Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/138409

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Central Bank Communication and the Yield Curve

Matteo Leombroni∗ Andrea Vedolin† Gyuri Venter‡ Paul Whelan§

Abstract

In this paper, we argue that monetary policy in the form of central bank communication can shape long-term interest rates by changing risk premia. Using high-frequency movements of default-free rates and equity, we show that monetary policy communications by the European Central Bank on regular announcement days led to a significant yield spread between peripheral and core countries during the European sovereign debt crisis by increasing credit risk premia. We also show that central bank communication has a powerful impact on the yield curve outside regular monetary policy days. We interpret these findings through the lens of a model linking information embedded in central bank communication to sovereign yields.

Keywords: interest rates, monetary policy, central bank communication, risk premia, Eurozone

JEL Classification: E43, E58, G12

We thank the editor, Bill Schwert, and an anonymous referee for helpful comments and suggestions. We also thank Daniel Buncic, Stefania D’Amico, Paul Ehling, Jean-Sébastien Fontaine, Charles Goodhart, Robin Greenwood, Sven Klingler, Gábor Kőrösi, Lukas Kremens, David Lando, Anh Le, Wolfgang Lenke, David Lucca, Hanno Lustig, Aytek Malkhozov, Charles Martineau, Felix Matthys, Leonardo Melosi, Ali Ozdagli, Lasse Pedersen, Monika Piazzesi, Huw Pill, Gábor Pintér, Ricardo Reis, John Rogers, Dirk Schumacher, Ulf Söderström, Karlye Dilts Stedman, Alireza Tahbaz-Salehi, Hongjun Yan, and seminar and conference participants at various universities and institutions for helpful comments and suggestions. We thank Now-casting Economics Ltd for providing access to their Eurozone Now-casts. Gyuri Venter acknowledges financial support from the Independent Research Fund Denmark (grant no. DFF-8019-00108B). Paul Whelan gratefully acknowledges support from the FRIC Center for Financial Frictions (grant no. DNRF-102) and the Danish Finance Institute (DFI).

∗Stanford University, email: leombm@stanford.edu.
†Boston University, NBER, and CEPR, email: avedolin@bu.edu.
‡Warwick Business School, email: gyuri.venter@wbs.ac.uk.
§Copenhagen Business School, email: pawh.fi@cbs.dk.
The financial turmoil of 2007–2008 and the subsequent European debt crisis have fuelled a lively debate about the role of central banks in controlling long-term interest rates. In this paper, we argue that monetary policy communication by central banks can have a dramatic impact on long-term interest rates via a risk premium channel. We establish this by showing that monetary policy communications by the European Central Bank (ECB) led to a significant yield spread between peripheral (Italy and Spain) and core (Germany and France) countries during the European sovereign debt crisis by increasing credit risk premia.

Figure 1 displays cumulative changes in ten-year core and peripheral sovereign yields between 2001 and 2015 on regular ECB monetary policy meeting days, i.e., days when the ECB sets the key interest rates for the Euro area. The plot shows that while core and peripheral yields moved one-for-one on these days before 2009, after the onset of the European debt crisis yields diverged, leading to a significant spread. Importantly, this spread emerged during a period when a series of unconventional measures were implemented to reduce it.\(^1\)

Using high-frequency movements of default-free rates and an equity index, we show that monetary policy communications conducted by the ECB on regular announcement days were responsible for the pattern documented on Figure 1 by increasing credit risk premia. These increases were economically sizable, and, at the very least, amplified sovereign yield volatility, making it harder for the ECB to succeed in reducing peripheral yields faster. However, we also document that speeches by the ECB President outside the regular monetary policy announcements significantly decreased the peripheral-core spread, and together with the announcements of unconventional policies, led to a sizable reduction in the yield spread. Taken together, our findings provide novel evidence that monetary policy in the form of central bank communication can impact long-term interest rates by changing risk premia.

Our empirical strategy exploits two key features of monetary policy announcements in the Eurozone. First, the ECB’s protocol for announcing monetary policy decisions allows us to disentangle the component of the policy announcement that contains new information about the future path of interest rates or credit risk—which we refer to as communication shocks—from the announcement of the short-term interest rate. Second, the fact that (current and future) short-term

\(^{1}\)On 8 August, 2011, and 10 May, 2010, the ECB announced direct purchases of government debt through its Securities Markets Programme, and on 6 September, 2012, it announced further purchases via its Outright Monetary Transactions; Altavilla, Giannone, and Lenza (2014), and Falagiarda and Reitz (2015) among others, document a significant reduction in the periphery-core spread due to these measures. In January 2015, the ECB launched its expanded Asset Purchase Programme; De Santis and Holm-Hadulla (2017) among others, evaluate its effects on financial markets.
interest rates are common across all Eurozone countries implies that any change in yield spreads in response to communication shocks must be due to changes in risk premia as opposed to changes in expectations of future short-term interest rates or term premia.

We start our analysis by developing a theoretical framework that highlights how central bank communication affects risk premia. We consider a currency union of multiple countries, representing the Eurozone. In the model, central bank communication has two dimensions: one about the intended future path of interest rates (forward guidance) and the other about additional policies, such as asset purchases, liquidity supports, or lending and refinancing operations. The two shocks drive investors’ perceived probability of a credit event, such as a peripheral default or the breakup of the Eurozone, and hence, impact the premia they demand on risky assets such as sovereign bonds and equity. This mechanism is based on the premise that market participants have imprecise knowledge about either the central bank’s reaction function, such as when it would introduce unconventional policies, or about its private signals, as in Romer and Romer (2000) and Nakamura and Steinsson (2018). Then, asset price movements around announcements are informative about market participants’ reaction to the new information embedded in these announcements.

The framework first formalizes how to identify interest rate communication shocks (also referred to as forward guidance shocks) from changes in risk-free money market rates around communication events. Further, if equity is also expected to respond to a peripheral default, the equity reaction that is orthogonal to interest rate shocks is informative about risk premia, and provides an identification of pure risk premium shocks of monetary policy communication.

The model also provides hypotheses about the impact of these two types of shocks on sovereign yields. A negative forward guidance shock decreases bond yields uniformly across all sovereigns by signalling lower future interest rates than what the market expected, but at the same time can also increase the required risk premium on all sovereign debt, dampening the effect of the expectation channel. A negative pure risk premium shock, on the other hand, increases credit risky sovereign yields. Overall, interest rate and risk premium shocks can help explain the difference in peripheral and core yield reactions to monetary policy communication.

To perform our empirical analysis, we extract the two monetary policy shocks on ECB announcement days using high-frequency data on money market rates and an equity index. Because the timing of the press conferences is known precisely, we can identify surprises related to the future path of short-term rates using changes in risk-free interest rates with different maturities.
Equity returns, also sampled during ECB press conferences, allow us to extract shocks that are informative about the probability of a future default in the Euro area.

With the two communication shocks in hand, we test the model predictions and document a number of novel results regarding Eurozone yields. First, for our main result, we split our sample into pre-sovereign debt crisis (January 2001 to November 2009, 100 observations) and sovereign debt crisis (December 2009 to December 2014, 61 observations) periods separately. We find that pre-crisis ECB communication affected bond yields of Euro-area countries uniformly. However, we find that, during the crisis, peripheral yields’ response to interest rate shocks became muted, while core yields continued to react strongly. Further, while the effect of risk premium shocks was negligible pre-crisis, they became the dominant force driving yield spreads afterwards. We find that interest rate and risk premium shocks explain around 40% of changes in ten-year yield spreads, with risk premium shocks being responsible for the majority of this variation.

Second, using rolling regressions, we confirm that the effect of central bank communication about forward guidance on peripheral bond yields declined during the crisis period while risk premium shocks became increasingly important in driving up yield spreads. Taking into account only scheduled announcement days, we find that central bank communication was responsible for a significant wedge that, at its peak around the end of 2013, represented 25% of the total ten-year yield spread. This finding is important since it coincides with a period when unconventional measures were implemented to reduce spreads.

The dramatic difference between the effect of monetary policy communications in the pre-crisis and crisis periods is in line with two distinct regimes in our model, and relates to the literature that links the European debt crisis to self-fulfilling beliefs and multiple equilibria; see, e.g., Corsetti and Dedola (2016), Bocola and Dovis (2019), and Lorenzoni and Werning (2019), among others. According to this interpretation, the period before late 2009 featured a small probability of a credit event and a low sensitivity of this probability to ECB communication shocks. In contrast, after December 2009, negative risk premia shocks, signalling a lower probability of the introduction of necessary “save the Euro” policies, increased agents’ perceived probability of a credit event significantly, which in turn drove yield spreads up even further.

Third, we study the link between central bank communication shocks and credit risk premia and document highly significant effects on sovereign CDS and, most importantly, their spread. This finding further corroborates our interpretation of risk premium shocks as being informative
about the likelihood of a peripheral default.

Fourth, we investigate whether our results are exclusive to monetary policy announcements during press conferences or can be extended to central bank communication more generally— one of the most prominent being ECB President Draghi’s “whatever it takes” speech in 2012 that immediately collapsed the peripheral-core spread and led to a rally in stock markets. To answer this question and to go beyond anecdotal evidence, we construct interest rate and risk premium shocks during speeches by ECB Presidents akin to the procedure around monetary policy press conferences. Using these shocks, we re-run our main analysis and find patterns strikingly similar to standard monetary policy communication. While interest rate and risk premium shocks have no significant effect on the yield spread before 2010, in the crisis period both shocks explain around 35% of the variation of the yield spread on days when ECB Presidents give speeches. These results relate to the broader notion that risk premia due to monetary policy can also be earned outside standard monetary policy announcement days; see, e.g., Neuhierl and Weber (2019). Moreover, we show that ECB President speeches led to a significant reduction in the peripheral-core spread, offsetting the increase in spreads observed on regular ECB announcement days. This effect on the spread is further strengthened once we take into account announcements of unconventional policies: the overall effect—once we combine all announcement and speeches—was a sizable reduction of the yield spread. These results stress the relevance of taking into account central bank communication outside regular announcement dates.

Fifth, we extend our analysis to the period after the introduction of the ECB Quantitative Easing programme. To this end, we re-estimate our baseline regressions for an extended sample period between 2015-2018 and include a QE-related policy shock that we construct following Swanson (2018) and Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019). We find that the power of interest rate communication shocks returned to the pre-crisis level: estimated coefficients are highly statistically significant, and these communication shocks are able to explain more than 60% of the variation in both core and peripheral yields. We therefore conclude that the introduction of unconventional monetary policies such as QE resurrected the power of monetary policy communication about interest rates by reducing its risk premium effect.

We perform a number of robustness checks to challenge our main finding by including macroeconomic announcements, changing the sampling frequencies of our left- and right-hand variables, and considering alternative risk premium shocks. Taken together, our findings illustrate that cen-
Central bank communication can have significant effects on asset prices via a risk premium channel during and outside anticipated monetary policy announcements.

