/

√
r behaviour, where r

is the distance from the crack tip, c.f. [Ric68]. The singularity at the crack tip implies the
failure of CLE to accurately describe a small region around it where atomistic (nonlinear
and discrete) effects dominate. This near-tip nonlinear zone is argued to exhibit autonomy
[Fre90, Bro99], meaning that the state of the system in the vicinity of the singular field is
determined uniquely by the value of the SIF, and therefore systems with the same SIF but
different geometries will behave similarly within the near-tip nonlinear zone.

In order to better understand the microscopic features of this zone, we may exploit the
spatial invariance of elasticity and zoom in on the region near the crack tip by performing
a spatial rescaling Ru(x/R), which leads to a simplified geometry of an infinite domain
with a half-infinite straight crack line, as illustrated in Figure 1.

Figure 1. A schematic illustration of the setup. A domain D with the
crack set ΓD = Γ1 ∪ Γ2. The autonomy of the crack implies we can zoom
in on each crack tip to obtain a simplified geometry of a ball of radius R.
In the limit R → ∞ of the spatial rescaling we obtain a domain R2 and a
half-infinite crack Γ0.

In what follows we focus on Mode III cracks, restricting to anti-plane displacements
u : R2 → R. Under natural assumptions on the stored energy density W which result from



4 MACIEJ BUZE, THOMAS HUDSON, AND CHRISTOPH ORTNER

coupling it with a corresponding interatomic potential, as discussed in [BHO19], the set of
equations (2.1)-(2.2) reduces in the simplified geometry to

−∆u = 0 in R2 \ Γ0, (2.3)
∇u · ν = 0 on Γ0, (2.4)

where
Γ0 := {(x1, 0) |x1 ≤ 0}. (2.5)

This PDE has a canonical solution, as discussed in e.g. [SJ12], given by

ûk(x) = k
√
r sin θ

2 , (2.6)

with (r, θ) representing standard cylindrical polar coordinates centred at the crack tip.
The scalar parameter k corresponds to the (rescaled) stress intensity factor (SIF) [Law93].

As we increase the spatial rescaling parameter R, we eventually approach the atomic
lengthscale at which the hypothesis that the material behaves as a continuum breaks down.
We must thus speak of atomic displacements and finite differences rather than differential
operators, and consider an atomistic model supplied with the function ûk as a far-field
boundary condition. As such, in the model we describe below, the function ûk will act as
a CLE ‘predictor’, representing the behaviour of the material in the far field away from
the crack tip.

2.2. Discrete kinematics. The atomistic setup is similar to the one introduced in [BHO19];
here, we recall it in detail and highlight new concepts. Let Λ denote the shifted two di-
mensional square lattice defined as

Λ :=
{
l − (1

2 ,
1
2)
∣∣ l ∈ Z2

}
.

We consider a crack opening along Γ0 defined in (2.5), and distinguish the lines that
include lattice points directly above and below Γ0. These are defined as

Γ± :=
{
m ∈ Λ

∣∣m1 < 0 and m2 = ±1
2

}
and we refer to Figure 2 for a visualisation of the setup.

(a)

++++++

- - - - - -

(b)

Figure 2. The geometry of the problem with and without the bonds across
the crack. The (predicted) crack tip depicted by a red dot. In (b) the crack
cut Γ0 from (2.5) is shown as a dashed black line and the lattice points on
Γ+ and Γ− are highlighted.
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For the purposes of our analysis, it is helpful to consider two notions of interaction
neighbourhood for lattice points. First, the nearest neighbour (NN) directions of the
homogeneous square lattice are given by

R = {±e1,±e2} .
Second, we modify these interaction neighbourhoods by disregarding the directions across
the crack, as these bonds are effectively already broken; for any m ∈ Λ, we therefore define

R̃(m) :=

{
R for m 6∈ (Γ+ ∪ Γ−),

R \ {∓e2} for m ∈ Γ±.
(2.7)

For an anti–plane displacement defined on the lattice u : Λ → R, we define the finite
difference operator as Dρu(x) := u(x+ ρ)−u(x) and introduce two notions of the discrete
gradient, denoted by Du(m), D̃u(m) ∈ RR and defined as(

Du(m)
)
ρ

:=Dρu(m) and
(
D̃u(m)

)
ρ

:=

{
Dρu(m) if ρ ∈ R̃(m),

0 if ρ 6∈ R̃(m).
(2.8)

We note that since |R| = 4, RR is a 4-dimensional space indexed by each member of
R. It therefore follows from (2.8) that Du corresponds to homogeneous NN interactions,
whereas D̃u reflects a defective lattice, as when m ∈ Γ±, the components of D̃u(m) which
correspond to erased lattice directions are always zero.

The removal of NN bonds and subsequent introduction of the discrete gradient operator
D̃ allows us to define the appropriate discrete energy space (discrete Sobolev space) for
handling arbitrarily large differences in the far–field displacements across the crack,

Ḣ1 :=
{
u : Λ→ R | D̃u ∈ `2 and u(1

2 ,
1
2) = 0

}
,

which has associated norm ‖u‖Ḣ1 := ‖D̃u‖`2 =

(∑
m∈Λ

|D̃u(m)|2
)1/2

and inner product (u, v)Ḣ1 :=
∑
m∈Λ

D̃u(m) · D̃v(m).

(2.9)

The choice to restrict u(1
2 ,

1
2) = 0 ensures that only one constant displacement lies in the

space, making ‖ · ‖Ḣ1 a norm.
It is also helpful to introduce the space of compactly supported displacements,

Hc := {u : Λ→ R | supp(Du) is compact}.

Remark 2.1. To avoid future confusion, we note that compared to [BHO19] the definitions
of D and D̃ have been swapped to accommodate the differing nature of the two papers. In
[BHO19] the interactions across the crack are always explicitly excluded, leaving little need
for this explicit distinction. In the present work the distinction is crucial and we opted
for D to denote the usual intuitive notion of the discrete gradient. Furthermore, a similar
change in notation occurs for R and R̃. Note, however, that in both papers the definition
of Ḣ1 remains the same.

2.3. Analysis of the model. We modify the theory developed in [BHO19] for a small-
load anti-plane crack to frame it in the context of bifurcation theory. We consider the
energy difference functional E : Ḣ1 × R → R supplied with CLE solution as a far–field
boundary condition:

E(u, k) =
∑
m∈Λ

V
(
Dûk(m) +Du(m)

)
− V

(
Dûk(m)

)
. (2.10)
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Here V : RR → R is a suitable interatomic site potential and ûk : Λ → R is the CLE
predictor, introduced in (2.6). The function u ∈ Ḣ1 is a core correction, thus the total
displacement is given by ûk + u.

We assume the site potential to be a NN pair-potential of the form

V (Du(m)) =
∑
ρ∈R

φ
(
Dρu(m)

)
, (2.11)

with φ ∈ Cα(R) for α ≥ 5. Assuming that the lattice is reflection symmetric in the
anti–plane direction, we assume without loss of generality that

φ(0) = 0, φ′(0) = 0, φ′′(0) = 1, and φ′′′(0) = 0.

The first and third assumptions may be made by subtracting an appropriate constant
and rescaling the potential, while the second and fourth follow from the assumption of
anti-plane symmetry, as discussed in [BHO19].

Note that we employ the homogeneous discrete gradient operator Du in the definition
of E , while the ‘crack-aware’ gradient D̃u is used to define the space Ḣ1. This is helpful in
the context of capturing crack propagation, since it enables us to consider displacements
with arbitrarily large strains across the crack, but raises the issue that for any m ∈ Γ±
and ρ 6∈ R̃(m) crossing the crack surface, we have Dρû(m) ∼ |m|1/2. Thus, in order for
such E to be well-defined on Ḣ1 × R, we further assume that the pair-potential satisfies

there exists Rφ > 0 such that φ′(r) = 0 ∀r with |r| ≥ Rφ. (2.12)

Such an assumption is sufficient and simplifies the exposition, but is by no means a neces-
sary condition and can be easily replaced by an appropriate decay property (e.g. exponen-
tial or sufficiently high algebraic decay). In particular, under this assumption, we firstly
prove the following result.

Theorem 2.2. The energy difference functional E expressed in (2.10) is well-defined on
Ḣ1 × R and is α-times continuously differentiable.

The proof is given in Section 4.2 and mostly relies on the analogous result in [BHO19],
with the extra work needed to handle the now-included bonds across the crack.

The inclusion of the stress intensity factor k as a variable in the definition of E allows
us to employ bifurcation analysis to describe the propagation of the crack as a series of
bifurcations, which we view as corresponding to bond-breaking events.

