Reliability considerations of modern design codes for CFST columns

Huu-Tai Thai*a, Son Thai*b, Tuan Ngo*a, Brian Uy*c, Won-Hee Kang*d, Stephen J. Hicks*e

a Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
b Faculty of Civil Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet St, District 10, Ho Chi Minh City, Vietnam
c School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia
d Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, Penrith, NSW 2751, Australia
e School of Engineering, The University of Warwick, Coventry, CV4 7AL, UK

Abstract

Concrete filled steel tubular (CFST) columns have been increasingly used in tall buildings and bridges due to offering excellent structural and economic benefits. Current design codes for such columns exhibit certain limits in terms of material strengths and section slenderness. This paper aims to evaluate the reliability and the applicability of the current design equations in American code AISC 360-16, European code EC 4 and Australian/New Zealand code ASNZS 2327 for the design of the columns beyond their material and slenderness limits. A comprehensive database with over 3,200 tests was collected to develop the statistics of the model errors for different types of columns. Monte Carlo and subset simulation techniques were developed based on Markov Chain Monte Carlo algorithms, to accurately and efficiently predict the reliability index of structures with small failure probability because they account for all uncertainties in material and geometric properties, loads and model errors. The results from the reliability analysis indicate that the reliability index of the concentric column designed by three considered codes is much higher than that of the eccentric column (i.e. beam-column). The results from a parametric study suggest that all three codes can be safely extended to the design of columns beyond the current material and section slenderness code limits.

Keywords: Design code; structural reliability; CFST column; test database

*a Corresponding author. Tel.: +61 3 8344 6196
E-mail address: tai.thai@unimelb.edu.au (H.T. Thai)
1. Introduction

By employing the merits of both structural steel and concrete materials, CFST composite structures offer significant structural and economic benefits [1]. Therefore, they have been widely used in many civil engineering applications as a structural member under compression such as columns in tall buildings, towers in bridges and primary load-bearing members in large infrastructure [2]. Although the design guidelines for such columns have been given in many design codes and specifications (e.g., American code AISC 360-16 [3], European code EC 4 [4], British code BS 5400 [5], Chinese code GB 50936 [6], Japanese code AIJ [7] and Australian/New Zealand code ASNZS 2327 [8]), their design equations are only applicable to a certain limit of steel yield stress \(f_y\) and concrete compressive strength \(f'c\). As shown in Table 1, most of the current design codes of practice are only applicable for CFST columns with normal strength steel and concrete, except for ASNZS 2327 [8] which allows for the use of high strength steel with \(f_y\) up to 690 MPa and high strength concrete with \(f'c\) up to 100 MPa.

With recent breakthroughs in construction materials, ultra-high strength structural steel with \(f_y\) from 690 MPa up to 1,300 MPa [9], and ultra-high strength concrete with \(f'c\) from 120 MPa up to 200 MPa [10] have become commercially available for use in modern construction. The use of high strength materials in composite construction not only reduces column sizes and consequently generates more valuable workspace for commercial use, but also provides sustainability benefits by reducing the use of construction materials. The practical use of ultra-high strength materials in modern composite construction is evidenced in the construction of Techno station (with \(f_y\) of 780 MPa and \(f'c\) of 160 MPa) and a 38-storey office building (with \(f_y\) of 780 MPa and \(f'c\) of 150 MPa [11]) in Tokyo, Japan. Therefore, in order to accommodate the use of such modern materials in composite construction, it is essentially important to assess the applicability of current design equations to CFST members beyond their material limits.

Extensive experimental study on high strength CFST columns has been carried out in recent
years (see Refs. [12-33] and among others) to calibrate and evaluate the performance of current design equations beyond their material limits. Based on the test results of 146 CFST columns, Kilpatrick and Taylor [34] examined the applicability of EC 4 beyond its limits, and suggested that EC 4 can be reliably extended to high strength concrete with f'_c up to 100 MPa. Goode and Lam [35] calibrated the design equations from EC 4 based on a test database with 1,819 specimens (including 1,808 tests on CFST columns) collected by Goode [36], and concluded that the EC 4 equations can be safety extended to CFST columns with f'_c up to 100 MPa (for circular section) and 60 MPa (for square section). Liew et al. [37] also evaluated EC 4 design equations based on 2,033 test results, and concluded that the EC 4 method is applicable to high strength CFST columns with f'_c up to 190 MPa and f_y of 550 MPa. Tao et al. [38] evaluated the design equations given in Australian code AS 5100 based on a database of 2,194 columns. They found that the AS 5100 method gives similar results with the EC 4 approach, and thus it can be used for the design of high strength CFST columns. Leon et al. [39] collected experimental data from 2,213 tests on CFST columns to validate the AISC design equations. However, all these evaluations are based on a deterministic manner which ignores the statistics of geometric and material parameters.

To accurately assess the safety of a design code, reliability analyses should be used to evaluate the safety level in terms of the failure probability or the reliability index. The first-order reliability method (FORM) and Monte Carlo simulation (MCS) are the most commonly used reliability analysis methods to determine the reliability index. FORM is an approximate method which is only suitable for simple problems, whilst MCS is the most robust and accurate method which is suitable for complex problems with many random variables [40].

Whilst previous investigations on the reliability of CFST columns designed by existing codes of practice have been undertaken, the results from these studies are often limited due to the relatively small number of tests considered, or the form of the test specimens themselves.
For example, Sulyok and Galambos [41] and Lundberg and Galambos [42] evaluated the reliability of the design models given in EC4 [41] and AISC [42] using the FORM method. However, their study was based on only 226 test results of CFST columns, including 146 concentrically loaded columns and 80 eccentrically loaded columns. Beck et al. [43] assessed the reliability of American, Canadian, European and Brazilian codes using the FORM approach. Their study was based on only 93 experimental results, and limited to circular CFST columns under concentric loading. An et al. [44] evaluated the reliability of the design formulas given in American, European and Chinese codes using the FORM method. Their work was based on only 19 test columns, and limited to very slender CFST columns with normal strength materials. Lu et al. [45, 46] examined the reliability of American and European codes for CFST columns based on 100 experimental results of square columns [45] and 250 tests on circular columns [46], but their findings were limited to short columns under concentric loading. Recently, Thai and Thai [47] adopted the MCS approach to evaluate the safety level of EC 4 for the design of CFST columns. Their study was based on the largest number of tests with 2,224 test specimens. However, their study was limited to concentrically loaded columns.

