
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/136947                                   
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136947
mailto:wrap@warwick.ac.uk


ar
X

iv
:2

00
4.

11
83

5v
2 

 [
m

at
h.

D
S]

  1
3 

M
ay

 2
02

0

STRUCTURE OF MULTICORRELATION SEQUENCES WITH

INTEGER PART POLYNOMIAL ITERATES ALONG PRIMES

ANDREAS KOUTSOGIANNIS, ANH N. LE, JOEL MOREIRA, AND FLORIAN K. RICHTER

Abstract. Let T be a measure preserving Zℓ-action on the probability space (X,B, µ),
q1, . . . , qm : R → Rℓ vector polynomials, and f0, . . . , fm ∈ L∞(X). For any ǫ > 0 and

multicorrelation sequences of the form α(n) =

∫
X

f0 · T ⌊q1(n)⌋f1 · · ·T
⌊qm(n)⌋fm dµ we

show that there exists a nilsequence ψ for which lim
N−M→∞

1

N −M

N−1∑
n=M

|α(n)−ψ(n)| ≤ ǫ

and lim
N→∞

1

π(N)

∑
p∈P∩[1,N]

|α(p)−ψ(p)| ≤ ǫ. This result simultaneously generalizes previ-

ous results of Frantzikinakis [2] and the authors [11, 13].

1. Introduction and main result

Since Furstenberg’s ergodic theoretic proof of Szemerédi’s theorem [5], there has been
much interest in understanding the structure of multicorrelation sequences, i.e., sequences
of the form

α(n) =

∫

X

f0 · T nf1 · · ·T knfk dµ, n ∈ N, (1)

where (X,B, µ, T ) is a measure preserving system and f0, . . . , fk ∈ L∞(X). The first
to provide deeper insight into the algebraic structure of such sequences were Bergelson,
Host, and Kra, who showed in [1] that if the system (X,µ, T ) is ergodic then for any
multicorrelation sequence α as in (1) there exists a uniform limit of k-step nilsequences φ
such that

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣α(n)− φ(n)
∣

∣ = 0. (2)

Here, a k-step nilsequence is a sequence of the form ψ(n) = F (gnx), n ∈ N, where F
is a continuous function on a k-step nilmanifold X = G/Γ,1 g ∈ G, x ∈ X. A uniform

limit of k-step nilsequences is a sequence φ such that for every ǫ > 0 there exists a k-step
nilsequence ψ with supn∈N |φ(n)− ψ(n)| ≤ ǫ.

Later, Leibman extended the result of Bergelson, Host and Kra to polynomial iterates
in [14], and removed the ergodicity assumption in [15]. Another extension was obtained
by the second author in [12], and independently by Tao and Teräväinen in [17], answering
a question raised in [3]. There, it was shown that in addition to (2) one also has

lim
N→∞

1

π(N)

∑

p∈P∩[1,N ]

∣

∣α(p) − φ(p)
∣

∣ = 0, (3)

where P denotes the set of prime numbers, [1, N ] := {1, . . . , N}, and π(N) := |P ∩ [1, N ]|.
The proofs of all the aforementioned results depend crucially on the structure theory of

Host and Kra, who established in [7] that the building blocks of the factors that control
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1A k-step nilmanifold is a homogeneous space X = G/Γ, where G is a k-step nilpotent Lie group and

Γ is a discrete and co-compact subgroup of G.
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multiple ergodic averages are nilsystems. Since the analogous factors for Zℓ-actions are un-
known, extending the results above from Z-actions to Zℓ-actions proved to be a challenge.
Nevertheless, in [2] Frantzikinakis concocted a different approach and gave a description
of the structure of multicorrelation sequences of Zℓ-actions, which we now explain.