The primary task of our analysis is to characterise the set of critical points of the energy,
S, defined as

S :=
{

(u, k) ∈ Ḣ1 × R
∣∣ δuE(u, k) = 0 ∈ (Ḣ1)∗

}
, (2.13)

where δuE : Ḣ1 × R→ (Ḣ1)∗ is the partial Fréchet derivative given by

〈δuE(u, k), v〉 =
∑
m∈Λ

δV (Dûk(m) +Du(m)) ·Dv(m).

For future reference, we summarize our notation for linear and multi-linear forms, in
particular defining the meaning of 〈δuE(u, k), v〉. For any n-linear form L, we write
L[v1, . . . , vn] to denote its evaluation at v1, . . . , vn and if m < n, then L[v1, . . . , vm] is
the (n − m)-linear form (w1, . . . , wn−m) 7→ L[v1, . . . , vm, w1, . . . , wn−m]. For the sake of
readability and only when there is no risk of confusion, we often write 〈L, v1〉 for linear
forms and 〈L1v1, v2〉 as well as L1v1 = L1[v1] for bilinear forms.

It is of particular interest to compute continuous paths contained in S, as it allows to
characterise the response of the model to variations in SIF. This is often possible if we are
able to identify one particular pair, say (ū0, k̄0) ∈ S and it can be further shown that it is
a regular point, by which we mean

H0 := δ2
uuE(ū0, k̄0) : Ḣ1 → (Ḣ1)∗ is an isomorphism. (2.14)
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In this case, a standard application of the Implicit Function Theorem [Lan99] yields exis-
tence of a locally unique path of solutions (ūs, k̄s) in the vicinity of (ū0, k̄0) which we will
assume to be parametrised with an index s ∈ R; exactly this strategy was used in [BHO19]
to show existence of solutions in a static crack problem with crack bonds removed from
the definition of E , for k small enough. We will set

Hs := δ2
uuE(ūs, k̄s) : Ḣ1 → (Ḣ1)∗. (2.15)

As we will see in the numerical examples of Section 2.5, beyond some critical value of
k, bifurcations of the following type begin to occur.

Definition 2.3. A (simple quadratic) fold point occurs at (ūb, k̄b) ∈ S if there exists
γb ∈ Ḣ1 such that Ker(Hb) = span{γb},

δ2
ukE(ūb, k̄b)[γb, 1] 6= 0, (2.16)

δ3
uuuE(ūb, k̄b)[γb, γb, γb] 6= 0, (2.17)

with formulae for these variations of energy given in (4.12) and (4.13), respectively.

2.8 2.9 3.0
k

5.0

7.5

||ū
|| Ḣ

1

(a)

1 2 3
k

0

20

40

||ū
|| Ḣ

1

(b)

Figure 3. (a) An illustration of typical behaviour near quadratic fold point (depicted as
a blue dot). Solid (respectively dashed) lines represent stable (resp. unstable) solutions.
A change in stability at such points as shown in Proposition 2.5 is guaranteed by (2.17),
which ensures that the smallest eigenvalue passes through zero with nonzero ‘velocity’.
(b): A schematic representation of a snaking curve with dots representing bifurcation
points. The sets of solutions Bpos and Bpt defined in (2.21) are represented in blue and
red, respectively. Note that Bpt includes the entirety of the unstable segments, as well as
bifurcation points and small parts of the stable segments.

A schematic representation of the idea behind Definition 2.3 is shown in Figure 3(a). As
already discussed in the introduction, the fact that ûk 6∈ Ḣ1 is key to (2.16) holding true,
and suggests that a full bifurcation diagram is an infinite non-self-intersecting snaking curve
[TD10], consisting solely of regular and fold points as shown in Figure 3(b). Our functional
setup is well-suited to considering an arbitrary finite segment of it, so we begin with the
following set of assumptions. We emphasise that all our subsequent results rely on the
validity of these assumptions which are natural (see discussion below) but likely difficult
to prove rigorously. Moreover, it is not guaranteed that Assumption 1 in particular is
generic, but different potentials and loading geometries may indeed give rise to qualitatively
different bifurcation diagrams.

Assumption 1. There exists a bifurcation diagram in the form of an injective continuous
path B : [0, 1]→ Ḣ1 × R given by

B(s) := (ūs, k̄s), (2.18)
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where Im(B) ⊂ S (defined in (2.13)) is compact and for each s ∈ [0, 1], B(s) is either a
regular point, as in (2.14), or a fold point, as in Definition 2.3. We further assume that
there are finitely many fold points occuring at s ∈ {b1, . . . , bM} ⊂ (0, 1). In particular, this
implies that Im(B) is a non–self–intersecting curve.

For future reference, if f : B → X, where X is a Banach space, is differentiable, then
we write f ′s := d

dsfs.

Assumption 2. There exists c > 0 such that for each s ∈ [0, 1] there exists a subspace Us
of Ḣ1 of codimension at most 1 for which it holds that

〈Hsv, v〉 ≥ c ‖v‖2Ḣ1 (2.19)

for all v ∈ Us.
The fact that a succession of fold points occurs is assumed to be an inherent feature of the

lattice and the potential in place, much as the existence of a solution to a static dislocation
problem is assumed in [EOS16]. Assumption 2 ensures that each B(s) = (ūs, k̄s) represents
either a bifurcation point, a stable solution or an unstable solution which is an index–1
saddle point. This assumption is motivated by the fact that the anti-plane setup and
lattice symmetry naturally binds the crack propagation to the x1-axis, leaving little room
for any more involved bifurcating behaviour. Moreover, this is also supported by numerical
evidence presented in Section 2.5, in particular with Figure 5 clearly exhibiting the snaking
curve structure of the bifurcation diagram. We also refer to Section 3.2 for a discussion
about the periodicity of the bifurcation diagram which further justifies Assumptions 1 and
2. Finally we note that in [Li13] a similar numerical evidence is presented for a vectorial
Mode I fracture model posed on a triangular lattice under Lennard-Jones potential.

As will be shown in Proposition 2.5, requiring that (2.17) holds ensures that a change
in the stability of the solution occurs at each fold point. This implies that near bifurcation
points and on the unstable segments the infimum of the spectrum of Hs is an eigenvalue,
which motivates the following decomposition of the parametrisation interval [0, 1]: since
we look at a finite segment of the full bifurcation diagram, we will assume for notational
convenience that it starts on a stable segment and the number of fold points M lying in
Im(B) is even and define sets

Ipt :=

M/2⋃
k=1

Ik ⊂ [0, 1] and Ipos := [0, 1] \ Ipt, (2.20)

where Ik := (b2k−1− ξ, b2k + ξ) with ξ > 0 small enough. The cases where M is odd or we
start on an unstable segment can be handled in an entirely analogous way. We refer to

Bpt := B(Ipt) and Bpos := B(Ipos) (2.21)

as the collection of segments of the bifurcation diagram with σp(Hs) 6= ∅ (non–empty point
spectrum) and σ(Hs) ⊂ [c,∞) (positive spectrum, c from Assumption 2), respectively. We
note that both the unstable segments and neighbourhoods of the bifurcation points belong
to Bpt, thus the constant c in Assumption 2 can be chosen to be small enough so that

s ∈ Ipos =⇒ Us = Ḣ1. (2.22)

We now establish some initial results about the model. First, a regularity result.

Proposition 2.4 (Regularity of the diagram). The set Im(B) ⊂ Ḣ1 × R is a one–
dimensional Cα−1 manifold.

This result will be proven in Section 4.2 and in particular entails that, without loss of
generality, we may make the following assumption concerning the parametrisation B.
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Assumption 3. The function B : [0, 1]→ Ḣ1×R is a constant speed, Cα−1 parametrisa-
tion of the manifold Im(B) ⊂ Ḣ1 × R.

We next prove a result concerning the existence of linearly unstable directions and
corresponding negative eigenvalues for some sections of the bifurcation diagram.

Proposition 2.5 (Existence of an eigen-pair). Under Assumptions 1, 2 & 3, there exist
Cα−2 functions γ : Ipt → Ḣ1 and µ : Ipt → R such that

Hsγs = µsJγs, (2.23)

where Hs was defined in (2.15) and J represents the Riesz mapping [Rud66], i.e. an
isometric isomorphism between Ḣ1 and (Ḣ1)∗, thus we can equivalently say that

〈Hsγs, v〉 = µs(γs, v)Ḣ1 for all v ∈ Ḣ1.