To provide an accurate and comprehensive assessment of the safety level of current design codes for the design of CFST columns, this paper will collect the most up-to-date and comprehensive test database with 3,208 specimens collected from 184 references. The collected database covers a large range of material and geometric parameters of CFST columns which are well beyond the current code limits. Three design codes including American, European and Australian codes are considered in this study. The reliability index is calculated using the accurate direct MCS approach, which accounts for the error from the design models as well as the uncertainties in loadings, materials and geometry. A parametric study is also performed to explore the effect of design variables on the reliability index of the considered design codes.
2. Methodology

2.1 Overview of CFST test databases

Since the CFST columns have been increasingly used in civil engineering applications, there have been significant efforts to compile comprehensive test databases of CFST columns for the calibration of the design equations currently used in design codes. The early work of this type was carried out by Aho [48] who collected 730 specimens of both encased and CFST columns tested mainly from the late 1990s and early 2000s. This database was later updated by Kim [49] with 451 new tests to make a new database with 1,181 specimens. Goode [36] also compiled another comprehensive database with 1,819 tests. This database was expanded by Tao et al. [38] with 2,194 specimens, Liew et al. [37] with 2,033 specimens and Thai et al. [1] with 3,103 specimens. Other comprehensive databases were also developed by Gourley et al. [50], Denavit [51] and Hajjar et al. [52] who provided detailed information of the experimental tests of not only CFST columns, but also other composite systems such as composite frames and composite beam-to-column connections.

The test database used in this study is expanded from our previous database [1] by adding over 100 tests (mainly high strength columns) published up to early 2020. Detailed properties and test results for each specimen of this database can be found in [53]. This is the most up-to-date and comprehensive database of CFST columns consisting of 3,208 specimens including 2,308 concentrically loaded columns (1,305 circular sections and 1,003 rectangular sections) and 900 eccentrically loaded columns (499 circular sections and 401 rectangular sections).

Table 2 summarises the range of geometric and material properties used in the test database and the limits of three codes considered in this study. The relative section slenderness is defined as \(\lambda = \left(\frac{D}{t} \right) \left(\frac{f_y}{E_s} \right) \) for the circular section (with outside diameter \(D \) and thickness \(t \)) and \(\lambda = \left(\frac{b}{t} \right) \sqrt{\frac{f_y}{E_s}} \) for the rectangular section (with clear width \(b \) and thickness \(t \)). The section
slenderness limits given in EC 4 are converted as \(\lambda_{\text{limit}} = 90 \left(\frac{235}{f_y} \right) \left(\frac{f_c}{E} \right) = 0.11 \) and \(\lambda_{\text{limit}} = 52 \left(\frac{235}{f_y} \right) \times \left(\frac{f_c}{E} \right)^{1.78} = 1.18 \) for circular and rectangular sections, respectively. It is observed from Table 2 that the material and geometric properties used in the test database cover well beyond the current code limits, especially for \(f_c' \).

The histogram distributions of the whole database versus the steel yield stress \(f_y \), concrete strength \(f_c' \), section slenderness \(\lambda \) and member slenderness \(\bar{\lambda} \) are also plotted in Fig. 1 with the code limits included for comparison purposes. It is worth noting that both AISC 360-16 and ASNZS 2327 have the same section slenderness limits (i.e., compact-to-noncompact, noncompact-to-slender and slender-to-permitted limits), and the term section slenderness limit used in this study refers to the maximum permitted limit. Since they allow for local buckling occurring in steel tubes, their section slenderness limit is much greater than that of EC 4, where the local buckling of steel tubes is restricted. The distribution and the number of tests within and beyond the code limits are plotted in Fig. 2 and summarised in Table 3 for different types of columns. It is found that a significant number of tests were conducted beyond the code limits. Among three considered codes, EC 4 allows the lowest limits of the section slenderness and material strengths. Therefore, it has the largest number of tests beyond its limits with 1,165 specimens (36.3%) beyond concrete strength limit and 725 specimens (22.6%) beyond section slenderness limit. If a combination of the limits for both section slenderness, steel and concrete materials is considered, the number of tests beyond the EC 4 limits is 1,746 specimens (54.4%) as shown in Table 3. This significant number of tests indicates that the current limits given in EC 4 are out-of-date and need to be extended. The corresponding numbers of tests beyond the limits of AISC 360-16 and ASNZS 2327 are only 28.7% and 11.8%, respectively.

2.2 Design models

Three modern codes of practice for the design of CFST columns are considered in this study including AISC 360-16, EC 4 and ASNZS 2327. The AISC 360-16 provisions do not allow the
use of high strength materials, but do allow the use of slender sections. In AISC 360-16, the axial force-bending moment interaction equations have been modified from AISC 360-10 to account for the local buckling of beam-column members with noncompact and slender sections. Whereas, the use of CFST columns with slender sections is restricted in EC 4 [37]. The EC 4 design provisions are also limited to normal strength materials. An extension of EC 4 design guidelines to high strength materials was also developed by Liew and Xiong [54], and the second generation of this code is being prepared and will be published around 2024 [55]. ASNZS 2327 is the new Australian/New Zealand standard developed recently for steel-concrete composite structures in buildings [56, 57]. This is the only standard which allows for the use of both slender sections and high strength materials.

For the column under concentric loading, its section capacity is contributed from its steel tube and concrete infill. Unlike rectangular columns, the confining effect of the concrete core occurring in circular CFST columns will be significant, and thus it is taken into account in the design equations. In AISC 360-16 [3], the confining effect of the concrete core in circular CFST columns is included in compact sections via coefficient C_2 in Eq. (1) of the nominal section strength P_{no}.

$$P_{no} = A_s f_y + A_c C_2 f'_c$$ \hspace{1cm} (1)

in which A_s and A_c are respectively the areas of steel and concrete. C_2 is increased from 0.85 (for reinforced concretes, steel-concrete composite beams and rectangular CFST columns) to 0.95 (for circular CFST columns). The local buckling effect of the steel tube of CFST columns with noncompact and slender sections is taken into account in AISC 360-16 [3] as shown in Fig. 3, where the nominal section strength is reduced nonlinearly as a function of the section slenderness λ defined as b/t (for rectangular section) or D/t (for circular section) with D, b and t being the outside diameter of a circular section, the clear width of a rectangular section, and the thickness of a steel tube, respectively.
In EC 4 [4] and ASNZS 2327 [8], the confining effect of the concrete core in circular sections is taken into account in the same manner, in which \(f'_c \) is increased by coefficient \(\eta_c \) and \(f_y \) is decreased by coefficient \(\eta_s \) as illustrated in Eqs. (2) and (3) of the section strength \(N_{us} \):

\[
N_{us}^{EC4} = A_s f_y \eta_s + A_c f'_c \left(1 + \eta_c \frac{t}{D} \frac{f_s}{f'_c} \right) \quad \text{from EC 4}
\]

\[
N_{us}^{AS} = k_f A_s f_y \eta_s + A_c f'_c \left(1 + \eta_c \frac{t}{D} \frac{f_s}{f'_c} \right) \quad \text{from ASNZS 2327}
\]