Related Literature. A large literature in macro-finance studies the effects of the U.S. Federal Reserve’s monetary policy on the cross-section of assets and market variables such as long-term real and nominal interest rates, equity returns, volatility, and mortgage issuance; see, e.g., Fama (2013), Hanson and Stein (2015), Boyarchenko, Haddad, and Plosser (2017), Hanson, Lucca, and Wright (2018), and Neuhierl and Weber (2019). While our approach is similar in spirit, we complement the above literature along at least two dimensions. First, we highlight the role of monetary policy to influence markets beyond the standard stance of conventional monetary policy, and affect credit risk premia instead of term premia. Second, the unique setting for the transmission of monetary policy in the Eurozone allows us to study central bank communication separately from policy action.

An important literature studies the ECB’s action during the European debt crisis. For example, Rogers, Scotti, and Wright (2014), Fratzscher, Lo Duca, and Straub (2016), Haitsma, Unalmis, and de Haan (2016), Kojien, Koulischer, Nguyen, and Yogo (2017, 2020), Krishnamurthy, Nagel, and Vissing-Jorgensen (2018), and De Santis (2019), all document that the unconventional policies of the ECB successfully eased financial conditions in peripheral countries. In contrast to these papers, we study regular monetary policy days and our focus is on the different dimensions of central bank communication. Further, our long time series enables us to document structural breaks in the effect these shocks have on the sovereign yield spread. We also extend our study from regular ECB monetary policy meeting days to President speeches more generally.

The framework that guides our empirical approach is also linked to a literature that explores belief-driven equilibria around the European sovereign debt crisis; see, e.g., Corsetti and Dedola (2016), Bocola and Dovis (2019), Lorenzoni and Werning (2019), and Bacchetta, Perazzi, and van Wincoop (2020). We complement this theoretical literature by providing empirical evidence for a risk premium channel of monetary policy that arises in the “bad equilibria” of these models.

Our paper is also related to the literature that explores the signalling channel of monetary policy: policymakers’ actions reveal their private knowledge to market participants, which in turn can have real economic effects; see, e.g., Romer and Romer (2000), Campbell, Fisher, Justiniano, and Melosi (2016), and Nakamura and Steinsson (2018). We add to this literature by extracting

two distinct policy shocks that differentiate between standard interest rate shocks and news related to additional policies that, in the Eurozone setting, manifest as credit risk shocks. Different from this literature, we also argue that our additional policy shocks (or risk-premium shocks) can capture not only superior signals directly about macroeconomic variables, but also information about the implementation of unconventional policies (or the lack thereof), which in turn naturally affect the macroeconomy.

Our identification of ECB communication shocks partially follows Brand, Buncic, and Turunen (2010), who study the effect of monetary policy on Eurozone money market rates; see also Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019). Our paper is different from theirs along several dimensions. First and foremost, we not only use money market rates but also equity returns to extract two distinct channels of central bank communication, and we show that shocks driving credit risk premia have a much more significant role in explaining sovereign yields than the traditional interest rate shocks since 2009. Second, we study the cross-sectional differences in yield reaction to communication during the European sovereign debt crisis, which is outside the sample period of Brand, Buncic, and Turunen (2010) and not considered by Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019). Third, we document a more general link between central bank communication and asset prices that is also present when ECB Presidents give speeches.

The rest of the paper is organized as follows. Section I provides a simple theoretical framework to study the impact of monetary policy communication on sovereign yields. Section II presents the various data sources used. Section III describes the institutional setting of ECB monetary policy announcements and outlines the identification of communication shocks. We present our main empirical findings and perform various robustness checks in Sections IV-VI. An Online Appendix gathers additional results omitted from the main paper.

I. Theoretical framework and main implications

Our main premise is that monetary policy communication drives market participants’ beliefs about the future path of interest rates as well as the implementation of additional policies, and we build a reduced-form model to study the cross-sectional impact of central bank communication on asset returns.
prices. Below we describe the model, highlight the mechanism we have in mind, describe how to identify central bank communication shocks, and derive testable predictions. The formal model itself is delegated to the Online Appendix.

While the main mechanism applies in general, to accommodate our empirical application and provide testable implications, we set up a modelling framework that can represent the Euro area. For this purpose, we consider a currency union of multiple countries, and think about a representative agent that trades default-free assets (e.g. OIS swap rates), defaultable sovereign bonds in each country, and an aggregate equity index of the Eurozone.

The central bank (the ECB) has two roles in this economy: it sets the target short rate and communicates to market participants. We posit that central bank communication provides information about future short rates (forward guidance) and additional policies. Our main interpretation of the latter type is signals about the implementation of asset purchase programmes or the lack thereof. Market participants, in turn, update their beliefs about the probability of credit events that we think of as sovereign (mainly peripheral) defaults, or the breakup of the Eurozone. In particular, we would expect credit risk to increase and future equity cash flows to decrease if the ECB signals lower future interest rates because the macroeconomy needs further stimulus, and if market participants find that either the probability or the scope of future asset purchase programmes is insufficient.

In equilibrium, expected excess returns on all assets must compensate investors for the risk they bear: for default-free bonds this is only interest rate risk, whereas sovereign bonds and equity have risk premia that increase in the probability of a credit event and the loss given a credit event (see, e.g., Duffie and Singleton (1999)). As a result, if and only if monetary policy communication is informative about the probability of the credit event and market participants consider peripheral (GIIPS) countries weaker/credit-riskier than core countries such as Germany or France, the risk premium on the former are larger than on the latter; otherwise, there should be no difference.

Consider now high-frequency intervals around communication events such as ECB press conferences when all non-communication shocks of the model are negligible. Our framework implies that one can identify shocks to the future path of interest rates from default-free rate changes in these

3This interpretation is consistent with the idea that monetary policy shocks are surprises about the central bank’s reaction to publicly available information, as in Bauer and Swanson (2020). Alternatively, the standard macro literature models central bank communication as revealing the bank’s private information about exogenous macro fundamentals such as GDP growth, industrial production, or unemployment, to the public; see, e.g., Romer and Romer (2000), Campbell, Fisher, Justiniano, and Melosi (2016), and Nakamura and Steinsson (2018), among others. While both channels are consistent with our formal model, we focus on the first interpretation due to the time period and the Eurozone setting that we study.
narrow intervals; we will denote these by IR. Moreover, the impact of additional policy shocks can be identified by orthogonalizing high-frequency equity returns with respect to default-free yield changes and taking the residual; we denote these by U.

The above setting has a series of implications about the effect of central bank communication shocks IR and U on the cross-section of sovereign yields. First, we show that sovereign yields of core countries react more to ECB forward guidance shocks than peripherals. Sovereign bond yields are the average expected returns earned through the lifetime of bonds, which equal expected future risk-free rates and risk premia. Therefore, communication shocks about the future path of monetary policy can affect bond yields via two channels.

On one hand, forward guidance shocks provide information about future short rates, so a negative IR shock decreases all bond yields, and this effect is uniform across all countries, because they share the same short rate process. On the other hand, innovations to the future path of interest rates also affect the perceived probability of the credit event: An announcement that policy rates will be low for longer can increase the probability of default by raising the market value of current liabilities and making it less profitable for bondholders to roll over sovereign debt, and can also be interpreted as a signal of weaker future fundamentals (e.g., output or unemployment). These mechanisms increase the risk premia on credit-risky assets such as sovereign bonds.

Because the expectation channel is identical for all countries and the risk premium channel counteracts it, core yields are overall more responsive to interest rate shocks than peripheral yields. Intuitively, German and other core bonds, even in turbulent times, tend to feature small risk premia and thus interest rate shocks have an overall positive impact on their yields. In contrast, in stressful periods the risk premium channel on peripheral bonds can be strong enough to dominate the expectation channel and lead to negligible or even negative overall IR multipliers.

A second result is that negative news about ECB policies, $U < 0$, increase the perceived probability of the credit event and hence the required risk premia; this raises sovereign yields, especially for peripheral countries. Since these additional policy shocks have no expectation effect via influencing future short rates, we refer to them as pure risk premium shocks in the rest of the paper.

Notice that the described risk premium channel crucially depends on the sensitivity of market participants’ perceived probability to monetary policy shocks. While we take these parameters of the model as given, their value can change across different regimes. In normal times, when
the Eurozone is in sound economic and financial condition, we would expect monetary policy communication to have a small effect on credit risk, and as a result, all sovereign bonds react to forward guidance shocks and feature small risk premia. On the other hand, in more turbulent (crisis) times, perceived credit risk is more sensitive to ECB communication. In turn, peripheral sovereign yields can stop reacting to conventional monetary policy, and negative additional policy shocks, which signal a lower probability of the introduction of policies investors deem necessary, drive up the perceived probability of a credit event, further raising yield spreads.

We summarize the above predictions in the following hypotheses:

Hypothesis 1. In normal times, IR (forward guidance) communication shocks have a positive and uniform impact on all sovereign yields. In crisis times, they have a positive effect on core yields, and a smaller or even negative impact on peripheral yields.

Hypothesis 2. In normal times, U (risk premium) communication shocks have a negligible effect on sovereign yields. In crisis times, they have a negative impact on all sovereign yields, which is larger in absolute value for peripheral yields.

While these predictions are intuitive, it is important to show that they are consistent with a rational framework. For this purpose, we build a reduced-form model of the impact of central bank communication on asset prices in the Online Appendix. In what follows, we perform empirical tests suggested by Hypotheses 1 and 2.

II. Data

Interest Rates Swaps. From Reuters Datascope we collect real-time quotes of overnight index swap rates with maturities ranging between one and twelve months, and swap rates, written on the six-month Euribor, with maturities ranging between two and ten years.

Equity. Additionally, from Reuters Datascope, we obtain high-frequency data on Eurostoxx 50 futures. We use futures data instead of the cash index since futures markets are far more liquid than cash markets. Futures returns are computed on the most liquid (highest volume) contract, which is normally the front month, or, in expiration months, the next to delivery.

Sovereign Bond Yields. We use daily zero-coupon bond yields of Germany, France, Italy, and Spain, with maturities ranging between three months and ten years, available from Bloomberg. We focus on these four countries as both bond and CDS data coverage for these countries is
reliable, and together they account for about 76% of the total GDP of the Eurozone. We also use high-frequency bond yields of the same set of countries available from Reuters Datascope.

Credit Risk. To measure the credit risk of each country, we use U.S. dollar-denominated credit default swaps sourced from Markit.

News. For aggregate macroeconomic news about the Eurozone, we rely on Now-casts of current Euro-area GDP. Now-casts are based on a dynamic factor model (see, e.g., Giannone, Reichlin, and Small (2008)) to predict current and next quarter GDP growth and use a large and heterogeneous set of predictors, including both “hard” and “soft” data, ranging from unemployment statistics to consumer surveys. We use changes in the Now-casting predictions between two ECB meetings to proxy for all relevant economic news released within this period.