Furthermore, for j = 1, . . . ,M , we have µbj = 0 with the corresponding eigenvector γbj
introduced in Definition 2.3 and also µ′bj 6= 0, implying that a change of stability occurs at
s = bj.

This will be proven in Section 4.2.
We subsequently establish the following decay and regularity results for the atomistic

core corrector, which rely on the precise characterisation of the lattice Green’s function for
the anti-plane crack geometry developed in [BHO19].

Theorem 2.6 (Decay properties of solutions and eigenvectors). For any s ∈ [0, 1] and
l ∈ Λ with |l| large enough it holds that for any δ > 0 the atomistic correction ūs satisfies∣∣D̃ūs(l)∣∣ ≤ C|l|−3/2+δ. (2.24)

If s ∈ Ipt, then the eigenvector γs ∈ Ḣ1 from Proposition 2.5 satisfies∣∣D̃γs(l)∣∣ ≤ C|l|−3/2+δ. (2.25)

In both cases C is a generic constant independent of s.

As in the case of Theorem 2.2, we note that (2.24) can be proven as in [BHO19], except
for an extra dificulty arising from the fact that bonds across the crack are now included.
The estimate in (2.25) follows from a two-step argument that is similar in nature. Both
these estimates will be proven in Section 4.2.

Remark 2.7. The arbitrarily small δ > 0 in Theorem 2.6 appears due to a technical limita-
tion of the method employed in [BHO19] to estimate the mixed second discrete derivative
of the lattice Green’s function in the anti-plane crack geometry. We expect the result to
hold for δ = 0 too, but this cannot be achieved with the current bootstrapping argument,
which saturates at the known decay rate of the corresponding continuum Green’s function.

2.4. Approximation. As numerical simulations are naturally restricted to a computa-
tional domain of finite size, we now consider and analyse a finite-dimensional scheme that
approximates the solution path B defined in (2.18) and establish rigorous convergence
results.

The starting point is a computational domain ΩR with BR ∩ Λ ⊂ ΩR ⊂ Λ (where BR
is a ball of radius R centred at the origin) and the boundary condition prescribed as û on
Λ\ΩR. The approximation to (2.13) can thus be stated as a Galerkin approximation, that
is we seek to characterise

SR :=
{

(uR, k) ∈ H0
R × R

∣∣ δuE(uR, k) = 0 ∈ (H0
R)∗
}
, (2.26)

where
H0
R := {v : Λ→ R | v = 0 in Λ \ ΩR}.

We prove the following.
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Theorem 2.8. Under Assumptions 1, 2 & 3, there exists R0 > 0, such that for all R ≥ R0,
there exists a Cα−1 approximate bifurcation path BR : [0, 1]→ H0

R × R given by

BR(s) := (ūRs , k̄
R
s ),

where Im(BR) ⊂ SR, such that for any β > 0

‖ūRs − ūs‖Ḣ1 +
∣∣k̄Rs − k̄s∣∣ . R−1/2+β (2.27)

and ∣∣E(ūRs , k̄
R
s )− E(ūs, k̄s)

∣∣ . R−1+β, (2.28)
where B(s) = (ūs, k̄s) as in (2.18).

For the proof of this result, we refer to Section 4.3.
While the estimate in (2.27) appears to be almost sharp (our numerical results in Sec-

tion 2.5 indicate that this estimate holds with β = 0), more can be said about the approx-
imation of the critical values of the stress intensity factor for which fold points occur.

Theorem 2.9. For R suffiently large, the approximate bifurcation path BR from Theo-
rem 2.8 containsM fold points in the sense of Definition 2.3 occuring at s ∈ {bR1 , . . . , bRM} ⊂
(0, 1), and for each of these we have∣∣k̄R

bRj
− k̄bj

∣∣ . R−1+β for any β > 0.

For the proof, we again refer to Section 4.3.
This superconvergence result is well-known in bifurcation theory [CST00], and is ob-

served numerically in our tests in Section 2.5.

2.5. Numerical investigation. In this section we present results of numerical tests that
confirm the rate of decay of |D̃ūs| and |D̃γs| established in Theorem 2.6, as well as the
convergence rates from Theorems 2.8 and 2.9. The computational setup is similar to the
one described in [BBO19, Section 3], with Λ and R as specified in Section 2.2 and the
pair-potential given by

φ(r) =
1

6

(
1− exp(−3r2)

)
. (2.29)

We employ a pseudo-arclength numerical continuation scheme to approximate BR [BCD+02].
To compute equilibria we employ a standard Newton scheme, terminating at an `∞-residual
of 10−8.

Theorem 2.6 suggests that |D̃ūs(l)| . |l|−3/2 and |D̃γs(l)| . |l|−3/2. This is verified in
Figure 4. Theorem 2.8 suggests that in the supercell approximation of B in (2.18) we expect
‖ūRs − ūs‖Ḣ1 + |k̄Rs − k̄s| ∼ O(R−1/2), where R is the size of the domain. To verify this
numerically, we first compute BR for R = 32, . . . , 256 via a pseudo–arclength continuation
scheme. The results are shown in Figure 5, with stable segments plotted as solid lines
and unstable segments as dashed lines. To measure the distance between the segments
of the bifurcation diagram, we compute the Hausdorff distance [RW98] with respect to
‖ · ‖Ḣ1-norm between the critical points on BR (for R = 32, . . . , 90.51) and on BR∗ , where
R∗ = 256. The result is shown in Figure 6(a).

Finally, we test the superconvergence result for the bifurcation points from Theorem 2.9,
which predicts that |k̄R

bRj
− k̄bj | ∼ O(R−1). To this end we accelerate the convergence of

the sequence {k̄R
bRj
} (for R = 32, . . . , 256) by employing Richardson extrapolation [Ric11],

thus giving us an approximate limit value for k̄bj . The values of the approximate limits,
as well as the R−1 convergence is exhibited in Figure 6(b).

Remark 2.10. The pair-potential φ defined in (2.29) does not satisfy the strong assumption
of compact support of φ′ introduced in (2.12), but has the slightly weaker property of
exponential decay in first derivative. It thus emphasises the already discussed point that
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Figure 4. The decay of Dūs and Dγs for a domain with radius R = 256. Transparent
dots denote data points (|l|, |Dus(l)|), solid curves their envelopes. We observe the expected
rate of |l|−3/2. The x-axis stopping near |l| = 128 ensures we do not observe any boundary
effects.

0.46 0.47 0.48
k

1

2

||D
ū
|| `

2

R=32

R=256

Figure 5. The bifurcation paths BR for R = 32, . . . , 256, that is for R = 2n/4 for n =
20, . . . 32. Solid lines denote stables segments, dashed lines unstable segments and dots the
bifurcation points.

(2.29) is by no means a necessary condition. It also emphasises the point that our results
are of more practical applicability, despite the severe non-convexity of the energy landscape
forcing us to introduce structural assumptions on the bifurcation diagram as opposed to
proving them.

3. Conclusion and discussion

The results obtained here, in tandem with those of our previous paper [BHO19], intro-
duce a mathematical framework in which a rigorous formulation and study of atomistic
models of cracks and their propagation is possible. In particular, we have shown how the
theory of atomistic modelling of defects developed in [EOS16, HO14, BBO19] can be com-
bined with classical results from bifurcation theory [Kel77, BRR80] to study this problem,
and a key insight is the identification of the stress intensity factor as a suitable bifurca-
tion parameter which allows us to explore the energy landscape. While our results are of
conditional nature in that they rely on assumptions that are reasonably justified and nu-
merically verified, our analysis nonetheless sets earlier numerical work of [Li13, Li14] into
a rigorous framework and provides a comprehensive explanation as to why the bifurcation
diagram is a snaking curve.
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(b)

Figure 6. (a) The approximate rate of convergence of the supercell approximation of B,
measured by the Hausdorff distance with respect to ‖ · ‖Ḣ1-norm, compared against the
domain with R = 256.
(b) The convergence rate of the values of stress intensity factor at which bifurcations occur.
The approximate limit values as predicted by Richardson extrapolation are given in the
legend entries. The fact that all unstable-to-stable (and separately stable-to-unstable) fold
points occur at the same values indicates that in the limit the bifurcation path is exactly
vertical.

While further work is needed to extend our analytical results to more general models
(and particularly to the case of other crack modes), from a numerical perspective several
aspects of our theory are of universal applicability. We therefore conclude by pointing out
a series of interesting conclusions which arise from our analysis.

