Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Witt vectors, polynomial maps, and real topological Hochschild homology

Tools
- Tools
+ Tools

Dotto, Emanuele, Moi, Kristian and Patchkoria, Irakli (2022) Witt vectors, polynomial maps, and real topological Hochschild homology. Annales Scientifiques de l'Ecole Normale Superieure, 55 (2). pp. 473-535. doi:10.24033/asens.2500 ISSN 0012-9593.

[img] PDF
WRAP-Witt-vectors-polynomial-maps-real-topological-Hochschild-homology-Dotto-2020.pdf - Accepted Version
Embargoed item. Restricted access to Repository staff only - Requires a PDF viewer.

Download (1195Kb)
Official URL: https://doi.org/10.24033/asens.2500

Request Changes to record.

Abstract

We show that various flavours of Witt vectors are functorial with respect to multiplicative polynomial laws of finite degree. We then deduce that the p-typical Witt vectors are functorial in multiplicative polynomial \textit{maps} of degree at most p−1. This extra functoriality allows us to extend the p-typical Witt vectors functor from commutative rings to Z/2 Tambara functors, for odd primes p. We use these Witt vectors for Tambara functors to describe the components of the dihedral fixed-points of the real topological Hochschild homology spectrum at odd primes.

On prouve que différents types de vecteurs de Witt sont fonctoriels en lois polynôme de degré fini. On en déduit que les vecteurs de Witt p-typiques sont fonctoriels en applications polynôme de degré au plus p−1. Cette fonctorialité nous permet d'étendre les vecteurs de Witt p-typiques des anneaux commutatifs aux foncteurs de Tambara pour le group Z/2, quand p est un nombre premier impair. On utilise ces vecteurs de Witt pour décrire les composantes des points-fixes diédraux de l'homologie de Hochschild topologique réelle aux premiers impairs.

Item Type: Journal Article
Alternative Title: Vecteurs de Witt, lois polynôme, et homologie de Hochschild topologique réelle
Divisions: Faculty of Science, Engineering and Medicine > Science > Mathematics
Journal or Publication Title: Annales Scientifiques de l'Ecole Normale Superieure
Publisher: Societe Mathematique de France
ISSN: 0012-9593
Official Date: 13 March 2022
Dates:
DateEvent
13 March 2022Published
27 September 2020Accepted
Volume: 55
Number: 2
Page Range: pp. 473-535
DOI: 10.24033/asens.2500
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Copyright Holders: © 2022 Société Mathématique de France, Paris
Date of first compliant deposit: 9 October 2020
Related URLs:
  • Publisher
  • Publisher
Open Access Version:
  • ArXiv
  • Publisher

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us