Henceforth, let ℓ ∈ N and let T be a measure preserving Zℓ-action on a probability space
(X,B, µ). The system (X,B, µ, T ) gives rise to a more general class of multicorrelation
sequences,

α(n) =

∫

X

f0 · T q1(n)f1 · · ·T qm(n)fm dµ, n ∈ N, (4)

where q1, . . . , qm : Z → Zℓ are integer-valued vector polynomials and f0, . . . , fm ∈ L∞(X).
Note that (1) corresponds to the special case of (4) when ℓ = 1 and qi(n) = in. Frantzik-
inakis showed in [2] that for every α as in (4) and every ǫ > 0 there exists a k-step
nilsequence ψ such that

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣α(n)− ψ(n)
∣

∣ ≤ ǫ, (5)

where k only depends on ℓ, m, and the maximal degree among the polynomials q1, . . . , qm.
Moreover, in the special case where each polynomial iterate is linear, it was proved in [2]
that one can take k = m. It is still an open question whether in (5) one can replace ǫ with
0 after replacing the nilsequence ψ with a uniform limit of such sequences (see Question 2
in Section 3).

For x ∈ R we denote by ⌊x⌋ the largest integer which is smaller or equal to x, while
for x = (x1, . . . , xℓ) ∈ Rℓ we let ⌊x⌋ := (⌊x1⌋, . . . , ⌊xℓ⌋). In [11], the first author extended
Frantzikinakis’ results to all multicorrelation sequences of the form

α(n) =

∫

X

f0 · T ⌊q1(n)⌋f1 · · ·T ⌊qm(n)⌋fm dµ, n ∈ N, (6)

where q1, . . . , qm : R → Rℓ are real-valued vector polynomials.
More recently, the last three authors showed that the conclusion of Frantzikinakis’ result

also holds along the primes:

Theorem 1 ([13, Theorems A and B]). For every ℓ,m, d ∈ N there exists k ∈ N with the

following property. For any polynomials q1, . . . , qm : Z → Zℓ with degree at most d, measure

preserving Zℓ-action T on a probability space (X,B, µ), functions f0, f1, . . . , fm ∈ L∞(X),
ε > 0, r ∈ N and s ∈ Z, letting α be as in (4), there exists a k-step nilsequence ψ satisfying

(5) and

lim
N→∞

1

π(N)

∑

p∈P∩[1,N ]

|α(rp + s)− ψ(rp+ s)| ≤ ε. (7)

In the special case d = 1 one can choose k = m.

Our main theorem simultaneously generalizes the main results from [11] and [13].

Theorem A. For every ℓ,m, d ∈ N there exists k ∈ N with the following property. For

any polynomials q1, . . . , qm : R → Rℓ with degree at most d, any measure preserving Zℓ-

action T on a probability space (X,B, µ), functions f0, f1, . . . , fm ∈ L∞(X), ε > 0, r ∈ N

and s ∈ Z, letting α be as in (6), there exists a k-step nilsequence ψ satisfying (5) and

(7). In the special case d = 1 one can choose k = m.

The proof of Theorem A, presented in the next section, follows closely the strategy
implemented in [11], but uses Theorem 1 instead of Walsh’s theorem [18] as a blackbox.
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Remark 2. Both Theorems 1 and A are equivalent to seemingly stronger versions involv-
ing commuting actions. We say that two actions T1 and T2 of a group G commute if for
every g, h ∈ G we have T g

1 ◦ T h
2 = T h

2 ◦ T g
1 . When G is an abelian group, a collection

of m commuting G-actions T1, . . . , Tm can be identified with a single Gm-action T via
T (g1,...,gm) = T g1

1 · · ·T gm
m . Using this observation, and the identification (Zℓ)m = Zℓm,

one sees that, given commuting measure preserving Zℓ-actions T1, . . . , Tm in a probability
space (X,µ, T ), Theorem 1 holds when (4) is replaced by

α(n) =

∫

X

f0 · T q1(n)
1 f1 · · ·T qm(n)

m fm dµ, (8)

and Theorem A holds when (6) is replaced by

α(n) =

∫

X

f0 · T ⌊q1(n)⌋
1 f1 · · ·T ⌊qm(n)⌋

m fm dµ.

Remark 3. Let ⌈x⌉ and [x] denote the smallest integer ≥ x and the closest integer to x,
respectively. Using the relations ⌈x⌉ = −⌊−x⌋ and [x] = ⌊x+1/2⌋, we see that Theorem A
remains true if (6) is replaced by

α(n) =

∫

X

f0 · T [q1(n)]1f1 · · ·T [qm(n)]mfm dµ, n ∈ N,

where [x]i = ([x1]i,1, . . . , [xℓ]i,ℓ) and [·]i,1, . . . , [·]i,ℓ are any of ⌊·⌋, ⌈·⌉, or [·].