Announcement Dates. Our main sample period runs from 1 January, 2001, to 31 December, 2014. Since January 2015, the press release of the ECB Governing Council policy decision refers to current and future unconventional policy measures, too; see the details in Section III. In addition, January 2015 also marks the beginning of the ECB publishing its monetary policy deliberations. Thus, our main period of interest ends in December 2014 to keep our identification clean. We discuss the impact of the introduction of the Asset Purchase Programme in January 2015 in Section VI. During the 2001-2015 period there is approximately one ECB meeting per month, except for in years 2001 and 2008, with 22 and 13 meetings, respectively. From the 179 announcement days we exclude 18 that were either not followed by a press conference or were unscheduled; these are summarized in the Online Appendix. Our final sample thus consists of 161 announcement days: 18 days when the main refinancing rate was cut, 11 days when the rate was raised, and 132 meetings with no change.

ECB President Speeches. We combine data on ECB President speeches from Bloomberg calendar, Bloomberg news, and the ECB website for the 2001 to 2015 period. The Bloomberg economic calendar lists all speeches performed by the ECB President together with the date of the speech. We then match the list of speeches provided by Bloomberg with information from the ECB website, which provides the transcript for a set of speeches. For the purpose of our paper we only use speeches that were covered both by the Bloomberg calendar and by the ECB website. We filter out a small number of speeches such as award ceremonies, openings of museums, book fairs, etc., that were clearly not discussing monetary policy-related issues. Finally, using the Bloomberg news database, we collect the time stamp for the first news of the day that is related to the speech,
focussing only on speeches held during typical market trading hours, i.e., between 09:00 and 18:00 CET. This leaves us with 219 ECB President speeches.

III. ECB Governing Council meetings and policy shocks

A large empirical literature extracts monetary policy shocks from money market rates. We follow the approach of Brand, Buncic, and Turunen (2010) based on high-frequency identification, which exploits the fact that the ECB conducts the target rate announcement and the press conference at different points in time. This allows a simple yet clean separation of monetary policy action vis-à-vis communication.

Figure 2 illustrates the timeline of events on days of the meetings of the Governing Council. At 13:45 CET, the ECB publishes a press release announcing its policy rate decision, i.e., the minimum bid rate for the main refinancing operations of the Eurosystem. Then at 14:30 CET, the ECB president and Vice-President hold a press conference, during which they discuss the future path of monetary policy (forward guidance on interest rates) and the state of the Eurozone economy. As our focus is on the effect of ECB communication on asset prices, to allow sufficient time for the market to reflect on rate decisions and information, we define our communication window starting at 14:25 and ending at 15:30 CET, 40 minutes after the press conference finishes.

The press conference begins with an introductory statement, whose structure has remained the same since the inception of the ECB: it contains (i) a summary of the ECB’s monetary policy decision and balance of risks to price stability, and, since July 2013, an open-ended forward guidance; (ii) a discussion of both real and monetary developments in the Euro area; and (iii) a conclusion with some considerations on fiscal policy and structural reforms. The press conference then continues with a Question-and-Answer session. Central bank communication therefore not only reveals information about future interest rates but also about the state of the economy. In the following, we draw on the joint dynamics of default-free interest rates and equity during the 1-hour-and-45-minute press conference window to capture the multi-dimensional nature of communication, as described by our theoretical framework.

We form a single composite forward guidance shock from swap rates. Specifically, we measure changes in swap rates with maturities ranging between one month and ten years over the press
conference window, then estimate latent factors via principal component analysis on the covariance matrix of the 161 (number of announcements) × 21 (maturities) matrix of rate changes. We find that the first PC explains more than 86%, and the first two PCs together explain more than 93% of the total variation. To assess the economic significance of these factors, we regress zero-coupon rate changes, bootstrapped from swap rate changes, on the first and second PCs. Our regressions reveal that almost all of the variation in bond yields is captured by the first PC and that the second factor has very little impact on yield changes during the communication window. Thus, we take PC_1 as our proxy for the default-free interest rate communication shock, denoted by IR.

The equity response, EQ, is simply computed as the log return of the most liquid Eurostoxx 50 futures contract during the same window used to estimate the forward guidance shock. To disentangle the effect of shocks to risk premia that is independent of default-free interest rate shocks, we then estimate an orthogonal component via ordinary least squares (OLS):

$$EQ_t = a + b IR_t + \varepsilon_t. \tag{1}$$

In our analysis, we orthogonalize equity shocks with respect to the interest rate shock using the full sample period; however, our results remain the same if we orthogonalize with respect to the different periods. Thus, we obtain pure risk premium shocks by

$$U_t \equiv EQ_t - \hat{a} - \hat{b} IR_t, \tag{2}$$

where \hat{a} and \hat{b} are the OLS point estimates from (1).

Figure 3 plots the time series of our estimated communication shocks, and Table I presents summary statistics for the full sample and the two subsamples. For the full sample, the interest rate shock is slightly negative at -0.20bps on average (U shocks are zero-mean by construction), and the volatility of risk premium shocks is around 23 times larger than for interest-rate shocks. Comparing pre- and post-December 2009 summary statistics, we find that many characteristics are stable across subsamples. However, the risk premium shocks become more negative as well as more volatile over time.

4In the Online Appendix we present estimated coefficients for (1) and a similar, multivariate specification that includes the first 5 principal components of swap rates, for three sample periods (full sample, pre-crisis, and crisis). Our estimates show that for all sample periods there is a low correlation between equity returns and IR, and the maximum R^2 is 12%. Interestingly, unlike Bernanke and Kuttner (2005) for FOMC meetings, we find that IR shocks have on average positive impact on equity returns around ECB press conferences that increases over time, although all estimates are insignificant.
To motivate our approach, we discuss the events and corresponding shocks on two particular days of our sample. On 4 August, 2011, the Governing Council decided to keep interest rates on hold after a previous hike in July, causing market participants to revise down their beliefs about the future path of the policy rate. This resulted in a drop in interest rates, corresponding to a -11bp IR shock, an approximately 3.5-standard-deviation surprise—the largest dovish shock in the crisis period.

Figure 4 shows the reaction of bond and stock markets during the ECB press conference of 2 August, 2012, exactly one week after ECB President Draghi’s famous “whatever it takes” speech. During the meeting, the Governing Council decided that “it may undertake outright open market operations of a size adequate to reach its objective.” As a result, the spread between peripheral and core ten-year yields experienced the largest one-day increase on any day between 2009 and 2015 (53bps), because, after the speech on 26 July, 2012, the market was expecting nothing short of an announcement of quantitative easing.\footnote{The press headline that day read: “ECB disappoints. The council is clearly not in agreement on what can or will be deployed, and there are clearly a number of council members who are making further ECB action contingent on governments delivering on their side of the equation and therefore whatever the ECB does will not be QE.” When asked during the Q&A, President Draghi stated that the move “was approved unanimously today with one exception and it was not me.” Bundesbank Chief Jens Weidmann allegedly voicing his reservations about bond-buying caused uncertainty about future ECB monetary policy.} Figure 4 shows that while the two-year swap rate did not change significantly, EuroStoxx futures dropped by 2.66% during the first half of the press conference. We measure the pure risk premium shock of this conference at -247bps, which corresponds to a three-standard-deviation surprise—the largest negative U shock in the sample.

Our proposed economic channel links the information embedded in central bank communication to these swap, equity, and sovereign yield changes. In the following, we study their relationship more formally, and use the above two numerical examples, $IR = -11$bps and $U = -247$bps, to illustrate the economic significance of our results.

IV. Central bank communication and sovereign yields

A. Core versus peripheral yields

We regress daily changes of core and peripheral bond yields on IR and U shocks for the pre-sovereign debt crisis (January 2001 to November 2009, 100 observations) and sovereign debt crisis...
Yields are defined as the arithmetic average of German and French yields, and peripheral yields are defined as the arithmetic average of Italian and Spanish yields; we report individual country regressions in the Online Appendix. Formally, as suggested by our theoretical framework, we run

\[\Delta y_{i,t}^\tau = a_{i,\tau} + b_{i,\tau} IR_t + c_{i,\tau} U_t + \epsilon_{i,t,\tau}, \]

where \(\Delta y_{i,t}^\tau \) are daily zero-coupon yield changes for \(i = c, p \) (core and periphery), with maturities \(\tau = 3, \ldots, 120 \) months, and we compare the obtained core and peripheral coefficients.

Figure 5 visualizes our results. The left panels plot the effect of interest rate (upper left panel) and risk premium shocks (lower left panel) before December 2009. We find that before the European sovereign debt crisis, coefficients for the interest rate shock are statistically different from zero for all maturities, and estimated coefficients for core and peripheral countries are virtually the same, indicating that monetary policy did not have a differential effect. For example, for any negative 11bp forward guidance shock, there is an 18bp decrease in two-year bond yields and an 8bp drop in ten-year yields, for both core and peripheral countries. Pure risk premium shocks, on the other hand, do not have a significant effect on bond yield changes as estimated coefficients are insignificant at all maturities.

The right panels present results from the crisis subsample, the main focus of our paper. Interestingly, interest rate shocks have a differential effect on core versus peripheral countries in this period: for core countries we find virtually the same hump-shaped pattern as in the first part of the sample, but peripheral countries are affected much less; in fact, estimated coefficients beyond the one-year maturity are indistinguishable from zero. In particular, we find that for any dovish 11bp surprise, two-year core yields drop by 17bps, whereas the effect on a two-year peripheral yield is a 2bp increase and statistically insignificant. This pattern extends to longer maturities: for ten-year bonds, the corresponding numbers are a 10bp core drop and a 4bp peripheral increase.

\[^6\] A formal analysis, following Bai and Perron (1998, 2003), identifies three break points during the 2001-2018 period. The first is in December 2009, which was the first ECB meeting where Greek default was mentioned. The second occurs mid-2012, in the run-up to the “whatever it takes” speech of ECB President Mario Draghi. The third break, in December 2014, marks the end of our “crisis” sample, after which the ECB (i) introduced the PSPP programme and (ii) changed its communication strategy by releasing some information about unconventional policies together with the monetary policy decision at 13:45 CET. Treating the 2009-2012 and 2012-2014 periods separately does not have a qualitative impact on our results. Exhaustive estimation details are gathered in the Online Appendix.
We can compare these numbers to those documented in the literature for US Treasury bonds. For example, Nakamura and Steinsson (2018) find that any 100bp increase in their policy shock (which the authors interpret as a forward guidance shock) increases ten-year Treasury yields by 38bps. Since their largest (in absolute values) shock is a 13bp drop, this implies a 5bp decrease in ten-year yields—close to our pre-crisis or crisis core estimates but larger than the crisis peripheral effect. Hanson and Stein (2015) report similar economic magnitudes for forward guidance shocks and their effects on real yields.