The variations of the confining coefficients of the steel tube and concrete infill used in Eqs. (2) and (3) are illustrated in Fig. 4 for different steel sections. It is observed that the confining effect in concrete is more significant in compact sections and less pronounced in slender sections as expected due to local buckling of steel tubes. The confining effect is also more pronounced in short columns and negligibly small in long columns when the relative member slenderness \(\bar{\lambda} = \sqrt{N_{us} / N_{cr}} \) (with \(N_{us} \) and \(N_{cr} \) being the section strength and Euler buckling load of the column, respectively) is greater than 0.5.

The values of elastic modulus of concrete and flexural stiffness of CFST columns are defined differently by three codes as illustrated in Table 4. It is worth noting that the local buckling of the steel tube which is ignored in EC 4 [4] is included in ASNZS 2327 [8] through the form factor \(k_f \) in Eq. (3) by means of the effective width method. The form factor \(k_f \) is equal to 1.0 for compact sections, and less than 1.0 for noncompact and slender sections to account for the local buckling effect. The member capacity is obtained by multiplying the section capacity with a reduction factor \(\chi \) as shown in Fig. 5 to consider the global buckling effect. As shown in Fig. 5, the column curves of EC 4 and ASNZS 2327 (without local buckling effect, i.e. \(k_f = 1 \)) are almost identical.

For the column under eccentric loading, its member capacity is calculated using the axial force \(N \) and bending moment \(M \) interaction diagram as shown in Fig. 6. AISC 360-16 allows...
two different methods to calculate the member strength of compact columns as shown in Fig. 6a. The first method (Method 1) is based on a bi-linear interaction curve as in the case of steel members, whilst the second method (Method 2) is based on a four-point interaction curve which is similar to that of EC 4 and ASNZS 2327. In Method 2, the interaction curve at the member level is developed by scaling down the axial force N of the interaction curve at the section level by a slenderness reduction factor which is the ratio between the member and section strengths.

For the columns with noncompact and slender sections, the bi-linear interaction curve is modified as shown in Fig. 6a to account for the local buckling of the steel tubes. Both EC 4 and ASNZS 2327 adopt the four-point interaction curve as in the case of Method 2 of AISC 360-16, and use a similar procedure to account for initial member imperfections and second-order effects when deriving the interaction curve at the member level (the shaded part in Fig. 6b). In this procedure, the second-order moment due to initial member imperfection is assumed to vary linearly with the column axial force (the red line in Fig. 6b) starting from α_n to χ where α_n is taken as zero in EC4 and $\chi \left(1 + \beta_m \right) / 4$ in ASNZS 2327 with β_m being the ratio of the smaller to the bigger end moments taken as a positive value when the member is bent in a reverse curvature. The effect of imperfections will be neglected when an axial load ratio is less than α_n. For a column under concentric loading, its member strength indicated by χ is less than 1.0 due to the existence of the second-order moment μ_0 caused by initial member imperfections. If an additional external moment is applied, the second-order moment caused by initial member imperfection is reduced from μ_0 to μ_d. Therefore, the available moment capacity at the member level is μ (the shaded part in Fig. 6b). Detailed calculations of the column strengths under eccentric loading for all three design codes can be found in our previous paper [1].

2.3 Model error

The strength predictions obtained from the design equations of the three considered codes
are compared with the test results to calculate the statistics of the design model errors. In this comparison, all partial resistance factors of materials are taken as unity, and the measured values of material and geometric properties obtained from the test specimens are used. The distribution of the test-to-prediction ratios of all three codes are shown in Fig. 7 for columns and Fig. 8 for beam-columns. The results indicate that the mean value of the model error (i.e., test-to-prediction ratio) is slightly dependent on the slenderness $\bar{\lambda}$ of columns (see Fig. 7). However, for the case of beam-columns, the effect of the eccentricity on the mean model error is negligibly small (see Fig. 8), and thus it is ignored in this study. The statistical properties of the model errors of three considered codes obtained from a regression analysis are summarised in Table 5 for circular and rectangular columns and beam-columns.

The histograms of the test-to-prediction ratios are plotted in Figs. 9-11 for columns, beam-columns and all tests, respectively, with their statistics (coefficient of variation (CoV) and mean). Using a distribution fit tool in Matlab, it is found that all histograms are best fitted with a lognormal distribution. In general, all three codes predict the strength of rectangular columns slightly better than that of circular ones. However, the predictions of rectangular columns are less reliable and more scatter than those of circular ones due to with larger CoV (see Table 5). Both EC 4 and ASNZS 2327 give better predictions with less scatter compared with AISC 360-16 for both columns (see Fig. 9) and beam-columns (see Fig. 10).

For circular columns, the mean values μ predicted by EC 4 and ASNZS 2327 are only 1.095 and 1.079, respectively, which are lower than the values of 1.265 from AISC 360-16. This is due to the fact that both EC 4 and ASNZS 2327 adopt a more complex model to account for confining effect of concrete infill compared with the simple model used in AISC 360-16. Their confining model is based on more realistic confining behaviour which leads to an increase in concrete strength in addition to a reduction of steel yield stress due to local buckling effect as shown in Eqs. (2) and (3).
For the whole database (see Fig. 11), EC 4 provides the best predictions, whilst AISC 360-16 provides the most conservative predictions. Meanwhile, the accuracy of ASNZS 2327 is between those of EC 4 and AISC 360-16. This is expected, since ASNZS 2327 is a harmonised standard between EC 4 and AISC 360-16 which adopts the same confining model of EC 4 and the same section slenderness limit of AISC 360-16.