Acknowledgements. The fourth author is supported by the National Science Founda-
tion under grant number DMS 1901453.

2. Proof of main result

We start by proving a theorem concerning flows, which stands halfway in between
Theorems 1 and A. The idea behind this result is that for a real polynomial q(x) =

adx
d + . . .+ a1x+ a0 ∈ R[x] and a measure presenting flow (St)t∈R we can write Sq(n) =

(Sad)n
d · · · (Sa0)1 , an expression which can be handled by Theorem 1.

Theorem 4. For every ℓ,m, d ∈ N there exists k ∈ N with the following property. For

any polynomials q1, . . . , qm : R → Rℓ with degree at most d, commuting measure preserving

Rℓ-actions S1, . . . , Sm on a probability space (X,B, µ), functions f0, f1, . . . , fm ∈ L∞(X),
ε > 0, r ∈ N, and s ∈ Z, letting

α(n) =

∫

X

f0 · Sq1(n)
1 f1 · · ·Sqm(n)

m fm dµ, (9)

there exists a k-step nilsequence ψ satisfying (5) and (7). In the special case d = 1 one

can choose k = m.

Proof. For each i ∈ [1,m], let qi = (qi,1, . . . , qi,ℓ) for some qi,j ∈ R[x]. Next, for each

j ∈ [1, ℓ], write qi,j(x) =
∑d

h=0 ai,j,hx
h, where the ai,j,h’s are real numbers. Also, for each

j ∈ [1, ℓ], let ej be the j-th vector of the canonical basis of Rℓ and let Ti,j,h be the measure

preserving transformation defined by Ti,j,h = S
ai,j,hej
i . Next, let Ti,h be the composition

Ti,h = Ti,1,h · · · Ti,ℓ,h, let Ti be the Zd+1-action defined by T
(n0,...,nd)
i = T n0

i,0 · · ·T
nd

i,d , and let

q : Z → Zd+1 be the polynomial q(n) = (1, n, . . . , nd).
With this setup, for each i ∈ [1,m] and n ∈ N, we have

S
qi(n)
i =

ℓ
∏

j=1

S
qi,j(n)ej
i =

ℓ
∏

j=1

d
∏

h=0

T nh

i,j,h =

d
∏

h=0

T nh

i,h = T
q(n)
i .
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Since the Rℓ-actions S1, . . . , Sm commute, so do the Zd+1-actions T1, . . . , Tm. This implies
that the multicorrelation sequence α can be represented by an expression of the form (8).
The conclusion now follows directly from Theorem 1 and Remark 2. �

Next we need a result concerning the distribution of real polynomials.

Lemma 5. Let q ∈ R[x] be a non-constant real polynomial, r ∈ N and s ∈ Z. Then,

denoting by {·} the fractional part, we have

lim
δ→0+

lim
N−M→∞

1

N −M

∣

∣

∣

{

n ∈ [M,N) :
{

q(n)
}

∈ [1− δ, 1)
}∣

∣

∣
= 0,

and

lim
δ→0+

lim
N→∞

1

π(N)

∣

∣

∣

{

p ∈ P ∩ [1, N ] :
{

q(rp+ s)
}

∈ [1− δ, 1)
}
∣

∣

∣
= 0.

Proof. Let

A(δ) = lim
N−M→∞

1

N −M

∣

∣

∣

{

n ∈ [M,N) :
{

q(n)
}

∈ [1− δ, 1)
}
∣

∣

∣
,

and

B(δ) = lim
N→∞

1

π(N)

∣

∣

∣

{

p ∈ P ∩ [1, N ] :
{

q(rp+ s)
}

∈ [1− δ, 1)
}∣

∣

∣
.

If q− q(0) has an irrational coefficient, then by Weyl’s Uniform Distribution Theorem [19]
and Rhin’s Theorem [16] we have A(δ) = B(δ) = δ which approach 0 as δ → 0+.

Assume otherwise that q ∈ R[x] satisfies q−q(0) ∈ Q[x], say q(x) = q(0)+b−1
∑ℓ

j=1 ajx
j

where b ∈ N, aj ∈ Z for 1 ≤ j ≤ ℓ, and q(0) ∈ R. It follows that for all n ∈ N,

q(n)− q(0) mod 1 ∈
{

0,
1

b
,
2

b
, . . . ,

b− 1

b

}

.