3.1. Applicability of the results to other crack models. Due to reasons explored
in the concluding section of [BHO19], at present we do not see an easy way of rigorously
extending our results beyond a 2D model for scalar Mode III crack with nearest neighbours
pair interactions on a square lattice. On a practical level, however, it can be numerically
verified that our theory is entirely applicable to any 2D model for scalar Mode III crack
with arbitrary finite range interactions under an arbitrary feasible interatomic potential
and the resulting bifurcation diagrams is indeed a snaking curve.

For vectorial models of other modes of crack the numerical method described is still
feasible, but depending on the potential employed, numerical tests indicate that one can
expect a more complicated bifurcating behaviour, not least because of surface relaxation
effects. The numerical evidence in [Li13] in particular indicates that the structure of the
bifurcation diagram described in this paper does apply to some vectorial models. We hope
to investigate this in greater detail in the future.

3.2. Periodicity of the bifurcation diagram. In an infinite lattice, shifting the crack
tip by one lattice spacing results in a physically identical configuration. Therefore, it is
reasonable to conjecture that BR in the limit as R → ∞ generates a bifurcation diagram
in which the critical points exist for values of the SIF k within a fixed finite interval of
admissible values. In Section 2.5 we have exploited the superconvergence result in Theorem
2.9 to test this hypothesis numerically and the results summarised in Figure 6 confirm this
intuition, as the extrapolated limit values of SIF as R → ∞ for every second bifurcation
point are numerically identical, occuring at

k = 0.45903, k = 0.46234, k = 0.45905, k = 0.46231, k = 0.45905.
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A translation invariance in the critical points further implies that, if we denote the centre
of the CLE predictor by

xλ := (λ, 0) (3.1)
for some λ ∈ Z, and define Eλ : Ḣ1 × R→ R by

Eλ(ū, k) =
∑
m∈Λ

V (Dûk(m− xλ) +Dū(m))− V (Dûk(m− xλ)),

then assuming B(s) = (ūs, k̄s) ∈ Ḣ1 × R is a parametrisation as described in Section 2.3,
we naturally have

δuEλ(ūs(· − xλ), k̄s) = 0. (3.2)
We further notice for any s ∈ [0, 1] the total displacement ys = ûk̄s + ūs can be rewritten
as ys(m) = ûk̄s(m− xλ) + ws,λ(m), where λ ∈ Z and

ws,λ(m) :=
(
ûk̄s(m)− ûk̄s(m− xλ)

)
+ ūs(m).

Crucially,
|Dûk(l)−Dûk(l − xλ)| . |l|−3/2 =⇒ ws,λ ∈ Ḣ1 (3.3)

and for any choice of λ ∈ Z
δuEλ(ws,λ, k̄s) = δuE(ūs, k̄s) = 0. (3.4)

In other words, no matter which xλ we choose to centre the crack predictor ûk at, the same
configuration ys = ûk̄s + ūs always remains an equilibrium and ws,λ exactly captures the
resulting changes to the atomistic correction.

To be precise, let us fix some s ∈ [0, 1] thus giving us a pair B(s) = (ūs, k̄s), let K := k̄s
and further consider

IK := {s ∈ [0, 1] | k̄s = K}.
Equations (3.2) and (3.4) indicate that for any s′ ∈ IK for which ūs′ is a solution of the
same type as ūs (either stable, or unstable or a bifurcation point), we can find a unique
λ ∈ Z such that ūs′ = ws,λ.

In particular we note that the above strongly suggests that in some cases one may be able
to prove results about periodicity and boundedness in k of the bifurcation diagram, which
would also have the additional benefit of proving that Assumptions 1 and 2 hold true. The
particular difficulty, however, lies in the fact that without these structural assumptions we
cannot easily conclude that ūs′ = ws,λ for some unique λ ∈ Z. This can potentially be
proven under suitable (prohibitively restrictive) technical asssumptions on the potential,
as explored for anti-plane screw dislocations in [HO15]. We hope to investigate this in
future work.

3.3. Interplay between the stress intensity factor and the domain size and its
effect on lattice trapping. The tilt of bifurcation diagrams seen in Figure 5 indicates
that the size of the domain heavily impacts the shape of the corresponding solution curve.
Notably, each successive bond-breaking event has a different interval of admissible values of
SIF associated to it and the corresponding unstable segments are much shorter than stable
ones for small domain sizes. The fact that the influence of such finite-domain effects can
still be observed for a fairly large R can be explained by the very slow rate of convergence
in Theorem 2.9.

In practice, one hopes to investigate crack propagation and associated energy barriers
for a fixed value of SIF and subsequently compare it against other admissible choices of
SIF to measure the strength of lattice trapping [THR71, GC00], measured by the relative
height of the energy barrier. Our work indicates that such investigations are particularly
challenging due to the extent to which finite–size effects dominate, an effect we observe to
be strong even in the simple model considered here. Only a very large choice of truncation
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radius R ensures that the resulting solution paths are close to the periodic results one ex-
pects in the full lattice case. It may be possible to overcome such difficulties by prescribing
a more accurate predictor describing the far–field behaviour, in line with the idea of devel-
opment of solutions introduced in [BBO19]: this is a clear direction for future investigation.

3.4. Identification of the correct bifurcation parameter. It is interesting to note
that varying the intuitively natural bifurcation parameter λ introduced in (3.1) to reflect
the crack tip at which the continuum prediction is centred in fact fails to capture the
bifurcation phenomenon. This can be seen by considering Ẽ : Ḣ1 × R→ R given by

Ẽ(v, λ) =
∑
m

V
(
Dv̂λ(m) +Dv(m)

)
− V

(
Dv̂λ(m)

)
,

where v̂λ = ûK(· − xλ) for some fixed SIF K > 0. This fundamentally differs from the
energy defined in (2.10), as in that case we have linear dependence of the displacement
on k, Dûk(m) = kDû1(m), which in turn leads to a particular form of derivatives with
respect to k; in particular, this ensures we have quadratic fold points. In Ẽ , however, the
dependence is inside v̂λ, thus the crucial derivative with respect λ is given by

δ2
vλẼ(v, λ)[w, h] = h

∑
m

δ2V (Dv̂λ(m) +Dv(m))Dfλ(m) ·Dw(m),

where fλ(m) = ∇ûK(m1 − λ,m2) · e1. In this case, as in (3.3), we can conclude fλ ∈ Ḣ1.
This implies that a fold point cannot occur, as that would require that there exists γ ∈ Ḣ1

such that

〈δ2
vvẼ(v, λ)γ, v〉 =

∑
m

δ2V
(
Dv̂λ(m) +Dv(m)

)
Dγ(m) ·Dw(m) = 0

for all w ∈ Ḣ1, which further implies that

δ2
vλẼ(v, λ)[γ, 1] =

∑
m

δ2V
(
Dv̂λ(m) +Dv(m)

)
Dfλ(m) ·Dγ(m)

=
∑
m

δ2V
(
Dv̂λ(m) +Dv(m)

)
Dγ(m) ·Dfλ(m) = 0,

since fλ ∈ Ḣ1. This breaches the defining property of a fold point given in Definition 2.3;
in fact, it is not possible to drive a bifurcation in this way precisely because of the obser-
vation made in (3.3) and the resulting periodicity.

3.5. Parameter-driven analysis for other models and defects. An overarching idea
of this paper is that a careful analysis of a crucial parameter involved in the model can
reveal the energy landscape of the problem, and this can be particularly fruitful in the
study of defect migration. In the case of a crack, using the SIF as a driving parameter
naturally generalises to more complex fracture models, though in general there may be
multiple SIFs.

It would be interesting to undertake future study to see whether such an analysis is ap-
plicable more widely to other defects. In the particular case of dislocations, nucleation and
motion have been studied in the atomistic context in a number of recent studies, includ-
ing [CFR06, ADLGP14, GAM15, ADLGP17, Hud17]. Since these defects are the carriers
of plastic deformation, the study of their mobility is important, and natural candidates
for the parameters in this case are the shear modulus and externally–applied stress [LLS89].
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4. Proofs

4.1. Preliminaries. Our approach is based on two classic results from bifurcation analysis
on Banach spaces, cf. [CST00], which we state in this section for convenience. The first
result is known as ’ABCD Lemma’ and is adapted from [Kel77].

Lemma 4.1 (ABCD Lemma). Let H be a Hilbert space with the dual H∗ and consider the
linear operator M : H × R→ H∗ × R of the form

M :=

[
A b

(c, ·)H d

]
,

where A : H → H∗ is self-adjoint in the sense that 〈Av, w〉 = 〈Aw, v〉 for all v, w ∈ H,
b ∈ H∗ \ {0}, c ∈ H \ {0} and d ∈ R. Then

(i) if A is an isomorphism from H to H∗, then M is an isomorphism between H × R
and H∗ × R if and only if d− (c, A−1b)H 6= 0; and

(ii) if dim Ker(A) = codim Range(A) = 1 with Ker(A) = span{γ}, then M is an
isomorphism if and only if 〈b, γ〉 6= 0 and (c, γ)H 6= 0.

