Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Thermoelectric properties of InA nanowires from full-band atomistic simulations

Tools
- Tools
+ Tools

Archetti, Damiano and Neophytou, Neophytos (2020) Thermoelectric properties of InA nanowires from full-band atomistic simulations. Molecules, 25 (22). 5350. doi:10.3390/molecules25225350

[img]
Preview
PDF
WRAP-Thermoelectric-properties-InA-nanowires-full-band-atomistic-simulations-Neophytou-2020.pdf - Published Version - Requires a PDF viewer.
Available under License Creative Commons Attribution 4.0.

Download (1417Kb) | Preview
Official URL: http://dx.doi.org/10.3390/molecules25225350

Request Changes to record.

Abstract

In this work we theoretically explore the effect of dimensionality on the thermoelectric power factor of indium arsenide (InA) nanowires by coupling atomistic tight-binding calculations to the Linearized Boltzmann transport formalism. We consider nanowires with diameters from 40 nm (bulk-like) down to 3 nm close to one-dimensional (1D), which allows for the proper exploration of the power factor within a unified large-scale atomistic description across a large diameter range. We find that as the diameter of the nanowires is reduced below d < 10 nm, the Seebeck coefficient increases substantially, as a consequence of strong subband quantization. Under phonon-limited scattering conditions, a considerable improvement of ~6× in the power factor is observed around d = 10 nm. The introduction of surface roughness scattering in the calculation reduces this power factor improvement to ~2×. As the diameter is decreased to d = 3 nm, the power factor is diminished. Our results show that, although low effective mass materials such as InAs can reach low-dimensional behavior at larger diameters and demonstrate significant thermoelectric power factor improvements, surface roughness is also stronger at larger diameters, which takes most of the anticipated power factor advantages away. However, the power factor improvement that can be observed around d = 10 nm could prove to be beneficial as both the Lorenz number and the phonon thermal conductivity are reduced at that diameter. Thus, this work, by using large-scale full-band simulations that span the corresponding length scales, clarifies properly the reasons behind power factor improvements (or degradations) in low-dimensional materials. The elaborate computational method presented can serve as a platform to develop similar schemes for two-dimensional (2D) and three-dimensional (3D) material electronic structures.

Item Type: Journal Article
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Science > Engineering
Library of Congress Subject Headings (LCSH): Thermoelectricity , Thermoelectric materials, Indium arsenide, Nanowires , Composite materials -- Electric properties, Thermal electromotive force, Electron mobility
Journal or Publication Title: Molecules
Publisher: M D P I AG
ISSN: 1420-3049
Official Date: 16 November 2020
Dates:
DateEvent
16 November 2020Published
5 November 2020Accepted
Volume: 25
Number: 22
Article Number: 5350
DOI: 10.3390/molecules25225350
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access
RIOXX Funder/Project Grant:
Project/Grant IDRIOXX Funder NameFunder ID
678763Horizon 2020 Framework Programmehttp://dx.doi.org/10.13039/100010661

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us