Estimated coefficients on risk premium shocks for core countries are insignificant at all maturities except at the shortest maturity. For peripheral yields, however, we find highly statistically significant estimates, which increase (in absolute value) with the maturity. To evaluate the effect of risk premium shocks on peripheral yields, we refer to the event documented in Figure 4: a negative 247bp pure risk premium shock increases two-year peripheral yields by $247 \times \frac{7.50}{100} = 19$bps and ten-year peripheral yields by $247 \times \frac{9.17}{100} = 23$bps.

To highlight the effect of the shocks on the yield spread, defined as the difference between peripheral and core yields, we turn to Table II, which presents estimated coefficients for core and peripheral countries during the crisis. We find that interest rate shocks have a statistically significant effect on the spread for maturities ranging from two to ten years, with the largest effect for the intermediate maturities around two years. For U shocks, we find that the estimated coefficients are again significant for maturities ranging between two and ten years, and coefficients increase (in absolute value) with the maturity. The last line of the table also reports the change in adjusted R^2 when adding the risk premium shock to the regression. We notice that the latter contributes the majority to the variation in bond yield changes, with its incremental R^2's ranging between 1% and 32% for maturities above one year. Repeating the same calculation as above, we find that a -11bp IR shock increases the two-year (ten-year) yield spread by 19bps (14bps), whereas a -247bp U shock increases the two-year (ten-year) yield spread by 19bps (26bps). Therefore, while forward guidance and risk premium shocks have approximately the same effect on two-year yields, the latter have a twice as large impact on very long term sovereign bond yields. This finding is also related to Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019), who find that monetary policy shocks extracted from default-free interest rates alone have small impact on long-term bonds during the crisis period — we show that in this period most of the variation is risk-premium-related.
In a recent paper, Bauer and Swanson (2020) argue that because the Federal Reserve and market participants pay attention to the same news, macro news are an omitted variable in regressions similar to (3), and including them drives out monetary policy shocks, questioning the so-called “Fed information effect” documented in Nakamura and Steinsson (2018). To address the concern that similar mechanisms are at work in the Euro area, too, in the Online Appendix we revisit the findings of Table II but also include changes in Now-casts as a proxy, available in real-time and computed from a large panel of macroeconomic indicators, for the omitted macro news variable. We find that controlling for news does not affect our main result: regression coefficients are virtually the same as in Table II, and the significance levels and regression R^2s are hardly affected. This suggests that in the case of the Eurozone, central bank communication still provides information relevant for sovereign bond pricing beyond publicly available information.

The above results indicate a regime change in terms of central bank communication from the pre-crisis to crisis period that led to significantly different patterns in sovereign yields’ reaction to monetary policy shocks. In particular, the pre-crisis regression coefficients are consistent with an economy in which either there are no major differences between core and peripheral countries’ economies, or monetary policy communication does not contain significant new information about the state of the economy and hence credit risk. On the other hand, our results suggest that during the crisis investors paid special attention to the health of the sovereign economies, with a particularly sharp disconnect between core (e.g., Germany and France) and peripheral economies (e.g., Italy and Spain). It is also reasonable to assume that during this period, in case of a peripheral default or an Eurozone breakup, bonds issued by peripheral countries would have been more exposed to credit losses, potential redenomination, and liquidity risks, i.e., less valuable than bonds issued by core countries. Thus, these results confirm the predictions of Hypotheses 1-2.

The regime change around the December 2009 ECB meeting, the first one during which Greek default was mentioned, suggests that the failure of forward guidance to impact peripheral yields and the dominance of U shocks might not be exclusively due to worsening fundamentals. In fact, this dramatic change is consistent with the recent literature that links the European debt crisis to self-fulfilling beliefs and multiple equilibria (see Corsetti and Dedola (2016), Bocola and Dovis.

7 In the Online Appendix, we also present regression results from changes in expected output of core and peripheral countries on our monetary policy shocks and the news shock, similar to Bauer and Swanson (2020). We find that estimated coefficients for U and IR shocks are positive for both countries. However, the coefficients are not precisely estimated: U shock coefficients - while larger for peripheral countries - are statistically significant for core countries while IR are statistically significant only for peripheral countries.
In our framework, the pre-crisis results correspond to a “good” equilibrium in which all sovereign bonds react to forward guidance shocks and feature small risk premia. The post-December 2009 results, on the other hand, correspond to a “bad” equilibrium in which peripheral sovereign yields stop reacting to conventional monetary policy, and negative state-of-the-economy shocks, which signal a lower probability of the introduction of policies investors deem necessary, drive up the perceived probability of a credit event, and yield spreads rising further and getting disconnected from fundamentals.

B. Communication effects in the time series

In order to get a better understanding of the time-series behavior of the regime change noted earlier, Figure 6 depicts estimated coefficients and R^2’s from rolling-window regressions of ten-year bond yield changes of core and peripheral countries on interest rate (upper panels) and risk premium shocks (lower panels). We find that the effect of IR shocks on core countries’ yields remains remarkably stable throughout the whole period as estimated coefficients wiggle around 0.8. The effect on peripheral yields, however, starts to weaken in 2011 and becomes zero and insignificant in 2013. The effect of U shocks is virtually the same for core and peripheral countries until 2012, when the two start to diverge. While the effect on core countries continues to be insignificant, the effect on peripheral yields strengthens as estimated coefficients become negative. A similar pattern emerges for the univariate R^2’s: For core yields, interest rate shocks explain on average around 30% of the variation. For peripheral countries, the R^2 drops significantly in 2011 and converges to zero. Risk premium shocks, on the other hand, display exactly the opposite behavior: while the R^2 is close to zero until the crisis for both core and peripheral yields, the effect on the latter increases during the crisis, reaching an R^2 of 35% at the end of our sample. These results again suggest a radical change in how peripheral countries were perceived by market participants even on ECB days.

C. Economic significance and the yield spread

Since the onset of the crisis in 2009, the ECB has tried to ease distress in financial markets and to reduce sovereign spreads by (i) drastically lowering its target rate, (ii) providing unprecedented
amounts of liquidity support against a broader set of assets used as collateral, by (iii) introducing a series of unconventional measures such as its Securities Markets Programme and Outright Monetary Transactions, and, since January 2015, by (iv) introducing quantitative easing in the form of its permanent Asset Purchase Programme. Our results so far suggest that conventional monetary policy in the form of central bank communication is also a driver of the yield spread.

To evaluate the realized effect and overall economic magnitude of this channel, we calculate the size and direction of the spread implied by monetary policy shocks, and compare it to the time-series of the yield spread. We compute the implied spread by multiplying realized shocks with the difference in real-time policy loadings displayed in Figure 6, and add them up over time. The resulting spread is depicted in Figure 7. Strikingly, we find that IR and U shocks had a consistently positive effect on the yield spread starting at the onset of the crisis in 2010. Indeed, the cumulative sum increases up to 50bps in late 2013 and has since then been declining. Economically, this effect is large: At the end of 2013, the ten-year core-periphery yield spread was 213bps, so at its peak the spread due to communication represented around a quarter of the total yield spread.

\[\text{Insert Figure 7 here}\]

D. Credit risk

Next, to study whether monetary policy communication drives the yield spread through a credit risk channel, we run the regressions

\[\Delta CDS_{i,t} = a_i + b_i IR_t + c_i U_t + \epsilon_{i,t}, \]

where \(\Delta CDS_{i,t} \) is the change in the five-year CDS rate of country \(i \). Table III contains the results for the four individual countries, core and peripheral CDSs, and their spread. We find that estimated coefficients for IR and U shocks are significant and negative. In particular, a hypothetical negative 11bp IR shock increases the five-year peripheral-core CDS spread by 12bps, whereas a hypothetical negative 247bp U shock increases the difference in CDS rates by 23bps. Given that on average IR and U shocks are negative after December 2009, this implies that both shocks significantly increase the credit risk premium spread between peripheral and core countries, and
the majority of this difference is driven by the U shock itself.\footnote{As an additional test for credit risk channel, we can look at corporate credit spreads directly. To this end, we collect Markit iBoxx EUR price indices from Bloomberg, and obtain the following estimates for the crisis period:}

\[\Delta (y_{BBB,t} - y_{AAA,t}) = a + 3.42 IR_t + 9.13 U_t + \epsilon_t, \quad \bar{R}^2 = 40.17\% \]

Since the left-hand side variables are price indices and not yields, more negative shocks increase the corporate yield spread, in line with the results of Table III.

Our empirical results have two implications regarding the model described in Section I. First, monetary policy communication does not only seem to be an important driver of investors’ beliefs about future interest rates, but also about perceived credit risk, which supports our modelling assumptions and interpretations. Second, the U shocks that we back out from equity changes are essentially the main drivers of credit risk premia. Since they have no effect on expectations by construction, they can indeed be interpreted as sovereign credit risk premium shocks of ECB communication.

E. Are ECB days special?

Our main results presented in Table II are based exclusively on days when the ECB makes its monetary policy announcement. It is natural to ask whether the relationship between sovereign bond yields and shocks extracted from risk-free interest rates and equity is different on ECB days relative to all other days. To study this question in more detail, we construct interest rate shocks by repeating the principal component analysis of risk-free interest rates in high frequency during the communication window on all days from 2010 to 2015. Similarly, we construct risk premium shocks from equity returns sampled in the same period on all days. Using these two shocks, we re-run our main regression augmented by a dummy, $1_{\text{ECB},t}$, that takes the value of one on days when the ECB makes its monetary policy announcement and zero otherwise:

\[\Delta (y_{p,t} - y_{c,t}) = a_1 + a_2 1_{\text{ECB},t} + b_1 IR_t + c_1 U_t + b_2 IR_t \times 1_{\text{ECB},t} + c_2 U_t \times 1_{\text{ECB},t} + \epsilon_t. \]

We present the results in Table IV for sovereign yields and in Table V for CDS.

\[\text{[Insert Tables IV and V here]} \]
Except for the short end, changes in sovereign yields are not significantly different on ECB days than other days as indicated by the insignificant estimates on the dummy variable. The estimated coefficients on the IR and U shocks are negative and highly statistically significant, just as in Table II; the negative relationship between yield spreads and monetary policy shocks is significant in the crisis period even on days when the ECB does not announce its monetary policy. However, estimated coefficients on the interaction terms are also significant for long maturities, indicating that the relationship between communication shocks and yield spreads is “special” on days when the Governing Council hold their meetings. For a comparison of the magnitudes, note that a hypothetical negative 11bp IR shock increases the ten-year peripheral-core yields spread by 14bps on normal days and by 32bps on ECB days, whereas a hypothetical negative 247bp U shock increases the peripheral-core yields spread by 8bps on normal days and by 25bps on ECB days—a three times larger effect. A similar pattern emerges for CDS: negative forward guidance and risk premium shocks increase the credit risk of peripheral countries relative to core countries, especially on ECB days.