2.4 Random variables

To accurately predict the reliability index of the design codes, the uncertainty or randomness of all input variables including material, geometry and loads should be considered [58]. There are ten random variables considered in this study and their statistical properties are summarised in Table 6. For geometric properties, only the uncertainties in the cross-section of columns (i.e., thickness \(t \) of steel tubes, diameter \(D \) of circular sections or width \(B \) and height \(H \) of rectangular sections) are considered in this study. The uncertainty in the column length \(L \) is ignored because it is not sensitive to the reliability index of columns [42, 59, 60].

The statistics of geometric and material properties of steel tubes will be taken from [61, 62] whose input values are used in the next version of EC 3 on steel structures [63]. Meanwhile, the statistics of the concrete strength \(f_{c'} \) are based on those reported by Bartlett and Macgregor [64] (which are almost identical to the assumptions made in evaluating the partial factor for concrete within EC 2 [65]). The elastic modulus of concrete \(E_c \) will be derived from \(f_{c'} \) using the design equations summarised in Table 4. The statistical distribution of geometric and material properties are assumed to be lognormal as recommended by the Joint Committee on Structural Safety (JCSS) Probabilistic Model Code [66] and Johnson and Huang [67]. This assumption was verified by Byfield and Nethercot [68] who proved that the lognormal distribution provides an accurate model of the lower tail of the probability distribution. There is no correlation between the geometric and material variables as demonstrated in [68]. The statistics of the model error (ME variable) are calculated based on the test database of 3,208
specimens collected in this study (see Table 5). As shown in Figs. 9 and 10, all distributions of the model errors are best fitted to lognormal types.

The statistical properties of dead load D_n are obtained from Refs. [69, 70] with the characteristic value taken as the same as the mean value. For the live load L_n, two different approaches are adopted in the US code, European and Australian codes to calculate the characteristic value [71]. This might lead to the use of different values of the target reliability index (i.e., $\beta_T = 3.0$ in the US code and $\beta_T = 3.8$ in the European and Australian codes). In US practice, the characteristic value of the live load is defined as the mean value of the 50-year maxima based on Galambos [69] and Ellingwood [72] which appear to be the basis for the US loading standard ASCE/SEI 7 [73]. In European and Australian practice, the characteristic value of the live load is defined as the 98% fractile of the annual maximum loads [71] which results in a value of 0.6. This value is also recommended by JCSS and literature [70, 74, 75] which are the key references for the development of the European loading code [76] and Australian loading code [77]. In order to keep consistency with the loading standards, this study will adopt two different characteristic values of the live load L_n for US code and European and Australian codes as shown in Table 6. It should be noted that the characteristic value used in previous studies [41, 43, 45-47] to evaluate the reliability of CFST columns designed according to EC 4 are based on the US practice instead of the European practice. Thus, their results cannot be compared directly with European requirements.

2.5 Reliability analysis

The safety level of structures designed following a given code can be measured by means of the reliability index β related the failure probability P_f as

$$\beta = -\Phi^{-1}(P_f)$$

(4)

where Φ is the standard cumulative distribution function. The failure probability P_f can be predicted using either analytical approach or simulation method. Direct MCS approach can
give accurate solutions for a problem with a large number of random variables as in the case of this study. In MCS, the failure probability can be calculated as

$$P_f = \frac{N_{\text{fail}}}{N}$$

(5)

where $$N_{\text{fail}}$$ and $$N$$ are the number of failed simulations (when the limit state function is violated, i.e. $$g \leq 0$$) and the total number of simulations, respectively; and $$g$$ is the limit state function of columns defined as

$$g = R - Q$$

(6)

where $$R$$ and $$Q$$ are the random values of column resistance and total design load, respectively, defined as

$$R = ME \times N_{nc}$$

(7)

$$Q = D_n + L_n$$

(8)

where $$N_{nc}$$ is the member resistance obtained from the design equations (see Section 2.2) using the random values of design variables given in Table 6 with the partial resistance factors taken as unity. The model error $$ME$$ is used to account for bias correction [42]. The nominal values $$D_n$$ and $$L_n$$ can be computed from the design resistance $$N_{Rd}$$ for a given $$L_n/D_n$$ as

$$D_n = \frac{N_{Rd}}{\gamma_D + \left(\frac{L_n}{D_n} \right) \gamma_L}$$

(9)

$$L_n = \left(\frac{L_n}{D_n} \right) D_n$$

(10)

where $$N_{Rd}$$ can be obtained from the design equations using the nominal values of material and geometric properties with the partial resistance factors included. The dead load $$\gamma_D$$ and live load $$\gamma_L$$ factors as well as the partial resistance factors of three considered codes are summarised in Table 7. The load factors for a combination of dead and live loads are taken from the US loading standard ASCE/SEI 7 [73], Eurocode 0 [78] and Australian/New Zealand loading standard
AS NZS 1170.1 [77]. A flowchart showing the step-by-step implementation of MCS is given in Fig. 12. The accuracy of MCS is dependent on the number of samples used in the simulation. The CoV of the probability of failure P_f is related to the number of simulations N as [79]

$$CoV = \sqrt{\frac{1-P_f}{NP_f}}$$

(11)

Eq. (11) indicates that the accuracy of MCS increases (smaller CoV) as the number of simulation N increases. Table 8 shows the required number of samples N and corresponding computational cost for different values of the reliability index β to maintain the same level of accuracy with a CoV of 5%. It can be seen that a very large number of simulations N is needed to handle the problem with a large reliability index β or a small failure probability P_f (from 2.96×10^5 to 4.05×10^{11} samples for β from 3.0 to 6.0).

Although the computational time for each simulation in this study is very efficient (about 10^5 simulations per second with a laptop with normal configuration as shown in Table 8), the direct MCS is only applicable to the problem with a reliability index less than 4.5 (see Table 8). For small failure probability problem with a reliability index greater than 4.5, a subset simulation method [80-83] will be used to reduce computational time. The subset simulation is an adaptive simulation procedure developed by Au and Beck [80] based on the concept of conditional probability and Markov Chain Monte Carlo (MCMC) sampling techniques. Various MCMC algorithms have been proposed for subset simulation, and this study employs the adaptive conditional sampling approach proposed by Papaioannou et al. [81] as it significantly improves the performance of existing MCMC algorithms without increasing any computational cost [81].