To state the second result we introduce the following setup: let X, Y and Z be real
Banach spaces and F ∈ Ck(U × Y ;Z) for some k ≥ 1, where U is a bounded open subset
of X. The total derivative of F at (x, y) ∈ X × Y is denoted DF (x, y) ∈ L(X × Y,Z),
with partial derivatives denoted DxF (x, y) ∈ L(X,Z) and DyF (x, y) ∈ L(Y,Z). We now
state a version of [BRR80, Theorem 1] tailored to our setting.

Theorem 4.2. Suppose a function y : U → Y is Lipschitz continuous with Lipschitz
constant c2, and there exist constants c0 and c1 and a monotonically increasing function
L1 : R→ R such that the following hypotheses are satisfied:

(i) for any x0 ∈ U , DyF
(
x0, y(x0)

)
is an isomorphism of Y onto Z with

sup
x0∈U

∥∥DyF
(
x0, y(x0)

)−1∥∥ ≤ c0; (4.1)

(ii) we have the uniform bound

sup
x0∈U

∥∥DxF
(
x0, y(x0)

)∥∥ ≤ c1; (4.2)

(iii) for any x0 ∈ U and all (x, y) satisfying ‖x− x0‖+ ‖y − y(x0)‖ ≤ ξ, we have

‖DF (x, y)−DF (x0, y(x0)‖ ≤ L1(ξ)
(
‖x− x0‖+ ‖y − y(x0)‖

)
.

It then follows that there exist constants a, d > 0 depending only on c0, c1, c2 and L1 so
that whenever it holds that

sup
x0∈U

‖F (x0, y(x0)
)
‖ ≤ d,

then there exists a unique function g defined from
⋃
x0∈U B(x0, a) (union of balls centered

at x0 of radius a) to Y such that

F
(
x, g(x)

)
= 0.

Moreover, g is a Ck function on its domain of definition, and for all x0 ∈ U and all
x ∈ B(x0, a)

‖g(x)− y(x0)‖ ≤ K0

(
‖x− x0‖+

∥∥F (x0, y(x0)
)∥∥), (4.3)

where K0 > 0 depends only on the constants c0 and c1.

For future reference we note that a suitable choice a is given by

a = min

{
â

2
,
b

2c2

}
− ε (4.4)
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where â = b
4M , b is such that bL1(b) ≤ 1

2M , M = max{c0, 1 + c0c1} and ε > 0 is sufficiently
small to ensure that a is positive.

4.2. Proofs about the model. We begin with a technical lemma that is required to
prove Theorem 2.2.

Lemma 4.3. If v ∈ Ḣ1, then, for any l ∈ Γ±,

|v(l)| . ||v||Ḣ1(1 + log |l|). (4.5)

Proof. The argument in [OS12a, Proposition 12(ii)] proves the result for the case without
a crack present. In that setting, the proof follows directly from [OS12b, Theorem 2.2]. In
a crack geometry the constructions has to avoid crossing the crack Γ0, hence we modify
the argument. We distinguish two cases, depending on whether l ∈ Γ+ or l ∈ Γ−. We
recall that x̂ =

(
1
2 ,

1
2

)
and that by definition v ∈ Ḣ1 =⇒ v(x̂) = 0.

Case 1: Let l ∈ Γ+, which implies that (l−x̂)·e1 = 0. We consider a sequence of squares
(Qi)

N
i=0 ⊂ R2 \ (DΓ ∪ Γ0), where DΓ denotes the continuum region enclosed by Γ+ and Γ−.

The squares are aligned in the direction e2, which is possible due to the assumption on l,
and defined as follows. Q0 and QN are unit squares corresponding to sites x̂ and l, defined
in such a way that x̂ (respectively l) is the midpoint of the side of Q0 (resp. QN ) which
borders Γ+. The squares Q1, . . . , QN−1 are defined to fill the space between x̂ and l in
such a way that they have disjoint interiors and are such that their side-lengths differ by
at most a factor of 2, with one side of the smaller square contained in one side of the larger
square. It is easy to see that there is at most

N . (2 + log |l − x̂|) . 1 + log |l|
squares in the sequence. See Figure 7.

...

...

Figure 7. An example of construction of squares. The white dot repre-
sents x̂, the green dot is â, the purple dot a lattice site in Case 1 of Lemma
4.3 and the orange dot is a lattice site in Case 2.

For any two neighbouring squares Qj , Qj+1 it follows from a special case of [JN61,
Lemma 2] that

|(v)Qj+1 − (v)Qj | . ‖∇Iv‖L2(R2\Γ0) . ‖v‖Ḣ1 , (4.6)

where

(v)Qj :=
1

|Qj |

∫
Qj

Iv(x) dx
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and I denotes the crack domain P1 interpolation operator employed in [BHO19, Theorem
2.3]. The final inequality in (4.6) follows from the fact that both components of ∇Iv are
piecewise constant and each corresponds to Dρv(l) for some bond (m,m+ ρ).

As a result

|(u)QN
− (u)Q0 | ≤

N∑
j=1

|(u)Qj − (u)Qj−1 | (4.7)

.
N∑
j=1

‖∇Iv‖L2(R2\Γ0) = N‖v‖Ḣ1 . (2 + log |l|)‖v‖Ḣ1 .

Furthermore, it is naturally true that

|(v)Q0 − v(x̂)| ≤ ‖∇v‖L∞(Q0) and |v(l)− (v)QN
| ≤ ‖∇v‖L∞(QN ) (4.8)

and since on each Qi, the piecewise linear interpolant v belongs to a finite-dimensional
space, we obtain

‖∇Iv‖L∞(Qi) . ‖∇Iv‖L2(Qi) . ‖∇v‖L2(R2\Γ0) . ‖v‖Ḣ1 , (4.9)

where the first inequality follows from the equivalence of norms for finite-dimensional spaces
and the second from extending the domain from Qi to the whole of R2 \ Γ0.

With (4.7) and (4.8)-(4.9) in hand, we obtain

|v(l)| = |v(l)− v(x̂)| ≤ |v(l)− (v)QN
|+ |(v)QN

− (v)Q0 |+ |(v)Q0 − v(x̂)| (4.10)
. (1 + log |l|)‖v‖Ḣ1 ,

which concludes the proof for l ∈ Γ+.
Case 2: Let l ∈ Γ−. The fact that l is on the other side of the crack relative to x̂ deems

the previous argument invalid, as we can no longer define the sequence of squares aligned
with x̂ and l which will be a subset of R2 \ (DΓ ∪ Γ0). Thus we first ’jump’ to the other
side, that is we â =

(
1
2 ,−1

2

)
and conclude that

|v(l)− v(x̂)| ≤ |v(l)− v(â)|+ |v(â)− v(x̂)|
. ‖v‖Ḣ1((1 + log |l − â|))
. ||v||Ḣ1(1 + log |l|),

where the second inequality follows from applying (4.10) to a sequence of squares between
l and â (in fact there are only two such squares) and the fact that a bound on |v(â)−v(x̂)|
can be incorporated into the general form . �

We now show that the model is well-defined, with the particular emphasis on two new
elements of the analysis that are distinct from previous arguments of this kind, e.g. [EOS16,
BHO19].

Proof of Theorem 2.2. We can decompose the energy into a bulk part and a crack surface
part by writing

E(u, k) = Ebulk(u, k) + EΓ(u, k),

where
Ebulk(u, k) :=

∑
m∈Λ

∑
ρ∈R̃(m)

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
,

EΓ(u, k) :=
∑
m∈Γ±

∑
ρ∈R\R̃(m)

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
.

We notice that Ebulk excludes the bonds across the crack and thus is well-defined on Ḣ1×R,
as shown in the first part of Theorem 2.3 in [BHO19].



18 MACIEJ BUZE, THOMAS HUDSON, AND CHRISTOPH ORTNER

To establish the same for the EΓ, we note that we have the symmetry

û−k(l) = ûk(l1,−l2);

using this observation, for m ∈ Γ± and ρ ∈ R \ R̃(m) we have

|Dρûk(m)| = | − 2ûk(m)| ∼ |m|1/2 as |m| → ∞. (4.11)

Furthermore, it follows from Lemma 4.3 that u ∈ Ḣ1 implies that |Du(m)| . log |m|,
which in particular implies that

|Dρûk(m) +Dρu(m)| ≥ C0|m|1/2 − C1 log |m|,
for suitable constants C0, C1. Therefore, using assumption (2.12), it follows that for any
m ∈ Γ± with |m| sufficiently large,

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
= 0;

this entails that for each u ∈ Ḣ1 we effectively only sum over a finite domain, and implies
that EΓ is indeed well-defined over Ḣ1 × R.