F. Alternative risk premium shocks

In our framework, the nature of risk premium shocks is information about the implementation of unconventional policies (or the lack thereof) to the market. Our shocks are calculated from equity returns, but one might argue that other asset prices capture changes in risk better around monetary policy announcements. For example, Rogers, Scotti, and Wright (2014) use changes in the spread between ten-year Italian and German bond yields to study the reaction of exchange rates and equity returns around ECB monetary policy announcements, and Bekaert, Hoerova, and Lo Duca (2013) argue that equity-implied volatility is strongly related to the stance of the US Federal Reserve’s monetary policy and investors’ risk aversion.

In the following, we construct a composite measure from Eurostoxx returns and changes in two implied volatilities, and study the impact of this alternative shock on bond spreads during the crisis. To this end, we collect data on the VSTOXX, an implied volatility index from options written on the Eurostoxx, and extract an implied volatility measure from the cross-section of options written on the EUR/USD exchange rate. Using the first principal component of these implied volatilities and our equity returns, and orthogonalizing the variable with respect to our IR shock as in (2), we calculate an alternative risk premium shock, which we denote by C.

20
Table VI summarizes estimated coefficients from regressing peripheral-core yield spreads on the interest rate shock, IR, and the new risk premium shock, C. We notice that all estimates for C are positive and highly statistically significant for long maturities; higher risk premium shocks lead to higher yield spreads. In terms of the IR coefficients and R^2s, we find the numbers to be very similar to those reported in Table II. Overall, we conclude that our results are robust to the set of assets we choose to construct risk premium shocks from.

\[\text{Insert Table VI here} \]

G. Robustness

We perform a host of robustness checks to challenge our main result; to save space, we defer exhaustive details and results of these tests to the Online Appendix. First, we study the effect of other macroeconomic announcements on our results. Second, we explore the impact of varying the high-frequency window length to identify our monetary shocks. Third, we use high frequency changes in bond yields instead of daily changes in our sovereign regressions. Fourth, we reconstruct our monetary policy communication shocks separately in the two relevant subsamples and check whether they alter our results. Finally we estimate our sovereign regression using bootstrapped standard errors to take into account the extra sampling variation due to the construction of our shocks. We find that our results are virtually unchanged in all the different robustness specifications.

V. ECB President speeches

One natural question is whether our results about press conferences extend to other forms of central bank communication. This question is also related to a recent literature that argues that a large fraction of risk premia earned on asset prices due to monetary policy occur outside of standard announcement days; see, e.g., Neuhierl and Weber (2019). The communication event that has gained most traction is undoubtedly the “whatever it takes” speech by ECB President Mario Draghi at an investors’ conference in London on 26 July, 2012. The consensus view in the literature is that the speech marked the beginning of the Outright Monetary Transaction (OMT) program intended to lower the high borrowing costs of peripheral countries; see, e.g., Acharya, Eisert, Eufinger, and Hirsch (2019). The upper panels of Figure 8 illustrate the asset price reaction
on that day for the two-year swap rate as well as the Eurostoxx index. While we notice an increase in the two-year swap rate, this was dwarfed by the sharp increase in the equity index, with a daily return of almost 5%. The lower two panels, on the other hand, depict the well-known result that during the days that followed the speech, neither German nor French yields moved much, while peripheral yields, as well as the spread, decreased significantly.

[Insert Figure 8 here]

A. Core versus peripheral yields

In the following, we want to understand whether other central bank speeches command similar reactions in asset prices, or whether 26 July, 2012, marked a special day. To this end, we collect data on ECB President speeches outside the ECB announcement days as described in Section II, and we apply the same identification to President speeches to back out two communication shocks as described in Section III for ECB press conferences. Figure 9 plots the IR and U shocks that we obtain for President speeches, and it underscores nicely the importance of including risk premium shocks into the analysis. For example, the upper panel indicates that the forward guidance shock of 26 July, 2012, does not signal a special event at all. In the lower panel, however, where we plot U shocks, this day clearly stands out.

With the President shocks at hand, we study the effect of these speeches on sovereign bond yields. To this end, we run the same regressions as in (3) but using the IR and U shocks obtained around speeches. The estimated regression coefficients are plotted on Figure 10, and Table VII contains estimated coefficients for the yield spreads.

We notice a strikingly similar pattern compared to our baseline results presented on Figure 5: interest rate communication shocks have a significantly positive hump-shaped effect on all sovereign yields before December 2009, and on core yields during the crisis period, but the coefficients are insignificant for the periphery during the crisis. Moreover, loadings on risk premium shocks are insignificant for all countries pre-crisis, and for core countries during the crisis, but are negative and large in absolute value for peripherals during the crisis.

The results in Table VII indicate that while pre-crisis there was almost no significant reaction of the yield spread to either IR or U shocks, during the crisis estimated coefficients are significant. To compare the economic size of the estimates, we can again use the largest shocks in the sample to study the effects of forward guidance and risk premia shocks on yields. For both shocks, the
largest shocks occurred during the “whatever it takes” speech in July 2012: we find an IR shock of 2.63bps and a U shock of 261bps (these correspond to a two-standard-deviation and a 4.69-standard-deviation surprises, respectively). As a result, we should see a $2.63 \times 3.29 = 9$bp drop in the ten-year yield spread due to the interest rate shock realization, and a $261 \times 5.58/100 = 15$bp drop due to the risk premium shock realization. On that day, the spread between peripheral and core yields decreased by 40bps. Forward guidance and risk premium shocks thus contributed to more than half of the overall reduction.

While we measure IR and U shocks on regular monetary days and during President speeches the same way, these events can contain different types of information, so one should expect a different impact on sovereign yields, too. Comparing our estimates of Tables II and VII, we find that the two shocks contribute approximately the same to the overall variation in the ten-year yield spread, at around 35%. However, while on regular monetary policy days most of the explanatory power comes from risk premia shocks, forward guidance shocks contribute a bigger fraction to the overall R^2 during President speeches (10% compared to 32%).

We also study the relationship between credit risk and President speeches in Table VIII. The results are somewhat similar to Table III. We find that, when the ECB President gives a speech, an IR shock of 2.63bps leads to a $2.63 \times 2.15 = 6$bp drop in the CDS peripheral-core spread. On the other hand, a hypothetical 261bp pure risk premium decrease the spread by $261 \times 5.78/100 = 15$bps. Overall, our results indicate that central bank communication has a significant effect on asset prices not just around monetary policy announcements but also during other ECB President speeches.

B. Economic significance

In Section IV, we argued that ECB communication on its regular monetary policy announcement days contributed to an increasing yield spread between core and peripheral countries, and this spread emerged during a period when a series of unconventional measures were implemented to reduce it. Therefore, we also want to study the combined effect of ECB regular announcement days with ECB President speeches and unconventional announcement days.

The upper panel of Figure 11 extends the cumulative changes in yields and the periphery-core spread of Figure 1 to include days when the ECB President gives speeches. While we find that
between 2010-2012 the yield spread increased, by the end of the sample the communication effects of regular announcement days were completely offset by the reduction due to ECB president speeches.

Further, the lower panel of Figure 11 adds days when unconventional monetary policies were announced. As documented by Krishnamurthy, Nagel, and Vissing-Jorgensen (2018), the Securities Markets Programme announcements led to significant drops in the peripheral bond yields and hence the periphery-core spreads. Once we combine all the announcements days, we find that the ECB successfully *narrowed* the spread between peripheral and core countries. Nevertheless, our results show that ECB communication on regular announcement days partially offset some of these effects. The temporary increases in default risk premia and peripheral yields due to the ECB’s communication on regular monetary policy days, both between 2009 and mid-2010 and throughout 2013, were economically sizeable, and at the very least increased sovereign yield volatility and made it harder for the ECB to succeed in bringing down peripheral yields quicker.

[Insert Figure 11 here]

VI. Quantitative Easing and re-connecting monetary policy

Our previous results indicate that during the 2009-2014 period, even around the time of the announced unconventional monetary policy measures, communication on the ECB monetary policy meeting days significantly increased yield spreads, which at the very least made it harder for the ECB to succeed in bringing down peripheral yields. Following the end of our main sample, in December 2014, the ECB announced the decision to launch its permanent quantitative easing, called the Asset Purchase Programme, and one natural question is whether and how this affected the transmission of monetary policy communication to asset prices.

To this end, we extend our analysis to the 2015-2018 period and we augment the set of our monetary policy shocks following Swanson (2018) and Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019) to construct a QE-related policy shock. These authors argue that with the introduction of QE, there exists a third dimension to monetary policy communication that is independent of the “standard” target and forward guidance shocks. We follow the authors’ procedure and we extract three principal components from the cross-section of high-frequency changes in the communication window and impose the following factor rotation: (i) the second and third
(when the third factor is present) factors do not load on the one-month OIS; (ii) the rotation is such that the third factor has the smallest variance in the pre-crisis period. The latter enforces the factor unimportant in the pre-crisis period. As Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019) note, this factor should only contribute to the movements in the long-end of the yield curve, and only be active post-2014, leading to the “QE factor” label.

Table IX collects the results of regressions of core and peripheral yields as well as their spread in the post-2014 period. Comparing estimated coefficients to those estimated during the crisis period (Table II), we find that the effect of monetary policy communication returned to almost pre-crisis levels: regression coefficients of both types of shocks are of the same magnitude for core and peripheral yields, and IR shocks feature extremely high t-statistics. In terms of R^2, our communication shocks explain on average more than 60% of the variation in peripheral yields, while the QE shock explains an additional $\sim 2\%$, and only at the long end, in line with the interpretation in Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019).\footnote{Note that our IR communication shocks are not orthogonal to Altavilla, Brugnolini, Gürkaynak, Motto, and Ragusa (2019)’s QE factor. Therefore, our findings do not imply that QE shocks are not relevant in this sample. Rather, they suggest that our interest rate and risk premium shocks capture most of the QE effects. We provide a more formal comparison between our monetary policy shocks and those of the authors in the Online Appendix.} Regarding yield spreads, the bottom panel shows that our communication shocks as well as the QE factor are not significant at any maturity.

Overall, these findings also suggest that the muted sensitivities of peripheral bond yields to forward guidance and the extreme sensitivity to U shocks during the crisis should be ascribed to the risk premium effect of monetary policy communication in that period, rather than measurement errors or other confounding effects. Further, in reference to our model and interpretation, the introduction of the APP can be seen as a commitment by the ECB strong enough to eliminate the “bad” equilibrium of the crisis period and collapse yield spreads.

VII. Conclusion

The recent ECB press conference meeting of 12 March, 2020, was a stark reminder that monetary policy communication matters. When ECB President Christine Lagarde mentioned that it is not the ECB’s job to “close the spread” between bonds of different member states, asset markets
reacted promptly: the ten-year yield on Italian sovereigns jumped from 117bps to 174bps whereas for Germany it remained at -74bps, implying an 35% increase in the spread. At the same time, the Eurostoxx index fell by 13%. In this paper, we offer a formal treatment of how central bank communication affects the cross-section of asset prices, and provide evidence for the presence of a central bank communication risk premium channel.