Fig. 13 presents the results of MCS and subset simulation for a typical square stub column ($f_y = 300$ MPa, $f'_c = 40$ MPa, $t = 10$ mm, $\lambda = 1.5$, $\lambda = 0.2$) designed by AS NZS 2327. The MCS and subset results were obtained based on 5×10^7 and 10^5 samples, respectively, to ensure
the CoV of the estimated probability of failure P_f less than 5%. It is also observed from Fig. 13b that the probability of failure predicted by the subset simulation method converges very fast with even a small number of samples (10,000 samples). Therefore, the subset simulation method is very efficient in predicting the reliability index of problems with very small failure probability.

3. Results and discussion

3.1 Reliability of columns designed by considered codes

Based on the model errors given in Table 5, four different types of columns are categorised in this study including circular columns (CC), rectangular columns (RC), circular beam-columns (CB) and rectangular beam-columns (RB). For each type of column, a wide range of geometric and geometry parameters of column configurations is covered in the reliability analysis. They include seven values of steel yield stress $f_y = \{200, 300, 400, 500, 600, 700, 800\}$ MPa, seven values of concrete compressive strength $f'_c = \{20, 30, 40, 60, 90, 120, 160\}$ MPa, seven values of section slenderness ratio $\lambda = \left(D/t\right)\left(f_y/E_s\right) = \{0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.35\}$ for circular sections or $\lambda = \left(b/t\right)\sqrt{f_y/E_s} = \{1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0\}$ for rectangular sections, and seven values for the member slenderness ratio $\bar{\lambda} = \sqrt{N_u/N_{cr}} = \{0.15, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5\}$. As shown in Fig. 1, these values reflect the wide range of column configurations covered by the test database, and thus the reliability indices of the columns with section and material properties beyond the code limits can be addressed. In total, there are $7 \times 7 \times 7 \times 7 = 2,401$ column configurations considered for a single category of columns. With four different column categories and three considered codes, the total number of reliability problems simulated is $4 \times 3 \times 2,401 = 28,812$. A typical value of live load-to-dead load ratio L_n/D_n of 1.0 was used as most of structures have $L_n/D_n \leq 2.0$ [84]. For beam-columns, the eccentricity e is taken as $0.05 \times D$ to ensure the confining effect is taken into account in the
Table 9 summarises the reliability indices of the full range of column configurations designed by the three considered codes. Since the reliability varies in different column configurations, the statistical properties of the obtained reliability index (i.e., minimum value, maximum value, mean value and CoV) are summarised for comparison purposes. It should be noted that the mean values of the reliability indices of the columns designed by EC 4 obtained in this study are much greater than those predicted in existing studies (e.g., $\beta = 2.3 - 2.5$ [42], 2.9 [43] and 3.2 [45]). This is mainly due to the use of the characteristic values of live load of 0.6 [70, 74, 75] (see Table 6) which is smaller than the mean value of 1.0 adopted in existing studies based on the practice of American code calibrations. In general, the reliability indices of concentric columns designed by three considered codes are higher than those of eccentric columns (i.e., beam-columns). This is because the prediction models of columns are better than those of beam-columns with less scatter and smaller CoV as shown in Fig. 9 (for concentric columns) and Fig. 10 (for eccentric columns).

It can be seen from Table 9 that the minimum values of the reliability index of concentric columns designed by AISC 360-16 are above the target reliability index β_T of 3.0 required by American code for a column under a dead load and live load combination [85]. This is also observed for the concentric columns with section and material properties beyond the AISC 360-16 code limits. The mean value of the obtained reliability index is about 20% - 30% higher than the target value. This means that the design equations of CFST columns in AISC 360-16 code can be safely extended beyond the current limits. However, this is not the case for eccentric columns (i.e., CB and RB). Although their mean values narrowly meet the target requirement, their minimum values are still lower than the target values of 3.0. It is interesting to note from Table 9 that the reliability indices of the column configurations beyond the AISC 360-16 code limits are more uniform (less scatter and smaller CoV) than those of the column equations of EC 4 and ASNZS 2327.
configurations within the code limits.

As shown in Table 9, both EC 4 and ASNZS 2327 give a similar safety level for circular concentric columns (CC) with the reliability indices being in the range from 3.9 to 5.3 for EC 4 (or 3.8 to 5.2 for ASNZS 2327). These values are well above the target value β_t of 3.8 recommended by EC 0 [78] and AS 5104 [86] (adopted from ISO 2394 [87]) for the design of members of a Class 2 structure (office and residential buildings) with the probability of failure of 1 in 14,000 over a reference period of 50 years. Although the mean value of the reliability index of the RC designed by EC 4 and ASNZS 2327 is around 4.0, which meets the target value of 3.8, its minimum value is 3.5 which falls slightly below the required target value of 3.8.

Similar to the eccentric column designed by AISC 360-16, the reliability index of the eccentric column designed by EC 4 and ASNZS 2327 is smaller than that of concentric columns, and its mean values are also lower than the target value of 3.8. Table 9 also indicates that both the ASNZS 2327 and EC 4 design models can be extended to the column configurations beyond the current material and section slenderness limits, since the reliability indices of columns within and beyond the code limits are almost identical.

3.2 Effect of design variables

In order to accurately assess the reliability of a design code beyond its current material and slenderness limits, a parametric study was performed for a wide range of material and geometric parameters including those within and beyond the code limits. Three main variables considered in this study include f_y, f'_c, and λ. Figs. 14 and 15 show the effects of f_y and f'_c on the reliability index of the three considered codes, respectively. In this parametric study, all geometric and loading properties, except for f_y and f'_c, are kept the same with those of the typical columns ($f_y = 300$ MPa, $f'_c = 40$ MPa, $t = 10$ mm, $\lambda = 1.5$ (rectangular section) and 0.05 (circular section), $\bar{\lambda} = 0.2$). The steel yield stress f_y is varied from 100 MPa to 1,000 MPa, whilst f'_c is varied from 10 MPa to 200 MPa. In order to ensure the compatibility between
concrete and steel materials in a CFST section (i.e., to avoid the crushing of the concrete infill before the yielding of the steel tube), the selection of steel grade \(f_y \) should be matched with concrete grade \(f'_c \) based on the following condition [54]

\[
f_y \leq 0.7E_s\left(f'_c + 8\right)^{0.31}
\]

(12)

In general, the reliability indices obtained from the three considered codes are insensitive to both \(f_y \) and \(f'_c \), and they also exceed the target reliability \(\beta_T \) for all column types designed by AISC 360-16 with material strengths within and beyond the current code limits. It means that they can be safety extended to the design of high strength CFST columns with \(f_y \) up to 1,000 MPa (see Fig. 14) and \(f'_c \) up to 200 MPa (see Fig. 15). For the column designed by EC 4 and ASNZS 2327, its reliability index is slightly decreased by increasing the steel yield stress.