The differentiability properties of the functional follow from a standard argument, see
[OT13]; here we simply provide formulae for derivatives of relevance to our subsequent
arguments. In particular, we have

〈δkE(u, k), λ〉 =
∑
m∈Λ

(∇V (Dûk(m) +Du(m))−∇V (Dûk(m)) · (λDûk(m)),

〈δuE(u, k), v〉 =
∑
m∈Λ

∇V (Dûk(m) +Du(m)) ·Dv(m),

δ2
ukE(u, k)[v, λ] =

∑
m∈Λ

∇2V (Dûk(m) +Du(m))[λDûk(m)] ·Dv(m), (4.12)

〈δ2
uuE(u, k)v, w〉 =

∑
m∈Λ

∇2V (Dûk(m) +Du(m))Dv(m) ·Dw(m),

δ3
uuuE(u, k)[v, w, z] =

∑
m∈Λ

∇3V (Dûk(m) +Du(m))[Dv(m), Dw(m), Dz(m)]. (4.13)
�

As stated, the foregoing expressions are valid for v ∈ Hc. To define them for v ∈ Ḣ1 one
requires an extension argument relying on showing that δuE(0) ∈ (Ḣ1)∗, which is proven
in [BHO19, Theorem 2.3], and analogous results for the remaining terms.

We now turn to the analysis of the bifurcation path B.
Proof of Proposition 2.4. This is a standard result and follows from the fact that E is a
Cα functional, so we may apply the local uniqueness of the function g whose existence was
asserted in Theorem 4.2. We therefore only outline the proof. Define sets corresponding
to neighbourhoods of fold points

If :=
M⋃
i=1

(bi − ξ, bi + ξ) and Bf := B(If),

Since Im(B) is compact, then so is Im(B) \ Bf , thus the latter can be covered with a finite
collection of neighbourhoods of points {(ūsi , k̄si)}i=1,...,N . It will be shown in the proof of
Theorem 2.8 that Hsi = δ2

uuE(ūsi , k̄si) at each such point is an isomorphism, thus rendering
Theorem 4.2 applicable to δuE(ūsi , k̄si), giving us a locally unique Cα−1 graph of critical
points k 7→ u(k), which by its uniqueness together with injectivity of B has to coincide
with (ūs, k̄s), thus Im(B) \ Bf is a piecewise Cα−1 manifold. To establish the same in
Bf , for each fold point bi, one considers an extended system F̃ : (Ḣ1 × R) × R given by
F̃ (u, k, t) =

(
δuE(u, k), (u−ūbi , γbi)Ḣ1−t

)
, where γbi was introduced in Definition 2.3. The

ABCD Lemma is applicable to this extended system evaluated at (ūbi , k̄bi , bi), thus ensuring
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that Theorem 4.2 is also applicable, giving us a locally unique Cα−1 graph t 7→ (u(t), k(t)),
where in particular k(0) = k̄bi . Again, due to uniqueness this must coincide with (ūs, k̄s),
and hence this finishes the argument. �

Likewise, the existence of an eigen-pair can be established.

Proof of Proposition 2.5. In what follows we always consider a system G : B × Y → Z
where B ⊂ [0, 1], Y = Ḣ1 × R and Z = (Ḣ1)∗ × R, given by

G(s, γ, µ) := (Hsγ − µJγ, (c, γ)Ḣ1 − 1), (4.14)

where c ∈ Ḣ1 will be chosen appropriately. We consider two subsets of Bpt seperately.
Throughout this proof we endow the product spaces with their canonical norms, for exam-
ple, ‖(u, k)‖Ḣ1×R = ‖u‖Ḣ1 + |k|.

(a) Vicinity of a bifurcation point: We let c = γbi and, in order to simplify the notation
for derivatives of G, we introduce y := (γ, µ) and observe that

DyG(bi, γbi , µbi) := Dy(bi, y)y=(γbi ,µbi )
=

(
Hbi − µbiJ −γbi

(c, ·)Ḣ1 0

)
.

Thus, Lemma 4.1 and Theorem 4.2 together imply that, for s ∈ (bi−ξ, bi+ξ), where ξ > 0

is small enough (cf. (2.20)), there exists an eigen-pair (µs, γs). To show that µ′s := dµs
ds 6= 0

at s = bi, we differentiate both sides of (2.23) with respect to s to obtain

δ3
uuuE(ūs, k̄s)[ū

′
s, γs] + δ3

uukE(ūs, k̄s)[ūs, k̄
′
s] +Hs[γ

′
s] = µ′sJ [γs] + µsJ [γ′s]. (4.15)

By definition, at a fold point we have k̄′bi = 0 and since we can differentiate δuE(ūs, k̄s) = 0

with respect to s to get Hsū
′
s+ k̄′sbs = 0, it follows that ū′bi = αγbi for some α 6= 0 (constant

speed of parametrisation). Testing (4.15) at s = bi with γbi and simplifying, we obtain

µ′bi = α〈δ3
uuuE(ūbi , k̄bi)[γbi , γbi ], γbi〉 6= 0, (4.16)

which is nonzero by Assumption (2.17). This completes case (a).

(b) Unstable segment away from bifurcations: We assume without loss of generality
that at the bifurcation point bi we switch from a stable segment to an unstable segment.
The result in (a) establishes existence of an eigenvector for s ∈ (bi − ξ, bi + ξ), so we let
t1 := bi + ξ − ε, where 0 < ε < ξ and thus are able to set c = γt1 in (4.14). A subsequent
application of Theorem 4.2 to system G with this newly chosen c yields existence of a
new interval (t1 − ξ1, t1 + ξ1) ⊂ Ipt for which the premise of the theorem is true. This
procedure can be iterated, for example by incrementing t2 := t1 + ξ1/2 and repeating the
argument. To cover the entire unstable segment in this way we need to bound ξj from
below, independently of tj .

Due to (4.16) we know that µt < 0, which implies that the subspace Ut from Assumption
2 can be characterised as

Ut = {v ∈ Ḣ1 | (v, γt)Ḣ1 = 0}. (4.17)

With this in hand we consider any (u, k) ∈ Ḣ1 × R, decompose u as u = αγt + v, where
α ∈ R and v ∈ Ut, and aim to uniformly bound

‖DyG(t, γt, µt)[u, k]‖ =
∥∥Htu− µtJu− kJγt

∥∥+
∣∣(γt, u)Ḣ1

∣∣
from below.

To do so, we observe that

〈(Ht − µtJ)u− kJγt, v
‖v‖Ḣ1

〉 = 〈(Ht − µtJ)v, v
‖v‖Ḣ1

〉 ≥ (c− µt)‖v‖Ḣ1 , (4.18)

〈(Ht − µtJ)u− kJγt, −γt〉 = 〈(Ht − µtJ)αγt − kJγt, −γt〉 = k (4.19)
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Together, (4.18), (4.19) imply that

‖Htu− µtJu− kJγt‖ = sup
ṽ∈Ḣ1

‖ṽ‖=1

|〈Htu− µtJu− kJγt, ṽ〉|

≥ max
(
|c− µt|‖v‖Ḣ1 , |k|

)
≥ 1

2 min
(
|c− µt|, 1

)(
‖v‖Ḣ1 + |k|

)
. (4.20)

Moreover, we trivially have

|(γt, u)Ḣ1 | = |α| = ‖αγt‖Ḣ1 . (4.21)

Let c̃0(s)−1 = min{1
2(c − µt),

1
2} > min{1

2(c), 1
2} =: c−1

0 , then combining (4.20) and
(4.21) yields

‖DyG(t, γt, µt)[u, k]‖ ≥ c̃0(t)−1‖(u, k)‖.
In a similar vein, we observe that

‖DsG(γt, µt, t)‖ ≤ ‖δ3
uuuE(ūt, k̄t)‖+ ‖δ3

uukE(ūt, k̄t)‖|k̄′t| =: c̃1(t) ≤ c1,

where c1 := maxt∈Ipt c̃1(t), which is guaranteed to exist due to E being a Cα functional
and that B is a Cα−1 function of s, where α ≥ 5 by assumption.