In particular, the fractional part {q(n)} takes only finitely many values. Therefore, if δ is
small enough, for every n ∈ N we have {q(n)} /∈ [1 − δ, 1) and hence A(δ) = B(δ) = 0,
which implies the desired conclusion. �

For the proof of Theorem A we adapt arguments from [10, 11], i.e., we use a multidimen-
sional suspension flow to approximate α by a multicorrelation sequence of the form (9).
The arising error consists of terms of the form 1{n∈N: q(n)∈[1−δ,1)} that can be controlled
by Lemma 5.

Proof of Theorem A. Given ℓ,m, d ∈ N, let k be as guaranteed by Theorem 4. Let
q1, . . . , qm, T , f0, . . . , fm, ǫ > 0, r ∈ N, s ∈ Z and α be as in the statement. By multiply-
ing each function by a constant if needed, we can assume without loss of generality that
‖fi‖∞ ≤ 1 for each i ∈ [1,m].

We start by considering a multidimensional suspension flow with a constant 1 ceiling
function. More precisely, let Y := X × [0, 1)m×ℓ and ν = µ ⊗ λ, where λ denotes the
Lebesgue measure on [0, 1)m×ℓ. For each i ∈ [1,m] define the measure preserving Rℓ-
action Si on (Y, ν) as follows: for any t ∈ Rℓ and (x; b1, . . . , bm) ∈ Y = X ×

(

[0, 1)ℓ
)m
,

let
St
i (x; b1, . . . , bm) :=

(

T ⌊bi+t⌋x; b1, . . . , bi−1, {bi + t}, bi+1, . . . , bm
)

,

where {u} := u− ⌊u⌋ for any u ∈ Rℓ. Observe that the actions S1, . . . , Sm commute.
Let π : Y → X be the natural projection and δ > 0 a small parameter to be determined

later. For each i ∈ [1,m] let f̂i ∈ L∞(Y ) be the composition f̂i := fi ◦ π, and f̂0 :=
1X×[0,δ]m×ℓ · f0 ◦ π. Define

α̃(n) =

∫

Y

f̂0 · Sq1(n)
1 f̂1 · · · Sqm(n)

m f̂m dν.
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By Theorem 4 there exists a k-step nilsequence ψ̃ such that

lim
N−M→∞

1

N −M

N−1
∑

n=M

|α̃(n)− ψ̃(n)| ≤ δℓmǫ/2, (10)

and

lim
N→∞

1

π(N)

∑

p∈P∩[1,N ]

|α̃(rp+ s)− ψ̃(rp+ s)| ≤ δℓmǫ/2. (11)

On the other hand,

α̃(n) =

∫

[0,δ]ℓm

∫

X

f0(x)f1

(

T ⌊q1(n)+b1⌋x
)

· · · fm
(

T ⌊qm(n)+bm⌋x
)

dµ(x) dλ(b1, . . . , bm),

which implies

α(n)− α̃(n)

δℓm
=

1

δℓm

∫

[0,δ]ℓm

∫

X

f0(x)

(

m
∏

i=1

fi

(

T ⌊qi(n)⌋x
)

−
m
∏

i=1

fi

(

T ⌊qi(n)+bi⌋x
)

)

dµ dλ.

(12)
In particular, it follows from (12) that |α(n) − δ−ℓmα̃(n)| ≤ 2 for all n ∈ N. If bi ∈ [0, δ]ℓ

and
{

qi(n)
}

∈ [0, 1 − δ)ℓ then ⌊qi(n) + bi⌋ = ⌊qi(n)⌋. Therefore (12) also implies that

α(n) = δ−ℓmα̃(n) whenever

n /∈
{

n ∈ N :
{

qi(n)
}

∈ [1− δ, 1)ℓ for some i ∈ [1,m]
}

.