We make four novel contributions. First, drawing on the joint dynamics between interest rates and an equity index sampled during a narrow window around ECB press conferences, we construct monetary policy shocks related to two distinct channels of central bank communication: the path of interest rates (forward guidance) and credit risk premia in the Eurozone.

Using these shocks, we show that in the pre-crisis period (January 2001 to November 2009), forward guidance shocks were the important communication instrument and had a uniform effect on core and peripheral bond yields. In contrast, during the sovereign debt crisis period (December 2009 to December 2014), core bonds only reacted to forward guidance shocks and peripheral yields were driven almost exclusively by credit risk premium shocks, leading to a significant wedge between core and peripheral yields.

We also show that our results are not exclusive to ECB press conferences during monthly monetary policy announcements, but more generally whenever ECB Presidents give speeches, and demonstrate that President speeches and unconventional policy announcements managed to be effective and overcome the negative effect of ECB standard monetary policy announcements on the yield spread. Finally, we show that the introduction of unconventional monetary policy in 2015 restored the transmission of monetary policy communication on sovereign yields as core and peripheral bonds again reacted homogeneously to communication shocks.

The recent events of 2020 have again highlighted the importance of studying monetary policy beyond setting risk-free interest rates, as is standard in the literature. For example, while the forward guidance shock does not indicate a significant move on 12 March, 2020, we observe a -215bp (almost three-standard-deviation) risk premium shock. To facilitate research in this exciting area, we will keep an up-to-date time series of our monetary policy shocks on our webpages.
Table I. Summary statistics of monetary policy communication shocks

This table presents summary statistics for interest rate communication shocks (IR) and pure risk premium shocks (U) in basis points (bp). IR is the first principal component from a principal component analysis applied to swap rate changes during the communication window with maturities ranging between one month and ten years. U is the residual when regressing Eurostoxx 50 futures returns during the communication window on IR. The communication window spans the ECB press conference between 14:25 and 16:10 CET on ECB announcement days. The full sample runs from January 2001 to December 2014 (161 announcements), pre-crisis runs from January 2001 to November 2009 (100 announcements), and crisis runs from December 2009 to December 2014 (61 announcements).
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>96</th>
<th>108</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>(IR)</td>
<td>0.64</td>
<td>0.99</td>
<td>1.23</td>
<td>1.52</td>
<td>1.52</td>
<td>1.47</td>
<td>1.42</td>
<td>1.31</td>
<td>1.19</td>
<td>1.08</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>(U \times 10^{-2})</td>
<td>(5.90)</td>
<td>(6.14)</td>
<td>(7.09)</td>
<td>(7.55)</td>
<td>(8.61)</td>
<td>(8.18)</td>
<td>(7.66)</td>
<td>(7.39)</td>
<td>(7.16)</td>
<td>(6.75)</td>
<td>(6.43)</td>
<td>(6.18)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.87</td>
<td>-0.34</td>
<td>0.33</td>
<td>0.18</td>
<td>0.53</td>
<td>0.67</td>
<td>0.88</td>
<td>1.03</td>
<td>1.22</td>
<td>1.33</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>(\Delta R^2)</td>
<td>(2.04)</td>
<td>(-0.89)</td>
<td>(1.04)</td>
<td>(0.35)</td>
<td>(0.87)</td>
<td>(0.71)</td>
<td>(0.78)</td>
<td>(1.05)</td>
<td>(1.24)</td>
<td>(1.50)</td>
<td>(1.63)</td>
<td>(1.58)</td>
</tr>
<tr>
<td></td>
<td>17.40</td>
<td>27.16</td>
<td>63.07</td>
<td>60.08</td>
<td>59.00</td>
<td>54.40</td>
<td>48.09</td>
<td>46.95</td>
<td>44.63</td>
<td>41.91</td>
<td>38.74</td>
<td>36.30</td>
</tr>
<tr>
<td>Periphery</td>
<td></td>
</tr>
<tr>
<td>(IR)</td>
<td>0.60</td>
<td>0.66</td>
<td>0.74</td>
<td>-0.21</td>
<td>-0.25</td>
<td>-0.29</td>
<td>-0.31</td>
<td>-0.31</td>
<td>-0.35</td>
<td>-0.33</td>
<td>-0.34</td>
<td>-0.34</td>
</tr>
<tr>
<td>(U \times 10^{-2})</td>
<td>(2.09)</td>
<td>(1.54)</td>
<td>(1.83)</td>
<td>(-0.50)</td>
<td>(-0.59)</td>
<td>(-0.75)</td>
<td>(-0.82)</td>
<td>(-0.87)</td>
<td>(-1.06)</td>
<td>(-1.04)</td>
<td>(-1.08)</td>
<td>(-1.08)</td>
</tr>
<tr>
<td>(\Delta R^2)</td>
<td>(0.88)</td>
<td>(-0.67)</td>
<td>(-1.74)</td>
<td>(-3.42)</td>
<td>(-4.08)</td>
<td>(-4.06)</td>
<td>(-4.08)</td>
<td>(-4.02)</td>
<td>(-3.65)</td>
<td>(-3.35)</td>
<td>(-3.35)</td>
<td>(-3.35)</td>
</tr>
<tr>
<td></td>
<td>15.93</td>
<td>12.48</td>
<td>5.60</td>
<td>16.43</td>
<td>20.92</td>
<td>23.65</td>
<td>25.14</td>
<td>25.49</td>
<td>29.25</td>
<td>28.91</td>
<td>30.22</td>
<td>29.79</td>
</tr>
<tr>
<td>Periphery–Core spread</td>
<td></td>
</tr>
<tr>
<td>(IR)</td>
<td>-0.04</td>
<td>-0.33</td>
<td>-0.49</td>
<td>-1.74</td>
<td>-1.77</td>
<td>-1.77</td>
<td>-1.73</td>
<td>-1.62</td>
<td>-1.55</td>
<td>-1.41</td>
<td>-1.34</td>
<td>-1.27</td>
</tr>
<tr>
<td>(U \times 10^{-2})</td>
<td>(-0.18)</td>
<td>(-0.64)</td>
<td>(-1.20)</td>
<td>(-4.27)</td>
<td>(-4.46)</td>
<td>(-4.36)</td>
<td>(-4.14)</td>
<td>(-3.88)</td>
<td>(-3.88)</td>
<td>(-3.73)</td>
<td>(-3.55)</td>
<td>(-3.47)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>-0.21</td>
<td>-0.49</td>
<td>-2.78</td>
<td>-7.68</td>
<td>-9.29</td>
<td>-9.57</td>
<td>-9.95</td>
<td>-9.78</td>
<td>-10.55</td>
<td>-10.37</td>
<td>-10.76</td>
<td>-10.44</td>
</tr>
<tr>
<td>(\Delta R^2)</td>
<td>(-0.32)</td>
<td>(-0.41)</td>
<td>(-2.09)</td>
<td>(-3.85)</td>
<td>(-4.64)</td>
<td>(-4.29)</td>
<td>(-4.08)</td>
<td>(-4.02)</td>
<td>(-3.54)</td>
<td>(-3.47)</td>
<td>(-3.38)</td>
<td>(-3.30)</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.59</td>
<td>2.18</td>
<td>24.67</td>
<td>29.21</td>
<td>31.74</td>
<td>33.11</td>
<td>34.12</td>
<td>37.30</td>
<td>37.50</td>
<td>38.18</td>
<td>37.44</td>
</tr>
<tr>
<td>(\Delta R^2)</td>
<td>0.85</td>
<td>0.59</td>
<td>2.18</td>
<td>24.67</td>
<td>29.21</td>
<td>31.74</td>
<td>33.11</td>
<td>34.12</td>
<td>37.30</td>
<td>37.50</td>
<td>38.18</td>
<td>37.44</td>
</tr>
</tbody>
</table>

Table II. Core versus peripheral yield responses during the crisis

This table reports the results of multivariate regressions of zero-coupon one-day changes in core yields versus peripheral yields of different maturities (months) on \(IR \) and \(U \) communication shocks:

\[
\Delta y_{\tau,t} = a_{\tau} + b_{\tau} IR_t + c_{\tau} U_t + \epsilon_{\tau,t}, \quad \tau = 3, \ldots, 120 \text{ months.}
\]

Core yields are defined as the average of Germany and France and peripheral yields defined as the average of Italy and Spain. \(t \)-statistics reported in parenthesis are calculated using HAC standard errors. \(\Delta R^2 \) is the change in the adjusted \(R^2 \) when adding \(U \) shocks to a univariate regression that uses only the IR shocks. Data run from December 2009 to December 2014.
Table III. Credit risk reaction during the crisis

This table reports estimated coefficients from the regression of changes in the five-year CDS rates on IR and U communication shocks:

$$\Delta CDS_{i,t} = a_t + b_t IR_t + c_t U_t + \epsilon_{i,t},$$

where $\Delta CDS_{i,t}$ is the change in the five-year CDS rate for country i. t-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. ΔR^2 is the change in the adjusted R^2 when adding U shocks to a univariate regression on IR shocks. Data run from December 2009 to December 2014.
Table IV. Sovereign yield spreads on ECB versus non-ECB days

This table reports the results of multivariate regressions of zero-coupon one-day changes in peripheral minus core yields of different maturities (months) on IR and U communication shocks as well as an ECB dummy variable that takes the value of one on days that the ECB announces its monetary policy and zero otherwise, and an interaction term with each communication shock:

$$\Delta (y_{\tau p, t} - y_{\tau c, t}) = a_{1 \tau} + a_2 \times 1_{ECB, t} + b_1 \times IR_t + c_1 \times U_t + b_2 \times IR_t \times 1_{ECB, t} + c_2 \times U_t \times 1_{ECB, t} + \epsilon_t, \quad \tau = 3, \ldots, 120 \text{ months.}$$

t-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. Data run from December 2009 to December 2014.
Table V. Credit risk on ECB versus non-ECB days

This table reports the results of multivariate regressions of changes in the five-year CDS rates on IR and U communication shocks as well as an ECB dummy variable that takes the value of one on days that the ECB announces its monetary policy and zero otherwise, and an interaction term with each communication shock:

\[\Delta CDS_{i,t} = a_{1,i} + a_{2,i} \times 1_{ECB,t} + b_{1,i} IR_t + c_{1,i} U_t + b_{2,i} IR_t \times 1_{ECB,t} + c_{2,i} U_t \times 1_{ECB,t} + \epsilon_{i,t}. \]

\(t \)-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. Data run from December 2009 to December 2014.