It is also evident that Condition (iii) from Theorem 4.2 is satisfied with

L1(ξ) := sup
(s,y)∈S(s̃,γs̃,µs̃,ξ)

‖D2G(s, y)‖,

where S(s̃, γs̃, µs̃, ξ) = {(s, γ, µ) ∈ R× Ḣ1 × R : |s− s̃|+ ‖γ − γs̃‖+ |µ− µs̃| ≤ ξ}.
Guided by (4.4), we define M := max{c0, 1 + c0c1}, choose b such that bL1(b) ≥ 1

2M , let

â = b
4M and recall from (4.4) that ξ = min

{
â
2 ,

b
2c2

}
− ε with sufficiently small ε > 0 is an

admissible choice for ξ which is in particular independent of t.
This completes the proof of part (b).
(c) Regularity: It remains to establish the Cα−2-regularity of s 7→ (µs, γs), s ∈ Ipt. To

that end, we note that G is a smooth function of γ and µ and Cα−2 function with respect
to s, thus uniqueness and regularity parts of Theorem 4.2 immediately imply that γ and
µ are Cα−2(Ipt) functions. �

We are now in a position to prove the spatial regularity of ūs and γs.

Proof of Theorem 2.6. We begin by defining

v(m) := D2τG(m, l) := G(m, l + τ)− G(m, l),

where τ ∈ R̃(l) and G is the lattice Green’s function for the anti-plane crack geometry, as
introduced in [BHO19, Theorem 2.6] and proven to satisfy decay property

|D̃1D2τG(m, l)| . (1 + |ω(m)| |ω(l)| |ω(m)− ω(l)|2−δ)−1, (4.22)

where ω is the complex square root mapping defined in polar coordinates as

ω(l) := r1/2(cos(θ/2), sin(θ/2)), θ ∈ (−π, π)

and δ > 0 is arbitrarily small. Here, and throughout this proof, . should be read as ≤ Cδ
where Cδ is a constant that may depend on δ.
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Proof of Theorem 2.6: estimate (2.24): We first prove the decay estimate for ūs. We
can write

Dτ ūs(l) =
∑
m∈Λ

D̃ūs(m) · D̃v(m)

=
∑
m∈Λ

∑
ρ∈R̃(m)

(Dρūs(m)− φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m) (4.23)

+
∑
m∈Γ±

∑
ρ∈R\R̃(m)

(−φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m). (4.24)

The term (4.23) can be estimated by |l|−3/2+δ due to the argument given in [BHO19,
Theorem 2.4]; that is,∣∣∣∣ ∑

m∈Λ

∑
ρ∈R̃(m)

(Dρūs(m)− φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m)

∣∣∣∣ . |l|−3/2+δ.

The additional term (4.24) appears because we define the energy with the homogeneous
discrete gradient operator and concerns the bonds crossing the crack surface. The estimate
in (4.22) thus does not apply, but this term can be estimated as follows. Using (4.11) we
see that we only sum over at most 2R3

φ lattice sites in (4.24) and thus we can decompose
Dρv(m) into a sum of finite differences along bonds that go around the crack. There will
be at most 2R3

φ many of them and each separately decays like |D1ρD2τG(m, l)| . |l|−3/2+δ,
thus ensuring that (4.24) can be bounded by∣∣∣∣ ∑

m∈Γ±

∑
ρ∈R\R̃(m)

(−φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m)

∣∣∣∣ . C|l|−3/2+δ,

where C < 4R6
φ (though an optimal C is much smaller). This concludes the proof of (2.24).

Proof of Theorem 2.6: estimate (2.25): To estimate γs we employ an analogous argu-
ment. We begin by writing

Dτγs(l) =
∑
m

D̃γs(m) · D̃v(m)

=
∑
m∈Λ

∑
ρ∈R̃(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m) (4.25)

+
∑
m∈Γ±

∑
ρ∈R\R̃(m)

(−φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m). (4.26)

Using precisely the same argument as for (4.24) we can bound (4.26) by |l|−3/2+δ.
To estimate (4.25) we Taylor-expand φ′′ around 0 and, noting that we assume that

φ′′(0) = 1, we observe that∣∣∣∣∣∣
∑
m∈Λ

∑
ρ∈R̃(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m)

∣∣∣∣∣∣ (4.27)

. ‖γs‖Ḣ1

(∑
m∈Λ

|R(m)|2|D̃v(m)|2
)1/2

,
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where |R(m)| . |m|−1 is the remainder of the expansion. This readily implies that
|Dτγs(l)| . |l|−1. Thus looking again at (4.27), instead of applying Cauchy-Schwarz in-
equality, we directly observe that∣∣∣∣∣∣

∑
m∈Λ

∑
ρ∈R̃(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m)

∣∣∣∣∣∣
.
∑
m∈Λ

|R(m)||D̃γs(m)||D̃v(m)| . |l|−3/2+δ,

since |R(m)||D̃γs(m)| . |m|−2. As before, δ > 0 is arbitrarily small. This completes the
proof of the second bound (2.25). �

Remark 4.4. It is interesting to note that while the model includes a full interaction be-
tween nearest-neighbour atoms, even across the crack, it is nonetheless the lattice Green’s
function for the fractured domain that is employed to estimate the atomistic solutions. The
homogeneous lattice Green’s function fails because the finite differences of ûk(m) across
the crack grow like ∼ |m|1/2.
4.3. Convergence Proofs. In tandem with the results from bifurcation theory stated in
Section 4.1, in order to prove the results from Section 2.4 we rely on the following auxiliary
result from [EOS16] that was adapted to domain with cracks in [BHO19].

Lemma 4.5. There exists a truncation operator TR : Ḣ1 → H0
R such that TRv = 0 in

Λ \BR and which satisfies

‖TRv − v‖Ḣ1 . ‖v‖Ḣ1(Λ\BR/2) :=

 ∑
m∈Λ\BR/2

|D̃v(m)|2
1/2

∀v ∈ Ḣ1. (4.28)

We can now prove the main result of this section.

Proof of Theorem 2.8. We consider an extended system F : B× Y → Z where B = [0, 1],
Y = H0

R × R and Z = (H0
R)∗ × R given by

F (s, y) = (δuE(uy, ky), (uy − ūs, ū′s)Ḣ1), (4.29)

where ū′s = dū(s)
ds and y = (uy, ky). We further introduce a mapping yR : B → Y given by

yR(s) = (TRūs, k̄s). We shall now show that, with the help of ABCD Lemma, F satisfies
the conditions of Theorem 4.2.

One can easily obtain that

DyF (s, yR(s)) =

(
δ2
uuE(TRūs, k̄s) δ2

ukE(TRūs, k̄s)
(ū′s, ·)Ḣ1 0

)
=:

(
ARs bRs

(ū′s, ·)Ḣ1 0

)
.

We further define As := Hs = δ2
uuE(ūs, k̄s) (renamed to keep intuitive notation) and

bs := δ2
ukE(ūs, k̄s) and observe that

DyF (s, yR(s)) =

(
As bs

(ū′s, ·)Ḣ1 0

)
+

(
ARs −As bRs − bs

0 0

)
=: M1

s +M2
s .

Here, we treat As as a restriction to HR0 and bs as an element of (HR0 )∗. Since TRūs → ūs
as R→∞ strongly in Ḣ1 (a consequence of (4.28), the decay estimate from Theorem 2.6
and E ∈ Cα),

‖ARs −As‖L(Ḣ1,(Ḣ1)∗) + ‖bRs − bs‖(Ḣ1)∗ → 0 (4.30)

as R→∞. Our strategy will therefore be to apply the ABCD Lemma to M1
s , interpreted

as an operator from Ḣ1 × R to (Ḣ1)∗ × R, and show that M2
s is a small perturbation.
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To carry out this strategy we begin by differentiating δuE(ūs, k̄s) = 0 with respect to s
to obtain

Asū
′
s + k̄′sbs = 0 (4.31)

along the bifurcation path B. At a fold point, when s = bi, due to (2.16), we have k̄′s = 0,
thus revealing that ū′bi = αγbi for some non-zero α ∈ R. For s 6= bi, the operator As is
invertible and thus

ū′s = −k̄′s(As)−1bs. (4.32)

We can now show that M1
s satisfies the conditions of ABCD Lemma.