Fig. 16 shows the variation of the reliability index with respect to the section slenderness ratio of columns. In this case study, except for section slenderness ratio, all geometric, material and loading properties are kept the same as in the case of the typical columns. In general, the reliability index of the column designed by AISC 360-16 slightly decreased with the increase of the section slenderness ratio especially the region within the code limit. This tendency is somehow opposite for the column designed by EC 4 and ASNZS 2327. Fig. 16c also indicates that ASNZS 2327 can be safety extended to the design all column configurations with the section slenderness ratio beyond the current code limits.

The last case study is to investigate the effect \(L_n/D_n \) on the reliability index of the CFST columns designed by the three considered codes. The variation of the reliability index with respect to \(L_n/D_n \) is shown in Fig. 17 when all geometric and material properties are kept the same with those of the typical columns. It is observed that the reliability index of the columns design by three considered codes are only sensitive to cases when the live load-to-dead load ratio \(L_n/D_n \) is less than 1.0.
4. Conclusions

This study evaluates the reliability of the CFST columns designed by AISC 360-16, EC 4 and ASNZS 2327, and examines whether the existing design rules can be extended to columns with material strengths and section slenderness ratios beyond the current code limits. A comprehensive test database with 3,208 columns (including 656 circular stub columns, 649 circular long columns, 499 circular beam-columns, 572 rectangular stub columns, 431 rectangular long columns, and 401 rectangular beam-columns) was collected to develop the statistical parameters of the model errors for the three considered codes. To the present authors' knowledge, this is the first time that the statistics of model errors for CFST columns have been developed for AISC 360-16, EC 4 and ASNZS 2327 based on the most up-to-date database collected in this study. The statistics of model error are then included in the direct MCS or subset simulation which accounts for the uncertainties in materials, geometry and loads to accurately predict the reliability index. The following findings are obtained from this study:

(1) A significant number of tests collected in this study have the material strengths and section slenderness ratios beyond the current code limits. Among three considered codes, EC 4 has the largest number of tests beyond its limits with 1,746 specimens (54.4%). The corresponding numbers of tests beyond the limits of AISC 360-16 and ASNZS 2327 are 912 specimens (28.7%) and 379 specimens (11.8%), respectively. This finding implies that the current limits in EC 4 are out-of-date and need to be extended.

(2) Among the three considered codes, AISC 360-16 provides the most conservative predictions, especially for circular columns where the confining effect existed. Whereas, both EC 4 and ASNZS 2327 provide more accurate predictions with smaller means and CoVs compared with the predictions obtained from AISC 360-16. This is due to the fact that the design equations given by EC 4 and ASNZS 2327 are more complex and are based on a more realistic behaviour than the simple equations given in AISC 360-16. All
histograms of model error fitted well with a lognormal distribution.

(3) In general, the reliability index of the concentric columns designed by the three considered codes are higher than that of eccentric columns.

(4) The results from the reliability analysis also indicate that all three considered codes can be extended to the design of CFST columns with material strengths and section slenderness beyond their current code limits as the reliability indices of column configurations within and beyond the code limits are almost identical.

Acknowledgements

This research was supported by the Australian Research Council (ARC) under its Future Fellowship Scheme (Project No: FT200100024), and the University of Melbourne under a Start-up Grant awarded to the first author. The financial support is gratefully acknowledged.

References

[7] Architectural Institute of Japan (AIJ). Recommendations for design and construction of
concrete filled steel tubular structures, Japan; 1997.

[16] Hoang AL, Fehling E, Lai B, Thai DK, Chau NV. Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube. Engineering

[54] Liew JR, Xiong M. Design guide for concrete filled tubular members with high strength materials - an extension of Eurocode 4 method to C90/105 concrete and S550 steel:

[64] Bartlett FM, Macgregor JG. Statistical analysis of the compressive strength of concrete in

[77] Standards Australia. ASNZS 1170.1 Structural design actions - Part 1: Permanent, imposed and other actions; 2002.

Table 1. Material limits in modern codes of practice

<table>
<thead>
<tr>
<th>Design codes</th>
<th>Steel yield stress (MPa)</th>
<th>Concrete compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC 360-16 [3]</td>
<td>525</td>
<td>69</td>
</tr>
<tr>
<td>EC 4 [4]</td>
<td>460</td>
<td>50</td>
</tr>
<tr>
<td>BS 5400 [5]</td>
<td>460</td>
<td>50</td>
</tr>
<tr>
<td>GB 50936 [6]</td>
<td>420</td>
<td>70*</td>
</tr>
<tr>
<td>AIJ [7]</td>
<td>440</td>
<td>90</td>
</tr>
<tr>
<td>ASNZS 2327 [8]</td>
<td>690</td>
<td>100</td>
</tr>
</tbody>
</table>

* This value refers to the compressive strength from cube specimens.

Table 2. Range of material and geometry properties used in the test database and code limits

<table>
<thead>
<tr>
<th>Properties</th>
<th>Min</th>
<th>Max</th>
<th>Code limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC 4</td>
</tr>
<tr>
<td>Steel yield stress, (f_y) (MPa)</td>
<td>115.00</td>
<td>853.00</td>
<td>460</td>
</tr>
<tr>
<td>Concrete strength, (f_c') (MPa)</td>
<td>7.59</td>
<td>185.94</td>
<td>50</td>
</tr>
<tr>
<td>Section slenderness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular section</td>
<td>0.01</td>
<td>0.26</td>
<td>0.11</td>
</tr>
<tr>
<td>Rectangular section</td>
<td>0.05</td>
<td>9.93</td>
<td>1.78</td>
</tr>
<tr>
<td>Member slenderness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular section, (L/D)</td>
<td>0.81</td>
<td>51.48</td>
<td></td>
</tr>
<tr>
<td>Rectangular section, (L/B)</td>
<td>0.59</td>
<td>49.10</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of the test database