<table>
<thead>
<tr>
<th></th>
<th>Core</th>
<th>Periphery</th>
<th>P−C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>-0.37</td>
<td>-1.25</td>
<td>-0.88</td>
</tr>
<tr>
<td></td>
<td>(-3.46)</td>
<td>(-3.18)</td>
<td>(-2.71)</td>
</tr>
<tr>
<td>(U(\times10^{-2}))</td>
<td>-0.73</td>
<td>-3.48</td>
<td>-2.75</td>
</tr>
<tr>
<td></td>
<td>(-3.43)</td>
<td>(-4.00)</td>
<td>(-3.90)</td>
</tr>
<tr>
<td>1_{ECB}</td>
<td>-0.20</td>
<td>-2.13</td>
<td>-1.93</td>
</tr>
<tr>
<td></td>
<td>(-0.65)</td>
<td>(-1.43)</td>
<td>(-1.49)</td>
</tr>
<tr>
<td>IR \times 1_{ECB}</td>
<td>-0.28</td>
<td>-1.96</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td>(-1.41)</td>
<td>(-2.66)</td>
<td>(-2.82)</td>
</tr>
<tr>
<td>U \times 1_{ECB}(\times10^{-2})</td>
<td>-1.09</td>
<td>-7.34</td>
<td>-6.26</td>
</tr>
<tr>
<td></td>
<td>(-1.51)</td>
<td>(-2.78)</td>
<td>(-3.01)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>5.96</td>
<td>8.17</td>
<td>7.54</td>
</tr>
</tbody>
</table>
Table VI. Alternative risk premium shock and yield spreads

This table reports the results of multivariate regressions of zero-coupon one-day changes in peripheral and core yield spreads of different maturities (months) on IR_t and C_t communication shocks:

$$\Delta (y^p_{\tau,t} - y^c_{\tau,t}) = a^\tau + b^\tau IR_t + c^\tau C_t + \epsilon^\tau, \quad \tau = 3, \ldots, 120 \text{ months}. $$

Core yields are defined as the average of Germany and France and peripheral yields defined as the average of Italy and Spain. t-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. ΔR^2 is the change in the adjusted R^2 when adding C shocks to a univariate regression on IR shocks. Data run from December 2009 to December 2014.
Table VII. President speeches and yield spreads

This table reports the results of multivariate regressions of zero-coupon one-day changes in peripheral and core yield spreads of different maturities (months) on IR and U communication shocks during ECB President speeches which are not standard monetary policy announcements:

$$\Delta (y_{p,t} - y_{c,t}^r) = a^r + b^r IR_t + c^r U_t + \epsilon_t^r, \quad \tau = 3, \ldots, 120 \text{ months.}$$

Core yields are defined as the average of Germany and France and Peripheral yields defined as the average of Italy and Spain. t-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. ΔR^2 is the change in the adjusted R^2 when adding U shocks to a univariate regression on IR shocks. Pre-crisis runs from January 2001 to November 2009. Crisis runs from December 2009 to December 2014.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>96</th>
<th>108</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-crisis</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>0.09</td>
<td>-0.10</td>
<td>-0.37</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.14</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(-0.63)</td>
<td>(-1.93)</td>
<td>(-1.12)</td>
<td>(-1.68)</td>
<td>(-1.02)</td>
<td>(-0.59)</td>
<td>(-1.05)</td>
<td>(-1.02)</td>
<td>(-0.90)</td>
<td>(-1.66)</td>
<td>(-0.97)</td>
</tr>
<tr>
<td>$U \times 10^{-2}$</td>
<td>-0.20</td>
<td>-0.53</td>
<td>0.04</td>
<td>-0.69</td>
<td>-0.74</td>
<td>-0.58</td>
<td>-0.62</td>
<td>-0.44</td>
<td>-0.19</td>
<td>-0.20</td>
<td>-0.18</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>(-0.63)</td>
<td>(-1.60)</td>
<td>(0.12)</td>
<td>(-2.51)</td>
<td>(-2.41)</td>
<td>(-2.01)</td>
<td>(-2.21)</td>
<td>(-1.72)</td>
<td>(-0.82)</td>
<td>(-0.82)</td>
<td>(-0.61)</td>
<td>(-0.43)</td>
</tr>
<tr>
<td>R^2</td>
<td>-0.55</td>
<td>2.62</td>
<td>4.21</td>
<td>6.51</td>
<td>5.41</td>
<td>3.60</td>
<td>3.06</td>
<td>2.09</td>
<td>-0.23</td>
<td>0.01</td>
<td>1.53</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(-0.63)</td>
<td>(-1.60)</td>
<td>(0.12)</td>
<td>(-2.51)</td>
<td>(-2.41)</td>
<td>(-2.01)</td>
<td>(-2.21)</td>
<td>(-1.72)</td>
<td>(-0.82)</td>
<td>(-0.82)</td>
<td>(-0.61)</td>
<td>(-0.43)</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>-1.12</td>
<td>1.37</td>
<td>-1.32</td>
<td>4.36</td>
<td>3.13</td>
<td>1.61</td>
<td>1.59</td>
<td>0.36</td>
<td>-1.06</td>
<td>-0.95</td>
<td>-1.04</td>
<td>-1.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>96</th>
<th>108</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisis</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>-0.93</td>
<td>-1.55</td>
<td>-1.27</td>
<td>-4.29</td>
<td>-4.33</td>
<td>-4.01</td>
<td>-3.93</td>
<td>-3.79</td>
<td>-3.58</td>
<td>-3.48</td>
<td>-3.33</td>
<td>-3.29</td>
</tr>
<tr>
<td></td>
<td>(-0.90)</td>
<td>(-1.95)</td>
<td>(-1.33)</td>
<td>(-2.94)</td>
<td>(-2.82)</td>
<td>(-2.76)</td>
<td>(-3.04)</td>
<td>(-3.31)</td>
<td>(-3.45)</td>
<td>(-3.75)</td>
<td>(-3.79)</td>
<td>(-3.79)</td>
</tr>
<tr>
<td>$U \times 10^{-2}$</td>
<td>-6.31</td>
<td>-6.08</td>
<td>-7.76</td>
<td>-11.14</td>
<td>-9.57</td>
<td>-9.20</td>
<td>-8.62</td>
<td>-7.81</td>
<td>-6.80</td>
<td>-6.18</td>
<td>-5.80</td>
<td>-5.58</td>
</tr>
<tr>
<td></td>
<td>(-2.69)</td>
<td>(-2.08)</td>
<td>(-1.75)</td>
<td>(-3.21)</td>
<td>(-2.78)</td>
<td>(-3.09)</td>
<td>(-3.17)</td>
<td>(-3.14)</td>
<td>(-3.22)</td>
<td>(-3.06)</td>
<td>(-2.85)</td>
<td>(-2.88)</td>
</tr>
<tr>
<td>R^2</td>
<td>10.40</td>
<td>14.26</td>
<td>21.89</td>
<td>40.05</td>
<td>36.13</td>
<td>38.69</td>
<td>39.61</td>
<td>40.38</td>
<td>39.27</td>
<td>37.36</td>
<td>36.73</td>
<td>35.98</td>
</tr>
</tbody>
</table>
This table reports estimated coefficients from the regression of changes in the five-year CDS rates on IR and U communication shocks sampled during ECB President speeches:

\[
\Delta CDS_{i,t}^\tau = a^\tau_{i} + b^\tau_{i} IR_{t} + c^\tau_{i} U_{t} + \epsilon^\tau_{i,t}, \quad \tau = 60, \ldots, 120 \text{ months},
\]

where \(\Delta CDS_{i,t}^\tau\) is the change in the two-year (top panel) or five-year (bottom panel) CDS rate for country \(i\). \(t\)-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. \(R^2\) reports the adjusted R-squared. \(\Delta R^2\) is the change in the adjusted \(R^2\) when adding \(U\) shocks to a univariate regression on \(IR\) shocks. Data run from December 2009 to December 2014.

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>Spain</th>
<th>Core</th>
<th>Periphery</th>
<th>P−C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IR)</td>
<td>-0.37</td>
<td>-0.85</td>
<td>-2.93</td>
<td>-2.58</td>
<td>-0.61</td>
<td>-2.76</td>
<td>-2.15</td>
</tr>
<tr>
<td></td>
<td>(-3.58)</td>
<td>(-2.87)</td>
<td>(-2.64)</td>
<td>(-2.60)</td>
<td>(-3.33)</td>
<td>(-2.80)</td>
<td>(-2.58)</td>
</tr>
<tr>
<td>(U(\times 10^{-2}))</td>
<td>-1.26</td>
<td>-1.43</td>
<td>-6.74</td>
<td>-7.51</td>
<td>-1.34</td>
<td>-7.13</td>
<td>-5.78</td>
</tr>
<tr>
<td></td>
<td>(-5.65)</td>
<td>(-2.58)</td>
<td>(-3.64)</td>
<td>(-4.54)</td>
<td>(-4.07)</td>
<td>(-4.27)</td>
<td>(-4.04)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td>36.01</td>
<td>15.90</td>
<td>26.02</td>
<td>31.00</td>
<td>23.32</td>
<td>30.12</td>
<td>28.92</td>
</tr>
<tr>
<td>(\Delta R^2)</td>
<td>18.44</td>
<td>-1.67</td>
<td>8.45</td>
<td>13.43</td>
<td>5.75</td>
<td>12.55</td>
<td>11.35</td>
</tr>
</tbody>
</table>