In view of Lemma 5, by choosing δ small enough, we have

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣

∣
α(n)− δ−ℓmα̃(n)

∣

∣

∣
<
ǫ

2
(13)

and

lim
N→∞

1

π(N)

∑

p∈P∩[1,N ]

∣

∣

∣
α(rp+ s)− δ−ℓmα̃(rp+ s)

∣

∣

∣
<
ǫ

2
. (14)

Letting ψ = δ−mℓψ̃ and combining (10) with (13) and (11) with (14) we obtain the desired
conclusion. �

Remark 6. As it was already mentioned in Section 1, it is an open problem whether one
can improve upon the approximation in Frantzikinakis’ main result in [2] and Theorem 1
and take ǫ = 0 in (5) and (7) (see Question 2 below). However, as the following example
shows, in the case of Theorem A it is not possible to improve upon the approximation in
that manner.

Example 7. Take X = T := R/Z, T (x) = x + 1/
√
2, q(n) =

√
2n, f0(x) = e(x) and

f1(x) = e(−x), where e(x) := e2πix. Then we have

α(n) =

∫

f0 · T ⌊q(n)⌋f1 dµ =

∫

e(x)e

(

−x− 1√
2
⌊
√
2n⌋
)

dx

= e

(

− 1√
2
⌊
√
2n⌋
)

= e

(

1√
2
{
√
2n}

)

.

In particular, we can write α(n) as F (T nx0) with x0 = 0 ∈ T and F (x) = e({x}/
√
2)

for x ∈ T. Assume for the sake of a contradiction that there exists a uniform limit of
nilsequences φ for which

lim
N→∞

1

N

N
∑

n=1

|α(n) − φ(n)| = 0. (15)
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By [9, Lemma 18], φ can be written as φ(n) = G(Sny0) for all n ∈ N, where G is a
continuous function on an inverse limit of nilsystems (Y, S) and y0 ∈ Y .

We claim that α(n) = φ(n) for all n ∈ N. If not, then there exists δ > 0 and n0 ∈ N

such that

|α(n0)− φ(n0)| = |F (T n0x0)−G(Sn0y0)| ≥ δ. (16)

Since the system (X × Y, T × S) is the product of two distal systems, is a distal system
itself. This implies that the point (T n0x0, S

n0y0) is uniformly recurrent, i.e., the sequence
(T nx0, S

ny0) visits any neighborhood of (T n0x0, S
n0y0) in a syndetic set. This fact to-

gether with (16) and the fact that both the real and imaginary parts of F are almost
everywhere continuous and semicontinuous imply that the set

{n ∈ N : |F (T nx0)−G(Sny0)| ≥ δ/2}
is syndetic, which contradicts (15). Hence α(n) = φ(n) for all n ∈ N. However, by [6,
Proposition 4.2.5], the sequence α is not a distal sequence; in particular, it is not a uniform
limit of nilsequences, contradicting our assumption.

3. Open questions

We close this article with three open questions. Theorem A provides an approximation
result of multicorrelation sequences along an integer polynomial of degree one, evaluated
at primes. We can ask whether a similar result is true along other classes of sequences.

Question 1. Let q ∈ R[x] be a non-constant real polynomial, c > 0, and pn denote the

n-th prime. Suppose rn = q(n), q(pn), ⌊nc⌋ or ⌊pcn⌋ for n ∈ N. Is it true that for any α as

in (6) and ǫ > 0, there exists a nilsequence ψ satisfying

lim
N→∞

1

N

N
∑

n=1

|α(rn)− ψ(rn)| ≤ ǫ?

Variants of the following question have appeared several times in the literature, e.g., [2,
Remark after Theorem 1.1], [3, Problem 20], [4, Problem 1], and [8, Page 398].

Question 2. Let α be as in (4). Does there exist a uniform limit of nilsequences φ such

that

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣α(n)− φ(n)
∣

∣ = 0?

As mentioned in Example 7, the answer to Question 2 is negative when α is a mul-
ticorrelation sequence as in (6). Nevertheless, it makes sense to ask for the following
modification of it.

Question 3. Let α be as in (6). Does there exist a uniform limit of Riemann integrable
nilsequences φ satisfying

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣α(n)− φ(n)
∣

∣ = 0?

Here we say that φ is a uniform limit of Riemann integrable nilsequences if for every ǫ > 0
there exists a nilmanifold X = G/Γ, a point x ∈ X, g ∈ G and a Riemann integrable

function2 F : X → C such that supn∈N |φ(n)− F (gnx)| < ǫ.

2A function F is Riemann integrable on a nilmanifold if its points of discontinuity is a null set with
respect to the Haar measure.
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