<table>
<thead>
<tr>
<th>Types of column</th>
<th>EC 4</th>
<th>AISC 360-16</th>
<th>ASNZS 2327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular short column (656 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>39 (5.9%)*</td>
<td>24 (3.7%)</td>
<td>12 (1.8%)</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>302 (46.0%)</td>
<td>240 (36.6%)</td>
<td>91 (13.9%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>152 (23.2%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Circular long column (649 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>54 (8.3%)</td>
<td>17 (2.6%)</td>
<td>0</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>89 (13.7%)</td>
<td>47 (7.2%)</td>
<td>25 (3.8%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>56 (8.6%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Circular beam-column (499 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>12 (2.4%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>206 (41.3%)</td>
<td>76 (15.2%)</td>
<td>25 (5.0%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>38 (7.6%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangular short column (572 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>167 (29.2%)</td>
<td>137 (23.9%)</td>
<td>87 (15.2%)</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>232 (40.5%)</td>
<td>164 (28.7%)</td>
<td>68 (11.9%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>194 (33.9%)</td>
<td>5 (0.9%)</td>
<td>5 (0.9%)</td>
</tr>
<tr>
<td>Rectangular long column (431 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>88 (20.4%)</td>
<td>61 (14.1%)</td>
<td>45 (10.4%)</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>163 (37.8%)</td>
<td>96 (22.3%)</td>
<td>55 (12.8%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>156 (36.2%)</td>
<td>6 (1.4%)</td>
<td>6 (1.4%)</td>
</tr>
<tr>
<td>Rectangular beam-column (401 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>89 (22.2%)</td>
<td>55 (13.7%)</td>
<td>21 (5.2%)</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>173 (43.1%)</td>
<td>115 (28.7%)</td>
<td>12 (3.0%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>129 (19.7%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All test data (3,208 tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test with f_y beyond code limits</td>
<td>449 (14.0%)</td>
<td>294 (9.2%)</td>
<td>165 (5.1%)</td>
</tr>
<tr>
<td>No. of test with f'_c beyond code limits</td>
<td>1,165 (36.3%)</td>
<td>738 (23.0%)</td>
<td>276 (8.6%)</td>
</tr>
<tr>
<td>No. of test with λ beyond code limits</td>
<td>725 (22.6%)</td>
<td>11 (0.3%)</td>
<td>11 (0.3%)</td>
</tr>
</tbody>
</table>

* The value in bracket indicates the corresponding percentage.
Table 4. Recommended elastic modulus of concrete and flexural stiffness of CFST columns

<table>
<thead>
<tr>
<th>Design codes</th>
<th>Elastic modulus E_c</th>
<th>Flexural stiffness EI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$E_c = 0.043 \rho^{1.5} \sqrt{f'_c}$</td>
<td>$EI = E_c I_c + C_e E_c I_c$ where $C_e = 0.45 + 3 \frac{A_s}{A_s + A_t} \leq 0.9$</td>
</tr>
<tr>
<td>AISC 360-16 [3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 4 [4]</td>
<td>$E_c = 22[(f'_c + 8)/10]^{0.3}$</td>
<td>$EI = E_c I_c + 0.6 E_c I_c$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>E_c</th>
<th>EI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC 360-16</td>
<td>$0.0248/1.134$</td>
<td></td>
</tr>
<tr>
<td>EC 4</td>
<td>$0.179/1.033$</td>
<td></td>
</tr>
<tr>
<td>ASNZS 2327</td>
<td>$0.101/1.042$</td>
<td></td>
</tr>
</tbody>
</table>

ASNZS 2327 [8]

\[
E_c = \begin{cases}
 \rho^{1.5} 0.043 \sqrt{f'_{cm}} & \text{if } f'_{cm} \leq 40 \text{MPa} \\
 \rho^{1.5} (0.024 \sqrt{f'_{cm}} + 0.12) & \text{if } f'_{cm} > 40 \text{MPa}
\end{cases} \\
\text{where } f'_{cm} = 0.9(1.2875 - 0.001875 f'_c) f'_c
\]

ρ is the density of concrete and can be taken as 2,400 kg/m3.

Table 5. Statistical properties of model errors based on regressive analysis

<table>
<thead>
<tr>
<th>Type of column</th>
<th>Type of section</th>
<th>No. of tests (n)</th>
<th>Code</th>
<th>Mean (μ)</th>
<th>CoV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Circular</td>
<td>1305</td>
<td>AISC 360-16</td>
<td>0.0248/1.134</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC 4</td>
<td>0.179/1.033</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASNZS 2327</td>
<td>0.101/1.042</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>Rectangular</td>
<td>1003</td>
<td>AISC 360-16</td>
<td>0.0009/1.165</td>
<td>0.171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC 4</td>
<td>0.169/1.012</td>
<td>0.172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASNZS 2327</td>
<td>0.0856/1.044</td>
<td>0.161</td>
</tr>
<tr>
<td>Beam-column</td>
<td>Circular</td>
<td>499</td>
<td>AISC 360-16</td>
<td>1.245</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC 4</td>
<td>1.115</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASNZS 2327</td>
<td>1.187</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>Rectangular</td>
<td>401</td>
<td>AISC 360-16</td>
<td>1.221</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC 4</td>
<td>1.061</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASNZS 2327</td>
<td>1.107</td>
<td>0.189</td>
</tr>
</tbody>
</table>

Note: All histograms are best fitted to a lognormal distribution.
Table 6. Statistical properties of random variables