Table VIII. President speeches and credit risk

The table reports estimated coefficients from the regression of changes in the five-year CDS rates on \(IR\) and \(U\) communication shocks sampled during ECB President speeches.
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>96</th>
<th>108</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>0.35</td>
<td>0.54</td>
<td>0.74</td>
<td>1.38</td>
<td>1.72</td>
<td>2.06</td>
<td>2.31</td>
<td>2.49</td>
<td>2.68</td>
<td>2.81</td>
<td>2.90</td>
<td>2.92</td>
</tr>
<tr>
<td>$U(10^{-2})$</td>
<td>-1.21</td>
<td>-1.53</td>
<td>-1.96</td>
<td>-2.59</td>
<td>-2.73</td>
<td>-2.82</td>
<td>-2.69</td>
<td>-2.56</td>
<td>-2.36</td>
<td>-2.11</td>
<td>-1.96</td>
<td>-1.78</td>
</tr>
<tr>
<td></td>
<td>(-3.06)</td>
<td>(-4.61)</td>
<td>(-4.81)</td>
<td>(-9.20)</td>
<td>(-8.40)</td>
<td>(-7.32)</td>
<td>(-6.36)</td>
<td>(-5.98)</td>
<td>(-5.03)</td>
<td>(-4.18)</td>
<td>(-3.47)</td>
<td>(-3.11)</td>
</tr>
<tr>
<td>QE</td>
<td>-0.36</td>
<td>-0.39</td>
<td>-0.35</td>
<td>-0.47</td>
<td>-0.37</td>
<td>-0.24</td>
<td>-0.05</td>
<td>0.19</td>
<td>0.45</td>
<td>0.69</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(-3.10)</td>
<td>(-3.46)</td>
<td>(-2.86)</td>
<td>(-2.55)</td>
<td>(-1.65)</td>
<td>(-0.92)</td>
<td>(-0.16)</td>
<td>(0.61)</td>
<td>(1.39)</td>
<td>(1.84)</td>
<td>(2.16)</td>
<td>(2.23)</td>
</tr>
<tr>
<td>R^2</td>
<td>46.94</td>
<td>65.01</td>
<td>64.51</td>
<td>70.74</td>
<td>71.80</td>
<td>73.50</td>
<td>74.52</td>
<td>75.79</td>
<td>77.60</td>
<td>76.10</td>
<td>74.11</td>
<td>73.09</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>7.65</td>
<td>7.06</td>
<td>2.57</td>
<td>1.91</td>
<td>0.29</td>
<td>-0.55</td>
<td>-0.93</td>
<td>-0.70</td>
<td>0.18</td>
<td>1.27</td>
<td>2.63</td>
<td>3.07</td>
</tr>
<tr>
<td>Periphery</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>0.36</td>
<td>0.43</td>
<td>0.66</td>
<td>1.51</td>
<td>1.98</td>
<td>2.39</td>
<td>2.63</td>
<td>2.77</td>
<td>2.91</td>
<td>3.09</td>
<td>3.31</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>(4.34)</td>
<td>(4.58)</td>
<td>(5.08)</td>
<td>(7.08)</td>
<td>(7.98)</td>
<td>(7.85)</td>
<td>(7.47)</td>
<td>(7.55)</td>
<td>(7.38)</td>
<td>(7.58)</td>
<td>(7.82)</td>
<td>(7.36)</td>
</tr>
<tr>
<td>$U(10^{-2})$</td>
<td>-0.08</td>
<td>-0.35</td>
<td>-0.98</td>
<td>-1.62</td>
<td>-1.98</td>
<td>-2.28</td>
<td>-2.58</td>
<td>-2.54</td>
<td>-2.34</td>
<td>-2.64</td>
<td>-2.89</td>
<td>-2.70</td>
</tr>
<tr>
<td></td>
<td>(-0.59)</td>
<td>(-1.92)</td>
<td>(-1.81)</td>
<td>(-2.58)</td>
<td>(-2.76)</td>
<td>(-2.99)</td>
<td>(-3.04)</td>
<td>(-2.86)</td>
<td>(-2.49)</td>
<td>(-2.70)</td>
<td>(-2.87)</td>
<td>(-2.60)</td>
</tr>
<tr>
<td>QE</td>
<td>0.10</td>
<td>0.08</td>
<td>0.27</td>
<td>0.24</td>
<td>0.18</td>
<td>0.32</td>
<td>0.44</td>
<td>0.64</td>
<td>0.76</td>
<td>0.85</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(0.94)</td>
<td>(0.46)</td>
<td>(1.11)</td>
<td>(0.84)</td>
<td>(0.55)</td>
<td>(0.81)</td>
<td>(0.99)</td>
<td>(1.54)</td>
<td>(1.71)</td>
<td>(2.03)</td>
<td>(2.40)</td>
<td>(2.25)</td>
</tr>
<tr>
<td>R^2</td>
<td>41.25</td>
<td>49.70</td>
<td>33.99</td>
<td>62.72</td>
<td>64.17</td>
<td>65.13</td>
<td>63.42</td>
<td>62.76</td>
<td>61.75</td>
<td>62.50</td>
<td>64.13</td>
<td>61.75</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>-0.76</td>
<td>-1.22</td>
<td>-0.47</td>
<td>-0.77</td>
<td>-1.11</td>
<td>-0.80</td>
<td>-0.62</td>
<td>0.01</td>
<td>0.40</td>
<td>0.66</td>
<td>1.06</td>
<td>1.03</td>
</tr>
<tr>
<td>Periphery–Core Spread</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>0.01</td>
<td>-0.11</td>
<td>-0.08</td>
<td>0.14</td>
<td>0.26</td>
<td>0.33</td>
<td>0.32</td>
<td>0.28</td>
<td>0.23</td>
<td>0.27</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(-0.75)</td>
<td>(-0.46)</td>
<td>(0.65)</td>
<td>(0.96)</td>
<td>(0.97)</td>
<td>(0.80)</td>
<td>(0.66)</td>
<td>(0.54)</td>
<td>(0.60)</td>
<td>(0.86)</td>
<td>(0.74)</td>
</tr>
<tr>
<td>$U(10^{-2})$</td>
<td>1.13</td>
<td>1.18</td>
<td>0.99</td>
<td>0.97</td>
<td>0.74</td>
<td>0.54</td>
<td>0.11</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.53</td>
<td>-0.93</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>(2.76)</td>
<td>(2.61)</td>
<td>(1.26)</td>
<td>(1.55)</td>
<td>(1.17)</td>
<td>(0.88)</td>
<td>(0.16)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(-0.66)</td>
<td>(-1.14)</td>
<td>(-1.07)</td>
</tr>
<tr>
<td>QE</td>
<td>0.46</td>
<td>0.47</td>
<td>0.61</td>
<td>0.71</td>
<td>0.55</td>
<td>0.57</td>
<td>0.49</td>
<td>0.45</td>
<td>0.31</td>
<td>0.16</td>
<td>0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(3.34)</td>
<td>(2.51)</td>
<td>(2.62)</td>
<td>(2.05)</td>
<td>(1.27)</td>
<td>(1.10)</td>
<td>(0.87)</td>
<td>(0.87)</td>
<td>(0.67)</td>
<td>(0.37)</td>
<td>(0.08)</td>
<td>(-0.03)</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>17.78</td>
<td>12.58</td>
<td>8.17</td>
<td>9.92</td>
<td>2.72</td>
<td>1.81</td>
<td>-0.06</td>
<td>-0.66</td>
<td>-1.84</td>
<td>-2.70</td>
<td>-2.98</td>
<td>-3.15</td>
</tr>
</tbody>
</table>

Table IX. Core versus peripheral yield responses post 2014 with QE shocks

This table reports the results of multivariate regressions of zero-coupon one-day changes in core yields versus peripheral yields of different maturities (months) on IR and U communication shocks as well as QE shocks:

$$\Delta y_{t}^{\tau} = a_{t}^{\tau} + b_{t}^{\tau} IR_{t} + c_{t}^{\tau} U_{t} + d_{t}^{\tau} QE_{t} + e_{t}^{\tau}, \quad \tau = 3, \ldots, 120 \text{ months}.$$

Core yields are defined as the average of Germany and France and Peripheral yields defined as the average of Italy and Spain. t-statistics reported in parenthesis are calculated using HAC standard errors with 2 lags. ΔR^2 is the change in the adjusted R^2 when adding QE shocks to the regression that only uses IR and U shocks. Data run from January 2015 to September 2018.
Figure 1. European sovereign bond yield changes on ECB monetary policy days
This figure displays cumulative one-day changes in ten-year yields for core (average of Germany and France) and peripheral (average of Italy and Spain) bonds, as well as the spread between peripheral and core bonds only on European Central Bank meeting days.
Figure 2. Monetary policy decision window
This figure illustrates the time-line of ECB monetary policy announcements. All times are in Central European Time (CET).
Figure 3. Time series of communication shocks
This figure plots communication shocks extracted from interest rates and equity reactions in a tight window around ECB press conferences. Data run from January 2001 to December 2014. Dashed blue lines indicate rate hikes and bold red lines indicate rate cuts.
Figure 4. Intraday asset price reaction to ECB communication
This figure displays the response of two-year swap rates and the Eurostoxx index during the 2 August, 2012, ECB press conference. The dashed lines mark the start of the target rate announcement (13:45 CET), and the start (14:30 CET) and end (15:30 CET) of the press conference, respectively.
Figure 5. Core and peripheral yield responses before and during the crisis
This figure plots the response of core and peripheral yields at different maturities for \(IR \) and \(U \) shocks around ECB press conferences:

\[
\Delta y_{i,t}^\tau = a_i^\tau + b_i^\tau IR_t + c_i^\tau U_t + \epsilon_{i,t}^\tau, \quad \tau = 3, \ldots, 120 \text{ months.}
\]

Data run from January 2001 to November 2009 on the left panels, and from December 2009 to December 2014 on the right panels. Bands display 95% confidence intervals computed using HAC standard errors with 2 lags.
Figure 6. Rolling regression estimates
The upper panel plots the rolling betas and the rolling adjusted R^2's from regressions of core (left) and peripheral (right) ten-year bond yields on the IR communication shocks in univariate regressions. The lower panel plots the rolling betas and the rolling adjusted R^2's from regressions of core (left) and peripheral (right) ten-year bond yields on the U communication shocks in univariate regressions. The window size for the rolling regression is set to 50 months.
This figure plots the cumulative effect of IR and U communication shocks on the spread between ten-year peripheral and core bond yields. The cumulative effect is computed from multivariate regression loadings estimated using a window size set to 50 months, as in Figure 6. The loadings are then multiplied by date t shocks and the overall effect computed by summing the fitted values over time.

Figure 7. Cumulative effect of communication
Figure 8. Intraday asset price reaction to “Whatever it takes” on 26 July, 2012
The upper two panels depict the two-year swap rate and the Eurostoxx index from 11:00 to 17:00 CET on 26 July, 2012. The dashed lines mark the beginning of ECB President Mario Draghi’s speech at the Global Investment Conference in London. The lower two panels show the level and changes in yield spreads defined as the difference between the ten-year yield on peripheral and core countries one day before the speech and two days after.
Figure 9. Time series of President speech shocks
This figure plots communication shocks extracted from interest rates and equity reactions in a tight window around speeches by the ECB President. Data run from January 2001 to December 2014.
Figure 10. Core and peripheral yield responses to President speeches

This figure plots the response of core and peripheral countries’ bond yields at different maturities for IR_t and U_t shocks around ECB President speeches:

$$\Delta y_{i,t}^\tau = a_i^\tau + b_i^\tau IR_t + c_i^\tau U_t + \epsilon_{i,t}^\tau, \quad \tau = 3, \ldots, 120 \text{ months.}$$

Data run from January 2001 to November 2009 on the left panels and from December 2009 to December 2014 on the right panels. Bands display 95% confidence intervals computed using HAC standard errors with 2 lags.
Figure 11. Cumulative yield spreads on ECB days, President speeches, and UMP
This upper panel displays cumulative one-day changes in ten-year yields for core (average of Germany and France) and peripheral (average of Italy and Spain) bonds, as well as the spread between peripheral and core bonds on European Central Bank meeting days and days when the ECB President gives speeches. The lower panel adds days when unconventional monetary policies were announced.
References

Ehrmann, Michael, and Marcel Fratzscher, 2005, How should central banks communicate?, Working paper, ECB.

Swanson, Eric T., 2018, Measuring the effects of federal reserve forward guidance and asset purchases on financial markets, Working Paper, University of California.