Case 1, s ∈ Ipos: Suppose that s ∈ Ipos from (2.20). In this case As is an isomorphism
due to (2.19) and (2.22). Thus, to apply ABCD Lemma to M1

s , we have to check that
(ū′s, (As)

−1bs)Ḣ1 6= 0, which is true since

(ū′s, (As)
−1bs)Ḣ1 = −k̄′s(ū′s, ū′s)Ḣ1 6= 0,

since by definition at a regular point we have k̄′s 6= 0 and ū′s 6= 0.
Case 2, s ∈ Ipt: Now suppose s ∈ Ipt but s 6= bi ∀i ∈ {1, . . . ,M}. It can be shown that

As remains an isomorphism as follows. Proposition 2.5 tells us that we have an eigen-pair
(µs, γs) satisfying (2.23). Any v ∈ Ḣ1 can be decomposed into v = αγs +w, where w ∈ Us
with Us given by (4.17) and α ∈ R. Thus,

‖Asv‖ = sup
ṽ∈Ḣ1

‖ṽ‖=1

|〈Asv, ṽ〉| ≥
1

2

(
|〈Asv, γs〉|+

∣∣〈Asv, w
‖w‖〉

∣∣) ,
and we can further estimate

|〈Asv, γs〉| =
∣∣α〈Asγs, γs〉+ 〈Asw, γs〉

∣∣ = |αµs|,
|〈Asv, w

‖w‖〉| = |α〈Asγs, w
‖w‖〉+ 〈Asw, w

‖w‖〉| ≥ c
‖w‖‖w‖2 = c‖w‖,

where c is the stability constant from Assumption 2. This, together with the fact that
‖v‖ ≤ |α| + ‖w‖ readily implies that we can set c̃ := 1

2 min{|µs|, c} and conclude that for
all v ∈ Ḣ1

‖Asv‖ ≥ c̃‖v‖.
Thus, as in the case s ∈ Ipos, (4.32) ensures that we can apply the ABCD lemma and
deduce again that As is an isomorphism.

Case 3, s = bi: Finally, suppose s = bi for some i ∈ {1, . . . ,M}. Due to Assumption 2
we know that the kernel of As is one-dimensional at a fold point and thanks to Proposition
2.5 we know that it is spanned by γs, which means that (4.31) implies that ū′s = γs. By
Definition 2.3 we know that 〈bs, γs〉 6= 0, which implies that the ABCD Lemma is again
applicable.

Uniform Stability of M1
s : We have shown so far that, for all s ∈ [0, 1], M1

s is an
isomorphism from Ḣ1 × R to (Ḣ1)∗ × R. In particular, this implies that for any x =

(ux, kx) ∈ Ḣ1 × R we have
‖M1

s x‖ ≥ c̃s‖x‖,
where c̃s > 0.

Since s 7→ M1
s is continuous in operator-norm due to smoothness of E established in

Theorem 2.2 and smoothness of s 7→ (ūs, k̄s) established in Proposition 2.4, it follows that
the infimum inf c̃s is attained on [0, 1] and must therefore be positive. In summary, we
have established the existence of c̃ > 0 such that

‖M1
s x‖ ≥ c̃‖x‖ ∀s ∈ [0, 1], x ∈ HR0 × R.
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Uniform Stability: Next, using the definition of M2
s we can bound

‖DyF (s, yR(s))x‖ ≥ ‖M1
s x‖ − ‖M2

s x‖ ≥ c̃‖x‖ − ‖ARs −As‖‖ux‖ − ‖bRs − bs‖|kx|

≥ c̃

2
‖x‖,

for R large enough, thus ensuring that DyF (s, yR(s)) is an isomorphism from HR0 × R to
(HR0 )∗ × R, thus satisfying condition (i) from Theorem 4.2, with uniform bound

‖DyF (s, yR(s))x‖ ≥ c̃

2
‖x‖ ∀s ∈ [0, 1], ξ ∈ HR0 × R,

that is c0 from (4.1) is given by c0 = 2
c̃ .

Conclusion: So far we have confirmed Condition (i) of Theorem 4.2. To conclude the
proof, we now need to also check conditions (ii, iii).

It can be readily checked that ‖DsF (s, yR(s))‖ = | − 1 + (TRūs − ūs, ū′′s)Ḣ1 | ≤ 2 for R
large enough. Thus the condition (ii) in Theorem 4.2 is satisfied with c1 in (4.2) given by
c1 = 2.

The condition (iii) from Theorem 4.2 is satisfied with

L1(ξ) := sup
(s∗,y∗)∈S(s,yR(s),ξ)

‖D2F (s∗, y∗)‖,

where S(s, yR(s), ξ) = {(s0, y0) ∈ R× (HR0 ×R) : |s− s0|+ ‖TRūs − uy‖+ |k̄s − ky| ≤ ξ}.
Finally, we observe that

sup
s∈[0,1]

‖F (s, yR(s))‖ = sup
s∈[0,1]

(
‖δuE(TRūs, k̄s)‖+ |(TRūS − ūs, γs)|

)
→ 0,

as R → ∞, which implies that no matter how large constants c0, c1 and c2 were and how
badly behaved L1 was, we would still fall within the regime where the result of Theorem
4.2 was applicable for R large enough.

We can thus conclude that there exists BR : [0, 1]→ HR0 ×R given by BR(s) := (ūRs , k̄
R
s ),

such that F (s, (ūRs , k̄
R
s )) = 0, which in particular implies δuE(ūRs , k̄

R
s ) = 0. Furthermore,

using (4.3) we can conclude that

‖ūRs − TRūs‖Ḣ1 + |k̄Rs − k̄s| ≤ K0‖F (s, yR(s))‖ . ‖TRūs − ūs‖ . R−1/2+β,

for arbitrarily small β > 0. Crucially, K0 depends only on c0 and c1, which are independent
of s and the last inequality follows from Lemma 4.28 and the regularity estimate from
Theorem 2.6. This concludes the result, since trivially ‖ūRs − ūs‖Ḣ1 ≤ ‖ūRs − TRūs‖Ḣ1 +

‖TRūRs − ūs‖Ḣ1 .
Finally, we note that (2.28) follows as an immediate collorary, arguing exactly as in the

proof of [EOS, Theorem 2.4]. �

To prove our final result, the superconvergence of critical values of SIF, we first need
to quote two intermediate technical steps. The first lemma, which highlights the origin of
this superconvergence, is taken from [CST00, Theorem 4.1], restated in our notation for
the sake of convenience.

Lemma 4.6. Let (ūbi , k̄bi) ∈ B be a simple quadratic fold point. Under Assumptions 1,2 &
3, for R large enough, the approximate bifurcation diagram BR has a quadratic fold point
at s = bRi , where |bRi − bi| → 0 as R→∞. Furthermore,

|k̄R(bRi )− k̄(bi)| ≤
∥∥ū′R(bi)− ū′(bi)

∥∥2

Ḣ1 +
∣∣k̄′R(bi)− k̄′(bi)

∣∣2
+ ‖ūR(bi)− ū(bi)‖2Ḣ1 + |k̄R(bi)− k̄(bi)|2

+ inf
v∈HR

0

‖v − γbi‖2Ḣ1 .
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To exploit the inequality from Lemma 4.6, we adapt [BRR80, Theorem 2], which is a
follow-up result to Theorem 4.2 for derivatives.

Lemma 4.7. Assume the hypotheses of Theorem 4.2 and in addition that

sup
x0∈U

‖DF (x0, y(x0))‖ ≤ c1.

Then there exists a continuous function K : R+ → R+, which depends only on c0, c1, L1

such that for all x0 ∈ U and all x ∈ B(x0, a) it holds that

‖Dg(x)−Dy(x0)‖ ≤ K(‖Dy(x0)‖)
(
‖x− x0‖+ ‖F (x0, y(x0))‖

+ ‖DF (x0, y(x0)), Dy(x0)‖
)
.

Proof of Theorem 2.9. Lemma 4.6 implies that, for domain radius R large enough, we have
exactly M approximate fold points bRj → bj as R → ∞. By assumption, bj ∈ (0, 1) and
hence also bRj ∈ (0, 1). Arguing analogously as in the proof of Theorem 2.8, it is not
difficult to show that F defined in (4.29) satisfies the conditions of Lemma 4.7, thus∥∥ū′R(bi)− ū′(bi)

∥∥+
∣∣k̄′R(bi)− k̄′(bi)

∣∣ . R−1/2+β,

for arbitrary small β > 0. Furthermore,

inf
v∈HR

0

‖v − γbi‖Ḣ1 ≤ ‖TRγbi − γbi‖ . R−1/2+β,

with the first inequality following from the obvious fact that TRγbi ∈ H0
R and the second

from the regularity result for γbi in Theorem 2.6.
Applying Lemma 4.6 we therefore obtain the desired result that

|k̄R(bRi )− k̄(bi)| . R−1+β. �
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