<table>
<thead>
<tr>
<th>Properties</th>
<th>Variables</th>
<th>Mean</th>
<th>CoV</th>
<th>Distribution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>X(1) = Elastic modulus of steel, E_s</td>
<td>1.00</td>
<td>0.030</td>
<td>Lognormal</td>
<td>[61, 62]</td>
</tr>
<tr>
<td></td>
<td>X(2) = Steel yield stress, f_y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f_y < 355$ MPa</td>
<td>1.25</td>
<td>0.055</td>
<td>Lognormal</td>
<td>[61, 62]</td>
</tr>
<tr>
<td></td>
<td>$f_y < 420$ MPa</td>
<td>1.20</td>
<td>0.050</td>
<td>Lognormal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f_y < 460$ MPa</td>
<td>1.15</td>
<td>0.045</td>
<td>Lognormal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f_y \geq 460$ MPa</td>
<td>1.10</td>
<td>0.035</td>
<td>Lognormal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X(3) = Concrete compressive strength, f_c'</td>
<td>1.08</td>
<td>0.15</td>
<td>Lognormal</td>
<td>[64]</td>
</tr>
<tr>
<td>Geometry</td>
<td>X(4) = Diameter of circular section, D</td>
<td>1.00</td>
<td>0.005</td>
<td>Lognormal</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>X(5) = Width of rectangular section, B</td>
<td>1.00</td>
<td>0.009</td>
<td>Lognormal</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>X(6) = Height of rectangular section, H</td>
<td>1.00</td>
<td>0.009</td>
<td>Lognormal</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>X(7) = Thickness of steel tube, t</td>
<td>0.99</td>
<td>0.025</td>
<td>Lognormal</td>
<td>[61]</td>
</tr>
<tr>
<td>Load</td>
<td>X(8) = Dead load, D_n</td>
<td>1.00</td>
<td>0.10</td>
<td>Normal</td>
<td>[69, 70]</td>
</tr>
<tr>
<td></td>
<td>X(9) = Live load, L_n for AISC 360-16</td>
<td>1.00</td>
<td>0.25</td>
<td>Gumbel</td>
<td>[69, 72]</td>
</tr>
<tr>
<td></td>
<td>L_n for EC 4 and AZNZS 2327</td>
<td>0.60</td>
<td>0.35</td>
<td>Gumbel</td>
<td>[70, 74, 75]</td>
</tr>
<tr>
<td>Model error</td>
<td>X(10) = ME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Load and partial resistance factors

<table>
<thead>
<tr>
<th>Load and resistance factors</th>
<th>AISC 360-16</th>
<th>EC 4</th>
<th>ASNZS 2327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load factor γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead load γ_D</td>
<td>1.2</td>
<td>1.35</td>
<td>1.2</td>
</tr>
<tr>
<td>Dead load γ_L</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Partial resistance factor ϕ</td>
<td>Steel</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>0.75</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Table 8. Number of samples required in MCS with a CoV of 5%

<table>
<thead>
<tr>
<th>Reliability index β</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure probability P_f</td>
<td>0.0013</td>
<td>2.33×10^{-4}</td>
<td>3.17×10^{-5}</td>
<td>3.40×10^{-6}</td>
<td>2.87×10^{-7}</td>
<td>1.90×10^{-8}</td>
<td>3.40×10^{-9}</td>
</tr>
<tr>
<td>No. of sample N</td>
<td>2.96×10^5</td>
<td>1.72×10^6</td>
<td>1.26×10^7</td>
<td>1.18×10^8</td>
<td>1.40×10^9</td>
<td>2.11×10^{10}</td>
<td>4.05×10^{11}</td>
</tr>
<tr>
<td>Computational time (s)*</td>
<td>3.0</td>
<td>16.2</td>
<td>122.7</td>
<td>2000.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Using a HP EliteBook X360 1030 G2 Notebook (i7 CPU and 16 GB RAM).

Table 9. Reliability index β of considered codes within and beyond code limits

<table>
<thead>
<tr>
<th>Column type</th>
<th>Reliability index β</th>
<th>AISC 360-16</th>
<th>EC 4</th>
<th>ASNZS 2327</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within</td>
<td>Beyond</td>
<td>Within</td>
<td>Beyond</td>
</tr>
<tr>
<td>Circular column (CC)</td>
<td>Min</td>
<td>3.06</td>
<td>3.05</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>4.59</td>
<td>4.53</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>3.66</td>
<td>3.62</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Rectangular column (RC)</td>
<td>Min</td>
<td>3.11</td>
<td>3.06</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>3.97</td>
<td>3.81</td>
<td>4.87</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>3.43</td>
<td>3.36</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.06</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Circular beam-column (CB)</td>
<td>Min</td>
<td>2.42</td>
<td>2.18</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>3.43</td>
<td>3.60</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.99</td>
<td>2.96</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Rectangular beam-column (RB)</td>
<td>Min</td>
<td>2.84</td>
<td>2.72</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>3.50</td>
<td>3.63</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>3.06</td>
<td>3.00</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Fig. 1. Histogram of test database
Fig. 2. Distribution of tests within and beyond code limits
Fig. 3. Variation of nominal section strength \(P_{no} \) with respect to section slenderness \(\lambda \)

\[
P_{no} = P_p - \frac{P_p - P_y}{(\lambda_p - \lambda_y)^2} (\lambda - \lambda_p)^2
\]

where

\[
P_p = f_y A_i + C_2 f_y' A_i
\]
\[
P_y = f_y A_i + 0.7 f_y' A_i
\]

- Compact section
- Slender section
- Noncompact section

\[
\lambda_p = \frac{9E_y}{f_y' D^2}
\]

for rectangular section

\[
f_y = \frac{0.72 f_y'}{\lambda^2}
\]

for circular section

- \(C_2 = 0.95 \) for circular section
- \(C_2 = 0.85 \) for rectangular section

Fig. 4. Confining coefficient with respect to relative member slenderness
Fig. 5. Column curves from three considered design codes

Fig. 6. Non-dimensional N-M interaction diagram of eccentric columns
Fig. 7. Test-to-code prediction with respect to the member slenderness of concentric columns.
Fig. 8. Test-to-code prediction with respect to the eccentricity of eccentric columns
Fig. 9. Histogram of test-to-prediction ratio of concentric columns

Fig. 10. Histogram of test-to-prediction ratio of eccentric columns
Fig. 11. Histogram of test-to-prediction ratio of all tests

Input data (geometry, material, model error)

Calculate \(N_{Rd} \) from Section 2.2 using nominal values with partial resistance factor inclusion

Calculate \(D_n \) and \(L_n \) using Eqs. (9) and (10)

Generate \(N \) samples of random variables

For each sample \(i \), determine resistance \(R \) using Eq. (7), total design load \(S \) using Eq. (8), and limit state function \(g \) using Eq. (6)

\[g \leq 0 \]

Yes

Count \(N_{fail} = N_{fail} + 1 \)

\[i = i + 1 \]

No

\[i = N \]

No

Calculate \(P_f \) using Eq. (5) and \(\beta \) using Eq. (4)

Yes

Fig. 12. Flowchart of MCS
(a) Histograms and distribution of samples from MCS

(b) Prediction of failure probability and distribution of samples from subset simulation

Fig. 13. MCS and subset simulation of a typical square stub column designed by ASNZS 2327
Fig. 14. Effect of f_y on the reliability index of three codes

Fig. 15. Effect of f_c' on the reliability index of three codes
Fig. 16. Effect of λ on the reliability index of three codes

Fig. 17. Effect of live load-to-dead load ratio on the reliability index of three codes